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Abstract

The cover, number, size, shape, spatial arrangement and orientation of vegetation patches are attributes that have
been used to indicate how well landscapes function to retain, not ‘leak’, vital system resources such as rainwater
and soil. We derived and tested a directional leakiness index (DLI) for this resource retention function. We used
simulated landscape maps where resource flows over map surfaces were directional and where landscape patch
attributes were known. Although DLI was most strongly related to patch cover, it also logically related to patch
number, size, shape, arrangement and orientation. If the direction of resource flow is multi-directional, a variant
of DLI, the multi-directional leakiness index (MDLI) can be used. The utility of DLI and MDLI was demon-
strated by applying these indices to three Australian savanna landscapes differing in their remotely sensed veg-
etation patch attributes. These leakiness indices clearly positioned these three landscapes along a function-dys-

function continuum, where dysfunctional landscapes are leaky (poorly retain resources).

Introduction

Patches of vegetation serve an important function in
many desert, grassland and savanna landscapes
around the world by capturing and retaining limited
resources such as rainwater, organic matter, and soil
sediments and nutrients (Tongway and Ludwig
1997a). This function is confirmed by landscape stud-
ies documenting ‘islands of fertility’ within a matrix
of infertility (e.g., Anderson and Hodgkinson (1997);
Burke et al. (1999); Cross and Schlesinger (1999);
Reid et al. (1999)), and by studies relating runoff and
soil losses to vegetation patch cover (e.g., Johns
(1983); Lang and McCaffrey (1984); Mclvor et al.
(1995); Galle et al. (1999)). Landscapes with many
vegetation patches covering their surfaces will effi-
ciently retain and utilize resources (Tongway and
Ludwig 1997a). These landscapes are conserving or
highly functional systems, whereas landscapes with
few such patches are leaky or dysfunctional (Tong-

way and Ludwig 1997b). Landscapes occur along a
theoretical continuum of functionality from highly
patchy systems that conserve all resources to those
that have no patches and leak all resources (Ludwig
and Tongway 2000). Few landscapes would occur at
these extremes, of course, but this continuum is use-
ful for comparing the functionality (leakiness) of
landscapes subject to different disturbances (e.g.,
Ludwig et al. (2000a)).

Directly measuring how efficiently landscapes cap-
ture, retain and cycle water and nutrients, hence re-
duce runoff and erosion, is very costly in terms of
field and laboratory time (e.g., Scanlan et al. (1996);
Burke et al. (1999); Galle et al. (1999); Schlesinger
et al. (2000)). Thus, simple indicators that reflect
these landscape processes and functions are used
(Tongway and Ludwig 1997b). These indicators in-
clude the cover, number and mean size of perennial
vegetation patches, which are attributes that can be
obtained by remote sensing (e.g., Ludwig et al.
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(2000b)). In addition to these simple patch measures,
field and modelling studies have shown that the shape
and spatial orientation and arrangement of patches
within a landscape can also influence how efficiently
water and nutrients can be retained and utilized for
plant production (e.g., Reynolds et al. (1997); Cross
and Schlesinger (1999); Ludwig et al. (1999a)).

These patch measures have mostly been used as
separate indicators to compare landscapes (e.g., Tong-
way and Ludwig (1997b)). However, these measures
are obviously related (e.g., patch cover increases as
the number of patches increases if patch size remains
constant). Therefore, it seems logical to integrate
these patch measures into simple indicators of land-
scape function. For example, a ‘weighted mean patch
size’ index has been derived from the number of
patches and their mean size to describe landscape
structure (Li and Archer 1997). Others have combined
patch size and configuration to derive indices of land-
scape fragmentation and heterogeneity (e.g., Li and
Reynolds (1994); Jaeger (2000)). The lacunarity in-
dex has been used to compare landscape patch pat-
terns such as degree of segregation (Wu and Sui
2001) and patch functions such as connectivity of
surface flows (Wu et al. 2000), and how darkling bee-
tles use patches (Mclntyre and Wiens 2000). How-
ever, no one simple index has been derived that logi-
cally relates landscape function (resource retention)
to separate indicators (i.e., patch cover, number, size,
shape and spatial arrangement and orientation).

In this paper, we derive a directional leakiness in-
dex, DLI, that logically relates to all these landscape
patch attributes, thus providing a simple indicator of
landscape function (resource retention). We tested the
sensitivity of this index, and a multi-directional vari-
ant, MDLI, to these patch attributes. We first used
spatial modelling to generate maps where patch at-
tributes were known. Then, to demonstrate the use-
fulness of DLI, we applied it to three remotely-sensed
savanna landscapes that differed in their state of dys-
function.

Principles for a leakiness index

Rather than deriving a landscape leakiness index di-
rectly from remotely-sensed patch cover, number,
size, shape and spatial arrangement attributes by try-
ing to combine all these attributes into a complex
mathematical equation, we returned to first principles
of how landscape processes function to retain re-

sources flowing across surfaces. Envisage resources
such as litter and soil particles loosely sitting on an
open, relatively uniform landscape surface (e.g., be-
tween patches of vegetation on low-relief landforms
in a desert, grassland or savanna), and then having
these litter and soil particles blown across this surface
in the direction of the prevailing wind or being car-
ried by runoff (sheet-flow) in the direction of the
slope. Clearly, these organic, soil and water resources
will flow across the open landscape surface until they
hit an obstruction that traps them (Tongway and Lud-
wig 1997a; Reid et al. 1999; Schlesinger et al. 2000),
or until they flow out of the landscape system of in-
terest (Ludwig et al. 2000a). Surface obstructions are
typically vegetation patches of various types and
sizes, for example, clumps of grass, shrub thickets
and groves of trees, but obstructions may also include
logs, rocks, ant and termite mounds, and soil banks
or cracks and pits (see examples in Whisenant
(1999)).

Landscapes that have a high cover of these ob-
structions have a high potential for capturing any re-
sources blowing or flowing across their surfaces
(Tongway and Ludwig 1997b). If obstructing patches
are close together and uniformly dispersed, then litter
and soil particles and runoff are likely to only move a
short distance from any open surface before being
trapped within a patch (Cross and Schlesinger 1999).
However, if these patches are few and far apart (i.e.
have a low cover), then particles and runoff are much
more likely to gain the energy they need to blow or
flow (leak) out of the landscape system (Pressland
and Lehane 1982; Leys 1991).

From these principles, we derived a landscape
leakiness index with four important properties: (1)
applicable to remotely-sensed landscape images; (2)
scaleable to a standard map area so that different sized
images can be compared; (3) applicable to landscapes
where the direction of resource flow is known, and if
not, then a simple variant applies; and (4) ranges from
0 to 1 for non-leaky to totally leaky landscapes.

Maps and standard areas

The landscape leakiness index we derived applies to
raster-based (pixel) maps from images obtained by
remote sensing (Figure 1a). Each pixel in the map is
classified as being patch or non-patch (Figure 1b).
Adjoining patch pixels form patches (potentially, re-
source trapping obstructions) and groups of non-patch
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Figure 1. Schematic of a hillslope landscape: (a) being remotely
sensed and (b) as a map where each pixel is classified as being ei-
ther a flow obstructing patch (solid squares) or non-obstructing in-
terpatch (open squares). Distances shown down the first column (j
= 1) of this map are for top and bottom edges (dt, and db,) and for
between patches (e.g., dp,_,). If square pixels are assumed to have
a dimension of 1 m, then the height of columns (h;) is 20 m and
the width of the map (w_) is 20 m.

Hillslope

pixels form interpatches (gaps or openings between
patches). Typically such classified maps are obtained
by processing images from aerial videography or sat-
ellites (e.g., Pickup et al. (1993, 2000)), however,
simulation modelling can also be used to generate
spatial maps (e.g., Gardner (1999)). In this study, we
used both remotely-sensed landscape maps and simu-
lated spatial maps to derive and test our leakiness in-
dex.

Ideally, an index should be directly comparable
across study sites differing in area or scale. To make
the leakiness index developed in this paper compara-
ble across sites, we recommend scaling it to a stan-
dard area, which should vary according to the pixel
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size of the remotely sensed imagery used. For pixels
of 1 m or less, as typically used by low-level aerial
videography, we recommend the use of a square of
100 mx100 m (1 ha) as the standard area. If pixels
are larger than 1 m, but not more than 10 m, such as
from high-resolution satellite or airborne imagery, use
a 1 kmx1 km area. If pixels are greater than 10 m, as
typical with Landsat Multi Spectral Scanner (MSS) or
Thematic Mapper (TM), sattellite imagery then use a
10 kmx10 km area as the standard. Of course, the
pixel size and imagery used in landscape function
(resource retention) studies must be able to distin-
guish flow-obstructing patches from open inter-
patches; imagery with large pixels will fail to do this
in vegetation types with fine-scale patches (see Dis-
cussion).

Scaling the leakiness index to a standard area of,
for example, 1 ha can be viewed as a question. What
would be the value of the leakiness index if we had
sampled a 100 mx100 m area that has the same per-
cent cover, size, spacing and arrangement of patches
as the area we actually sampled? For example, as-
sume we had produced a 20 mx20 m classified spa-
tial map from a aerial videography image (e.g., Fig-
ure 1b), and we wanted to compare the potential leak-
iness of this landscape map to that for a 100 mx100
m (1 ha) landscape map. To do this, we need to com-
putationally standardize our 20 mx20 m leakiness in-
dex to that for a 100 mx100 m area that is conceptu-
alized as having the same patch characteristics (see
Appendix).

Directional leakiness

A directional leakiness index (DLI) applies when we
assume that the general direction of resource flow
across a landscape is known. For example, on a hill-
slope, the flow of soil sediments in runoff will be in
the downhill direction (Figure 1a). Also on this hill-
slope, litter and soil particles will tend to blow in the
direction of prevailing winds. These slope and wind
directions may be the same, but if not and both flows
are of interest, then DLI can be determined separately
for water-driven and wind-driven flows. If the direc-
tion of these flows is unknown, then a variant of DLI,
the multi-directional leakiness index (MDLI) applies
(see section, “Multi-directional leakiness index™).
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The directional leakiness index DLI is computed
as:

DLI =1 —[(Lmax — Lobs)/(Lmax — Lmin)]* (1)

The term in square brackets raised to the k power in-
dicates the potential of a landscape to retain re-
sources. To indicate leakiness, this retention term
must be subtracted from one (i.e., leakiness = 1-re-
tention). DLI ranges from 0 (no leakiness) to 1 (to-
tally leaky) as resource retention ranges from 1 (full
retention) to O (no retention). This range is achieved
by dividing the estimated retention (Lmax—Lobs) by
the maximum possible retention (Lmax—Lmin).

Observed leakiness (Lobs) is a measure of the rela-
tive leakiness of the sample area scaled to a standard
area (e.g., 1 ha). This Lobs is based on three distances
within each column, j, of the sample map (Figure 1b):
(1) the distance from the top edge of the column to
the first patch (dt;), (2) the distance from the last
patch in the column to the bottom edge (db;), and (3)
the distances between patches, i, (dp;;) down column
j. These distances are in units of meters, calculated as
the number of pixels times pixel dimension (pd, in
meters).

Given these distances, the observed leakiness com-
ponent in Equation (1) is calculated as:

Ly = JZ[(th,-)-(dez,-) + ((h/h) — 1)-((at;
+db)?) + (d? + db?)](ww,)(pd) (2)

The terms in this equation are described in detail in a
Appendix. The reason distances are raised to a power
of 2 is because of the known nonlinear relationship
between interpatch opening size and wind- and wa-
ter-driven erosive energies (Williams 1978; Findlater
et al. 1990; Leys 1991). Although we used the power
of 2, other powers could be used if erosive energies
were known.

Scaling from the sample area to a standard area
involves using proportional dimensions. This scaling
is achieved by multiplying certain distance terms in
Equation (2) by the ratios h/h; and w /w ,, where h
and w, are the height and width of the standard area
(in meters), and where h; is the column height and w ,
is the map width of the sample area (also in meters).

The second component required to compute DLI
is maximum possible leakiness, Lmax. This compo-
nent is required to have DLI range from 0 to 1. Lmax
is simply the calculation of Lobs for a spatial map

exhibiting maximum leakiness, which occurs when
the map has no obstructing patch pixels. If this map
is a 100x100 m standard area, then Lmax = 100?
summed for 100 columns = 1,000,000.

The third component, also needed to have DLI
range from O to 1, is minimum leakiness, Lmin. For
the purposes of this paper, we have simply assumed
that Lmin = 0. However, one can set Lmin to a value
greater than O (see Discussion).

The parameter k in Equation (1) determines the
steepness of the decay curve formed when DLI is
plotted against the proportion of a spatial map cov-
ered by patch pixels. It is known that resource leaki-
ness (e.g., soil loss) rapidly declines (decays away) as
the ground cover of vegetation patches (e.g., peren-
nial grass tussocks) increases up to about 40%, with
soil loss slowly declining at higher ground covers
(Scanlan et al. 1996). We calculated several series of
DLI’s using differing k values and compared these to
decay curvature data for soil loss versus vegetation
ground cover from Scanlan et al. (1996), and from
many other Australian field studies (Pressland and Le-
hane 1982; Johns 1983; Lang and McCaffrey 1984;
Leys 1991; Miles and McTainsh 1994; Mclvor et al.
1995; Carroll and Tucker 2000). We used curve-fit-
ting procedures in SigmaPlot (SPSS Inc. 2000) and
obtained a good fit of DLI to all this decay curve data
with k = 5. One can, of course, vary k to fit DLI to
soil loss versus ground cover data for a specific study,
but our aim here was to describe a general relation-
ship using such data from many studies; this was
achieved with k = 5.

Multi-directional leakiness index

In some cases the direction a litter or soil particle
blows or flows before hitting an obstruction in the
landscape is unknown. For example, in many Austra-
lian landscapes with low relief, the level of resolution
of topographic contour lines or digital elevation mod-
els is inadequate to accurately determine the direction
of slope. This is true for many of the flat landscapes
that have been studied with aerial videography (e.g.,
Kinloch et al. (2000)). Wind records are also very
sparse in many areas, making estimates of prevailing
wind directions imprecise.

In the case of uncertain flow direction, a multi-di-
rectional leakiness index, MDLI, is computed as a
simple variant of DLI by using a sequential procedure
linking MDLI to DLI. Although automated ‘Euclid-




ean distance’ procedures in spatial analysis packages
could have been used for these assumed multi-direc-
tional flows (e.g., Gardner (1999)), such distance pro-
cedures that seek the closest patch pixel (in any di-
rection) from a non-patch pixel do not adhere to our
logic for directional wind- and water-driven land-
scape leakiness flows. Further, linking MDLI to DLI
also provides information about patch shape/spatial
configurations that might exist in the landscape (see
below).

Without any attempt to orientate the spatial map,
which for these multi-directional calculations we rec-
ommend be a square or rectangular area with ¢ col-
umns and r rows, MDLI is calculated by first com-
puting a DLI for columns (Equation 1); this DLI is
designated DLIc. This calculation for DLIc could be
down columns or up columns in the spatial map (ei-
ther way, the squared distance sums would be the
same; see Equation (1)). Second, a DLIr was com-
puted by similarly calculating along rows of the map.
Then, DLIc and DLIr were averaged to obtain a
MDLI for the map:

MDLI = (DLI, + DLI )2 3)

Modelled maps and leakiness

Landscape maps were generated using spatial model-
ling procedures (e.g., Gardner (1999)). These proce-
dures were used to generate 1 ha maps of 100 by 100
pixels with each pixel 1 m in dimension. Maps were
varied in the proportion (%) of the map covered by
patch pixels and in the number and size of patches
formed by these pixels. The shapes of these patches

were varied (from single squares to bands), and the

spatial pattern of these patches was also varied (ran-
dom, regular and clustered). To explore how DLI and
MDLI relate to these different landscape patch at-
tributes, we varied some attributes while the other at-
tributes were held constant or were varied proportion-
ally.

First, using a random pattern (Figure 2a), the total
cover of patches was increased from 0 to 100% by
increasing the number of patch pixels from 0 to
10,000 (in this case, mean patch size must also in-
crease). We found that with random pixel placement,
DLI sharply decreased as the cover of patches in-
creased (Figure 3a). This strong response, where DLI
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is most sensitive at low patch covers, makes this in-
dex very useful for indicating landscape leakiness be-
cause landscapes with very low vegetation cover rap-
idly lose (leak) soil by wind- and water-driven forces
(e.g., Miles and McTainsh (1994); Scanlan et al.
(1996)). Such landscapes have been termed dysfunc-
tional (Tongway and Ludwig 1997b; Ludwig and
Tongway 2000). In this case, where patch pixels were
randomly placed, DLI and MDLI were approximately
equal (i.e., DLIr = DLIc; Figure 2a), as would be
expected.

Using a regular pattern (Figure 2b), the number of
patches was increased by decreasing patch size (i.e.,
smaller groups of patch pixels in squares), while the
cover of patch pixels was held constant (e.g., at 10%).
DLI decreased as the number of patches increased
(Figure 3b), and as cover was increased to 20% the
curve shifted down, as expected (i.e., leakiness de-
creased as patch cover increased). Again, DLI =
MDLI, and these curves have the desired indicator
response shape because litter and soil resources move
about more in landscapes with a few large vegetation
patches than in those with many small patches that
more uniformly cover the landscape (e.g., Reynolds
et al. (1997); Cross and Schlesinger (1999)).

Using clustered patterns of patches (Figure 2c), the
compactness of patch clusters was varied from very
tight to loose, while patch cover was held constant
(e.g., at 10%). DLI and MDLI were highest (i.e.,
landscapes were most leaky) when patches of 25-pix-
el size were tightly clustered (Figure 4a). Leakiness
slightly decreased as the tightness of patch clusters
became less, that is, as patches became more uni-
formly dispersed over the map. Again, this is the log-
ical response expected from field and modelling stud-
ies (e.g., Reynolds et al. (1997); Cross and
Schlesinger (1999)). Although not shown here for
brevity, this response holds for other patch sizes.

We also varied patch shape, and oriented patches
to form banded configurations, which occur in many
arid and semiarid lands around the world (e.g., Val-
entin et al. (1999)). We generated maps with elon-
gated patches varying in length and width (from short
thick bands to long narrow stripes), while holding the
cover and size of patches constant (Figure 2d). For
flows in the direction of columns, DLIc decreased as
the shape and orientation of patches formed greater
obstructions across the path of flow (Figure 4b). In
other words, spatial maps with long stripes in rows
obstructing flows going down columns had a lower
leakiness than landscapes with short thick bands.
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Figure 2. Examples of modelled landscape maps: a) three levels of patch cover as random patterns, b) three patch sizes as squares of patch
pixels in a regular pattern, c) three patch cluster arrangements (four groups of ten patches tightly, compactly or loosely aggregated), and d)
three patch shapes (bands, strands and stripes) oriented across rows. Maps are 100x100 pixels of 1 m dimension. Attributes of maps are
labelled at the top as: % patch cover, patch size (in pixels, p), and DLI and MDLI [and for panel d, DLIr and the ratio of DLIr to DLIc (r/c)].
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Figure 3. Changes in the directional leakiness index DLI with a)
the total cover of patches formed by the random dispersion of
single patch pixels, and b) the number of patches formed by a

regular dispersion of increasingly smaller squares of patch pixels
for 10% and 20% total patch cover.

When flows were in the direction of the banding
(rows), leakiness was always very high, as expected
for 10% cover.

Further, the degree of banding is indicated by the
ratio of DLIr to DLIc (r/c in Figures 2d and 4b). The
r/c ratio for long, overlapping stripes is greater than
for short, non-overlapping bands. Also, when patch
cover, size and pattern were the same, landscapes
with patches shaped as bands had a lower leakiness
than with patches shaped as squares (DLI = 0.897 and
0.99, left panels of Figures 2d and 2b, respectively).
These results clearly demonstrated that DLI is sensi-
tive to patch shape and orientation for a regular spa-
tial arrangement and a low total patch cover (10%).
Although not illustrated here, as patch cover increases
this sensitivity decreases, as expected.
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An application to savannas

The utility of DLI and MDLI for assessing the rela-
tive leakiness of natural landscapes was evaluated by
using maps for three savanna landscape sites located
in northern Australia (sites described in Ludwig et al.
(1999b)). These sites differed in their distance from a
cattle watering-point, hence, vegetation patch at-
tributes. Site KS1 was located near this watering-
point (about 75 m away) and had large open areas of
bare soil with only a few patches of perennial vegeta-
tion, mostly spiny shrubs (Figure 5a). Site KS3 was
located 1.4 km from water and had a cover of mostly
low annual grasses (Figure 5b). Site KS5 was within
an exclosure (ungrazed for 27 years) and had a high
cover of perennial grass patches and some shrubs
(Figure 5c).

The maps for these three landscapes were delim-
ited within aerial videography images (details on
videography in Kinloch et al. (2000); Ludwig et al.
(2000b); Pickup et al. (2000)). Each pixel in these
images had a dimension of approximately 0.20 m (ex-
act pixel dimensions for each image were derived
from field markers; Figure 5). Within these pixel im-
ages, maps of approximately S0 m by 20 m were de-
lineated, that is, we selected rectangular areas of
about 1,000 m2. Thus, maps were composed of
25,000 pixels. Then, each pixel was classified into:
(1) flow obstructing vegetation patches, including pe-
rennial grass clumps, tree groves and shrub thickets;
and (2) non-obstructing interpatches, including open
areas of bare soil, surface litter and annual plants. The
classified map for site KS1, located near water, only
had a few flow obstructing patches (right panel, Fig-
ure 5a), hence is likely to be very leaky. In contrast,
the classified map for site KS5, located within an ex-
closure, is mostly patch (right panel, Figure 5c),
hence is likely to be non-leaky. Site KS3, located 1.4
km from water, is intermediate in patch cover (right
panel, Figure 5b) and likely leakiness.

We used DLI to assess the potential leakiness of
these three landscape sites because the direction of
the slope of each site was known (Ludwig et al.
1999b), but we have also included MDLI values for
comparative interest. The DLI (and MDLI) for the
site closest to water (KS1) was much greater than that
for the site 1.4 km from water (KS3), and for the ex-
closure site (KSS5) (Figure 6a). These results indicate
that KS1 is far more likely to be leaky than the other
two landscapes, as expected (compare Figures Sa with
Figures 5b and 5c). Also, note that DLI and MDLI



164

04

Leakiness Index

02

0.0

DLI MDLI
Tight

b) 1.0 - rlc =¥1 1

0.8 -

06 —

04 —

Leakiness Index

02

0.0

DLI MDLI

DLI MDLI

Compact Loose
rlc=16

=12

DLI, DL,

Bands

' pu, pLi,

Stripes

DLI, DLI,
Strands

Figure 4. a) DLI and MDLI for three spatial maps differing in the degree to which patches are clustered; and b) DLI for columns, ¢, and
rows, r (DLIc and DLIr), and their ratio (r/c), for three patch shapes: bands, strands and stripes (banding oriented across rows, see Figure 2d).

were similar (i.e. DLIr = DLIc). Then, DLI was used
to position these sites along a continuum of landscape
functionality in terms of their potential to retain or
conserve resources (Figure 6b).

Discussion

The directional landscape leakiness index, DLI, was
derived from basic principles of landscape patterns,
processes and functions. Therefore, this index is con-
ceptually and intuitively easy to understand in terms
of how landscape patch structures potentially operate
to retain the limited resources that are so vital to the
functioning of many desert, grassland and savanna

ecosystems. We demonstrated the utility of this land-
scape leakiness index by comparing three semiarid
savanna landscapes that differed in their remotely-
sensed vegetation patch attributes (Ludwig et al.
1999b); DLI clearly separated and positioned the
three landscapes along a function-dysfunction contin-
uum of resource conservation. Of course, for DLI to
be applicable, landscapes must have distinctive veg-
etation patches (e.g., semiarid shrublands). Equally,
these patches must have the physical structures nec-
essary to trap resources and the biological processes
needed to utilise these resources to maintain patch
structure and function (Tongway and Ludwig 1997a;
Reynolds et al. 1999).
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a) KS1: 75 m from water DLI =0.90

7

DLI =0.14

L7 dhes ERTE

¢) KS5: cattie exclosure

Figure 5. Photographs and classified images for three savanna landscape sites located on Kidman Springs Research Station that differ in
patch attributes, hence DLI values, due to distance from a cattle watering point: a) 75 m, KS1, and b) 1.4 km, KS3, or due to being within
a cattle exclosure: ¢) KS5. The markers in the photographs are 0.5 m by 1.0 m, and were used to calibrate the aerial videography images,
which were 20 m wide by 50 m long. In the classified images patches are groups of dark pixels and interpatches are light areas. As illus-
trated, the top of the image is upslope and the bottom downslope (slopes < 1%).
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Figure 6. a) DLI and MDLI for three savanna sites differing in their distance from a cattle watering point or exclosure, hence vegetation
patch attributes; and b) based on their DLI, the position of these three sites along a landscape functionality continuum (potential to retain

resources).

A variant of DLI for multi-directional leakiness,
MDLI, was computed as a simple average of DLIc
and DLIr. However, if DLIc and DLIr are dissimilar
(a statistical test for this dissimilarity needs to be de-
veloped), this implies that the shape and orientation
of patches within the landscape is strongly patterned.
For example, vegetation patches may form bands
across the landscape (Valentin et al. 1999). If bands
are along rows, a high ratio of row to column leaki-
ness (i.e., DLIr/DLIc) would result. If banding is at
an angle across the map, then the classified image
could be iteratively rotated to maximize the DLIr/
DLIc ratio, with the DLIc for this maximum taken as
the index of leakiness rather than MDLI. However,
this assumes that one is confident that the banding
pattern is along rows and is related to resource flows
down columns. Although this pattern-process rela-
tionship usually applies to banded vegetation, verify-
ing this relationship requires field studies (e.g., Val-
entin et al. (1999)).

When comparing savanna landscapes, we used
three sites with similar vegetation, soils and topogra-
phy. These sites were all located in the same area,
thus were subject to the same climate. When compar-
ing the functionality of landscapes with different cli-

mates, topography, soils or vegetation, DLI or MDLI
values must be interpreted more carefully. This is be-
cause arid and semiarid landscapes such as deserts,
grasslands and savannas occurring in different rain-
fall zones and on different soils will differ in their
natural vegetation patch attributes. For example, in
Australian savannas, mean patch size and cover de-
cline as rainfall increases on sands and loams but not
on clays (Ludwig et al. 1999c).

One approach to making landscapes from different
climates and occurring on different soils more com-
parable would be to scale DLI, hence MDLI, relative
to a different minimum leakiness value, that is, set
Lmin to a value greater than 0. For example, mini-
mum leakiness could be taken as that for a undis-
turbed or natural landscape with a specific vegetation
type, topography, soils and climate. In other words,
minimum leakiness is not taken as a site with 100%
patch cover assumed to completely retain resources
where Lmin = 0, but is assigned a leakiness value
based on the patch cover expected for an undisturbed
landscape in a climate-terrain-soil setting. For exam-
ple, Lmin might be set to equate to a DLI of 0.2 for
an undisturbed arid shrubland setting in central Aus-
tralia, such as that described by Kinloch et al. (2000).



Sites within this climate-vegetation-soil setting would
then be more comparable to other settings.

For convenience, we used a rectangular shape for
our remotely-sensed maps. Because our leakiness in-
dex calculation for Lobs uses distances down each
column, j, of a map (Equation 2), one could use col-
umns of variable height across an image to maximize
the area of image sampled by a spatial map. If the
height of columns varies considerably, DLI may need
to be weighted by column height (weighted DLI is a
future development).

Edge effects, which are truncation effects imposed
by a map boundary (Gardner 1999), may influence
Lobs and, hence, DLI calculations. Basically, in scal-
ing up to a standard area, calculations assume that
pixels just outside the bottom edge of a map column
are the same as those at the top of the same column.
These edge effects are negligible for maps with a high
cover of patch pixels (e.g., >90%), but increase for
sparser maps, particularly if the map area is small. If
patch pixels are sparse (e.g., total patch cover <10%)
so that dt; and db; are small compared to X,dp;, or if
many columns have no patch pixels, then we recom-
mend delimiting as large a map as possible within an
image.

Because DLI is the sum of the squared distances
for every interpatch opening down each column in a
landscape map, it is weighted by the square of the
length of this opening. The rationale for this power
function weighting is that as water falls on, or flows
down, a long open slope (Williams 1978), or as litter
and soil particles are blown across a large open area
~ (Miles and McTainsh 1994), these materials gain en-
ergy or momentum. In other words, erosion forces are
far greater within larger openings in a landscape than
for smaller openings — such nonlinear erosion rela-
tionships have been observed in many natural and
cropped systems in arid and semiarid landscapes (e.g.,
Freebairn et al. (1991); Leys (1991); Tongway and
Ludwig (1997a); Schlesinger et al. (2000)). These
studies document that large openings in a landscape
(e.g., large areas of bare soil) have a greater influence
on resource redistribution (potential leakiness) than
small open areas (e.g., small gaps between perennial
grass clumps).

These squared interpatch distances could also be
weighted by the type of patch obstructing each inter-
patch flow because some types of patches are more
efficient at trapping and retaining resources than are
other patch types. For example, a tall shrub thicket is
more likely to trap wind-blown litter and soil particles
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than is a short-grass clump (Reynolds et al. 1997).
Thus, in computing Lobs, differential weightings
could be applied for different patch types based on an
estimate of their relative efficiency in trapping spe-
cific resources. When using patch weightings to com-
pute a weighted DLI, Lobs, Lmax and Lmin would
also need to be appropriately weighted to keep this
index in the range O to 1. This patch weighting could
be a useful future development for DLI if there was a
requirement to contrast resource leakiness in land-
scapes with subtle differences in patch attributes.
However, sufficient information about patch trapping
efficiency is not currently available and would require
field studies.

The maps that we derived from aerial videography
images of savannas were small-scaled (covering ap-
proximately 1,000 m? of landscape) and of high-res-
olution (pixel dimension about 20 cm). If one desires
to explore landscape functionality over a greater area,
then a larger image is needed. With air-borne videog-
raphy, flying higher above the ground surface can
capture a larger image, but for the fixed camera set-
tings we used this will result in a coarser resolution
(e.g., pixels of 1 m). Alternatively, if one wants to
cover a larger area, then high-resolution satellite im-
agery could be used, for example, the 4-m pixel,
multi-spectral (blue, green, red, near infrared) imag-
ery of IKONOS satellites (Tanaka and Sugimura
2001). However, for any imagery to be meaningful in
terms of landscape functionality for resource reten-
tion, image pixel size must be small enough to dis-
tinguish flow-obstructing patches from non-obstruct-
ing interpatch openings (e.g., areas of bare soil). In
some vegetation types, such as for tussock grasslands,
pixel size would need to be very small to identify
such fine-grained vegetation patches (e.g., the 20 cm
pixels used in this study). In more open vegetation
such as semiarid woodland, where patches and open
interpatch areas are larger (e.g., banded Acacia; Lud-
wig and Tongway (1995)), the 4-m pixel size of
IKONOS would be adequate. Even the 30 m and
larger pixel sizes of Landsat imagery can detect large
vegetation patches (e.g., Pickup et al. (1993)).

Our landscape leakiness concept and index (DLI)
assumes that flows are approximately in a straight-
line direction. This assumption is reasonable for many
low-relief Australian landscapes where sheet-flows
dominate, for example, on many hillslopes in the
semiarid woodlands of eastern Australia (Ludwig and
Tongway 1995). However, if images include rougher
terrain, such as the ranges and piedmonts in arid cen-
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tral Australia (e.g., Pickup and Chewings (1996)),
then flows of water are more tortuous and down chan-
nels. For such complex terrain and flows, perhaps,
DLI calculations could be linked to digital elevation
models and satellite imagery within a geographic in-
formation system (GIS).

Alternatively, other resource redistribution or ero-
sion models could be used (e.g., the erosion-cell
model; Pickup (1985)). However, such geomorphic/
hydrologic/erosion models are complex and include
many factors influencing runoff and soil erosion such
as rainfall (amount and intensity), soil texture and in-
filtration rates, slope length, and surface cover type
(e.g., Freebaimn et al. (1989); Leys (1991)). Although
these models may estimate soil losses quite accu-
rately, collecting the data required by such models is
costly and time consuming. Our aim in this paper was
to present a new, simple index of landscape leakiness
(DLI) that indicates the potential for a landscape to
retain resources (i.e., not lose soil). This index only
relies on having remotely-sensed images with pixels
that can be classified as being either flow-obstructing
patches or open non-obstructing interpatches.

Our landscape leakiness index is mechanistically
similar to binary percolation or patch connectivity
(habitat fragmentation) and animal dispersion models
(e.g., Wiens et al. (1997); With et al. (1999); McIn-
tyre and Wiens (2000)). However, the underlying con-
cept and processes whereby landscapes retain (or
leak) resources are very different (e.g., Ludwig and
Tongway (2000)). Percolation and dispersion models
typically assume random or constrained (row, col-
umn) movements for objects (organisms) to percolate
or disperse through a landscape from patch to patch
(suitable habitat). In contrast, landscape leakiness as-
sumes non-patch to patch (source to sink) flows of
materials (e.g., litter and soil particles) that are driven
by wind and gravity, and that are directional (e.g., Wu
et al. (2000)).

Advantages of DLI include: (1) it is conceptually
simple, being based on source to sink flows; (2) it
ranges from O to 1, being an estimated (observed)
leakiness relative to a maximum and minimum leaki-
ness; (3) it can be fit to field or experimental data re-
lating resource losses (e.g., soil loss) to landscape
patch attributes (e.g., cover) by adjusting the curva-
ture parameter k; and (4) it is robust because its re-
sponse curves vary logically with remotely-sensed
landscape patch attributes such as cover, size and spa-
tial orientation. These are the patch attributes known
to influence how landscapes function to retain re-

sources (Tongway and Ludwig 1997a, 1997b). Be-
cause DLI strongly reflects these attributes, it pro-
vides a simple and useful indicator of the potential for
a landscape to retain resources, hence, it reflects an
important ecological process (Tischendorf 2001).
Further, there is no need to group pixels into
patches with delineated boundaries, as required for
many landscape metrics describing fragmentation,
segregation, connectivity and spatial heterogeneity
and pattern (e.g., Li and Reynolds (1994); Riitters et
al. (1995); Jaeger (2000); Wu et al. (2000); He et al.
(2000); Wu and Sui (2001)). DLI only requires that
each map pixel be classified as being either a flow
obstructing patch (e.g., a clump of perennial vegeta-
tion) or a non-obstructing interpatch (e.g., an open
area of bare soil). However, there remains a need to
compare DLI with other landscape metrics (e.g., la-
cunarity) in terms of their relative usefulness as indi-
cators of landscape function (a forthcoming paper).
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Appendix

Appendix A. Leakiness index calculations

To illustrate the calculation of the directional leaki-
ness index, DLI, we use the example of a spatial map
shown in Figure 1b. This map is assumed to be 20
mx20 m in size, composed of 400 1-m square pixels.
We also assume that the flow direction (slope) is
known and map columns are oriented in this direc-
tion of flow. We use a 100 mx100 m (1 ha) map as
the standard area to scale DLI. This 1 ha standard area
can be visualized as being composed of 25 of our 20
mx20 m maps. We compute a DLI for this 20 mx20
m map as scaled to 1 ha standard. However, we only
illustrate detailed calculations using the first column
of the map, as calculations for other columns are re-
petitive. We first define the distances in column 1
needed to compute the terms in Equation (2). These
are the terms required to compute Lobs scaled to the



1 ha standard area. This is followed by definitions for
Lmax and Lmin, which together with Lobs, are used
to compute DLI.

Distances and Lobs for column 1

Starting at the top of column I in the spatial map
(left-most column, Figure 1b), the distance from the
top edge of the map to the first patch pixel, dt,, is 3
m (3 interpatch pixels). At the bottom of this first
column, a second edge distance, db,, is 2 m. The dis-
tances between patches in this first column are dp, ,
=3m,dp,, =2 m, and dp,, =2 m.

These two edge and three interpatch distances are
squared, scaled and summed in a series of terms to
calculate an observed leakiness for this first column,
Lobs ,, using Equation (2): Lobs, = [(h/h,)(2,dp2,)
+ ((hyh) — D((dt, + db)? + (dt?2 + db?H)](w/
w.)'(pd), where for our 20 mx20 m spatial map, h,
= 20 and w_, = 20; for our 100 mx100 m standard
area, h, = 100 and w, = 100; and the pixel dimen-
sion, pd = 1 m.

The first term in this equation, (h/h,) (2 dp?)), is
the non-edge component of Lobs,, that is, the sum of
all the squared distances between patches (2dp?,)
scaled by the proportional height of column 1 rela-
tive to the column height of our standard area (h/h,).
For column 1 of our map (Figure 1b), this non-edge
term is: (100/20)(3% + 2% + 22) = (5)-(17) = 85.

The second term, ((h/h,)-1)-((dt, + db,)?), is the
combined-edges component of Lobs,, that is, dis-
tances that are no longer edge but have become inter-
patch distances due to the process of scaling up. In
other words, as we scale up the first 20 mx1 m col-
umn in our spatial map (Figure 1b) to the first col-
umn of our 100 mx100 m standard area, the pattern
of pixels in the 20 m column is repeated in pixels
21-40, 41-60, 61-80 and 81-100. In doing so, the
bottom edge in the first 20 m (i.e. db,) will now be
joined to the top edge in the second 20 m (i.e. dt,) to
form a new interpatch distance (i.e., dp;;, = db, +
dt,). There are four of these new distances, defined
by (h/h,)-1 = (100/20)-1 = 4. Thus, this combined-
edges term is: (4)(2 + 3)? = (4)/(25) = 100.

The third term, (dt? + db?), is the remaining-edges
component, that is, the distances in the first column
of our 100 mx100 m standard area that are still edges.
This remaining-edges term is: (32 + 22) = 13.

These three terms are now summed and scaled by
the proportional width of the sample map (w/w_)
and the pixel dimension (pd, in meters) to obtain:

169

Lobs, = (85 + 100 + 13)-(100/20)-(1)

= (198)-(5)-(1)
= 990.

These calculations are then repeated for all 20 col-
umns of the spatial map (Figure 1b) and summed
from j = 1 to 20 to obtain an Lobs for our spatial map
that is scaled to the standard area:

Lobs = Y(Lobs;) = 21,065
Jj

Lmax, Lmin and computing DLI

Lmax represents a maximally leaky standard area de-
fined as having columns with no flow-obstructing
patch pixels. For our 100 mx100 m standard area, this
Lmax = (h))*>w, = (100)>100 = 1,000,000.

In contrast, Lmin represents a minimally leaky
standard area defined as having columns fully occu-
pied by flow-obstructing patch pixels that have no
leakiness. Thus, for an area full of such patch pixels,
Lmin = 0.

Then, using Lobs, Lmax and Lmin components in
Equation (1), the DLI for our 20 mx20 m spatial map
(Figure 1b), scaled to a 1 ha standard area, is:

max ; - Lobs,)/(Lmaxl - Lminl)]k

DLI = 1 — [(1,000,000 — 21,065)/(1,000,000 — 0)]°
= 1 — (978,935/1,000,000)°

DLI=1-[(L

DLI =1~ (0.979)° = 1 — 0.899 = 0.101.

This leakiness value of 0.101 is interpreted relative to
a 0 for no leakiness and to 1 for totally leakiness. This
indicates that our spatial map is not likely to be leaky.

Programs for computing DLI, and its variant
MDLI, are available upon request from authors as a
Microsoft “Windows’ 32-bit application with user in-
terface and image display (AL) or as a Fortran exe-
cutable code that can be used for batch processing
(VO).
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