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Tactical monitoring of landscapes

111 Introduction

Landscapes are large by conventional definitions (Forman and Godron,
1981, 1986; Urban et al., 1987; Turner, 1989) and data at that scale are dearly
bought. Yet with the advent of ecosystem management (Christensen et al,
1996) — which implies a larger scale of reference than prior approaches to
resource management — researchers and managers are increasingly faced with
pursuing sampling and monitoring programs at these larger scales. A signifi-
cant component of such programs should be the establishment of long-term
monitoring systems designed to detect trends in resources, prioritize manage-
ment needs, and gauge the success of management activities. This goal can be
especially daunting in cases where the study area is especially large, where the
signal to be detected is uncertain (e.g., potential responses to climatic change),
or where the objects of concern are simply difficult tolocate (e.g., rare species).
Here I consider some approaches that may prove useful in designing sam-
pling and monitoring programs for landscape management. In contrast with
large-scale efforts that are coarse-grained and intended as “first approxima-
tions” (Hunsaker et al., 1990), or more location- or taxon-specific methods(e.g-,
examples in Goldsmith, 1991), my concern here is with problems that are
simultaneously fine-grained and of large extent. This is essentially a sampling
problem at first, with the goal of capturing fine-grained pattern in an efficient
manner. In many cases, however, even an efficient blanketing of the study area
is logistically infeasible and so a second concern will be to focus sampling as
powerfully as possible on a specific application or hypothesis. Two key attrib-
utes of this approach are the explicit pursuit of multi-scale designs and the
integration of models as a guide to sampling. Thislatter aspect of the approach
has much to offer in the implementation of adaptive management of natural
resources, asIdiscuss ina closing section.
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1.2 Termsand scope of discussion

The issue of sampling designs for monitoring natural resources is not
new and my intent here is not to review — nor even echo —a huge and growing
literature. General references (Cochran, 1997) and more application-specific
texts (Goldsmith, 1991; Schreuder et al., 1993) are widely available. In particu-
lar, a collection of articles spawned from a workshop by the Sustainable
Biosphere Initiative provides an authoritative statement of the state of the art
(Dixonetal., 1998, and otherarticles in same special feature). As a bridge to this
literature, however, some definition of terms and scope will be useful. Insofar
as possible, Iwill try to follow the terminology of Nusser etal. (1998).

1t is useful to distinguish multiple components of the monitoring process.
Sampling design pertains to schemes devised for collecting measurements. This
aspect has a natural correspondence to experimental design, the framework for
statistical estimation and inference. For example, a completely random sam-~
pling design corresponds to a completely randomized design in estimating the
effects; a stratified sampling design corresponds to a randomized complete
block design (and see below). This distinction is important for two reasons.
First, it separates the process of acquisition of the data from the task of estimation
of statistical parameters for the population of inference. In general, asample is
aset of observations (cases, units, or elements) from a finite population or sam-
pling frame. This is the scope of sampling designs. By contrast, statistical esti-
mation typically is carried out subject to assumptions about the distribution of
data(assumptions presumed of infinite populations). In this chapter I focus on
the sampling problem, echoing Stow etal. (1998) in the opinion that if the data
have a high signal-to-noise ratio and sample sizes are adequate, the analysis
phaseislessofachallenge.

Some elements of sampling design are especially pertinent to the illustra-
tions I discuss in this chapter. Samples are often stratified over various criteria
(strata) to achieve a balanced coverage in the sample. For example, one might
stratify samples over vegetation types, topographic positions, or soil types. In
landscape ecology, the stratification is often over space: the strata are geo-
graphic.

Monitoring programs often rely on rather complicated hybrid designs to
meet multiple objectives. These designs include multi-stage sampling and multi-
phase sampling. In the former, a (large) set of primary sampling units is iden-
tified and then subsequently resampled in a restricted way to generate the
samples. In multi-phase sampling, the initial sample is surveyed for (typically)
readily measured, coarse-resolution variables and then in a subsequent phase,
some subset of these samples is revisited and a different set of (typically) more
logistically demanding variables are measured. This second set is then related
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to the initial set, e.g. via regression, and thus is used to leverage additional
information from the initial, coarse-resolution data set. I mention these
designs because, while I do not address these explicitly in the discussion to
follow, the recommendations I make are consistent with more complicated
designs.

Finally, a potential source of some confusion relates to the statistical estima-
tion of parameters from sample survey data. Classical survey statistics are
design-based estimators in that the sampling design (or experimental desi gn)dic-
tates the form of the staristical estimators. For example, each sample’s coneri-
bution to a parameter might be weighted by its probability of selection or
inclusion; for many sampling designs, this probability depends on the
sample’s areal representation (e.g., how common that cover type is on a land-
scape). By contrast, auxiliary information may be used to control or calibrate
these weights, leading to model-based or model- assisted estimators. In the discus-
sion that follows, I present a different perspective on model-based sampling
designs, one aimed at data collection rather than statistical estimation. I trust
that this distinction will beapparent from the context of the discussion.

1.3 Sampling spatial heterogeneity: Multi-scale designs

A significant challenge to sampling over large areas is that many pro-
cesses ecologists wish to capture are implicitly fine-grained but play out at
large scales. For example, the process of seed dispersal takes place over dis-
tances of tens of meters but may be manifest in species distributions over larger
gradients (hillslopes or landscapes; Clarketal,, 1999), and perhaps even at sub-
continental-scale species migration (Clark ef al., 1998). Similarly, microtopo-
graphic effects on soil moisture gradients vary over distances of tens to
hundreds of meters but are fundamental to landscape-scale patterns in plant
speciesabundances (Halpin, 1995; Stephenson, 1998; Urban ez al., 2000). These
patterns mandate a sampling design that can capture fine-grained details over
large extent, a challenge that is not well met by simple sampling designs such
asuniform, random or stratified-random designs.

The essential challenge in sampling such patterns is to collect samples such
that they cover most of thestudy area i.e., the sampling frame s the entire pop-
ulation of interest) but also to include samples that are sufficiently close
together to capture the fine-grain pattern —an important consideration if geo-
statistical methods are to be used in analyses. For example, auniform sampling
grid provides a finite set of between-quadrat distances (i.c., x, SQRT(2x), 2x,
SQRT(5) ... where xis the interval of the sampling grid) and this can degrade
geostatistical analyses by constraining sample sizes within some distance
classes. In the uniform case, the spacing of samples depends only on sampling
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FIGURE 11.1

Examples of multi-scale sampling designs. (a) Nested non-aligned blocks, in which
four of the cells have been selected for sampling and each cell is subdivided by a
nested grid, itself sampled with three sub-cells (filled). (b) Stratified clusters, in
which four cluster centroids are stratified over the study areaand three sampling
points are located at random distances and azimuths from each centroid.

intensity, or the number of sample elements in the study area. Thus, for large
landscapes that are sparsely sampled, the sample elements would be far apart
and fine-grained patterns would be missed. Random or stratified-random sam-
pling designs do not have as severe a drawback in terms of geostatistical analy-
ses, but they still suffer the dependency that sampling intensity dictates the
frequency of samples within shortdistances.

The solution to this challenge is to devise multi-scaled sampling designs to
collect measurements over short distances while also covering a large study
area. Two sampling designs seem especially well suited to this. Nested non-
aligned block designs use a grid asa basicsampling template, with sampleslocated
randomly in some of the grid cells. For example, in 2 non-aligned block design
one might specify some percentage of the grid to sample, randomly select the
corresponding number of cells, and then randomly locate 2 quadrat within
each of these cells. A nested nonaligned block design follows the same procedure
for subsampling within the selected grid cells, by using a finer-scaled grid
within each selected cell of the larger grid (Fig. 11.1a). The blocks can be nested
further, as deeply as is necessary to capture the details of interest. A nested non-
aligned block design is roughly equivalent to a2 multi-stage stratified random
design (see below); nesting the blocks makes it multi-scaled and allows the
samples to capture fine-grained information over large areas. The level of
nestingand cell size in the grid dictates the grain of sampling.
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Examples of computer-based sampling experiments in which alternative sampling
designs and intensities are compared in terms of their efficiency in reproducinga
reference correlogram based on an arbitrarily large (and logistically infeasible)
number of samples. Here the reference case is a correlogram of a topographic
convergence index derived from a digital elevation model of a small watershed

in the Sierra Nevada; the reference case was sampled using 398 random points. In
comparison, the clustered design used cluster centroids arranged onagrid over
the watershed, with three samples randomly located within <100 m of 29 cluster
centroids (one sample fell outside the watershed boundary and was discarded). The
clustered design reproduced the reference correlogram with about one-fifth the
sampling intensity.

Equivalently, 2 multi-stage stratified random or stratified cluster design
begins as a stratified-random design but locates multiple sample quadrats
near each stratification point. A convenient method for achieving this design
in the field is to lay out transects and locate cluster centers at (perhaps stag-
gered) intervals along the transect, then locate sample units at random dis-
tances and azimuths from the cluster center (Fig. 11.1b). (This design is
essentially equivalent to the multi-stage design described by Nusser et al.
(1998}, although the process for locating elements is slightly different.) The
net result of a stratified cluster design and nested non-aligned blocks is the
same: sets of sample elements (quadrats) with some separated by close dis-
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tances yet with samples covering the entire study area. The difference in the
two designs is in how they are laid out in the field; non-aligned blocks use a
grid while clusters use transect lines. The choice depends largely on ease of
implementation in the field.

In computer-based sampling experiments with known patterns, clus-
tered designs often can capture the pattern (as a correlogram) using five-fold
fewer samples than random samples (Fig. 11.2). Similar computer-based
sampling experiments suggest that order-of-magnitude reductions in sam-
pling intensity might be feasible for larger study areas (Urban et al., 2000). To
sampleé variables with unknown grain or pattern; a multi-scale pilot study
would seem necessary to develop the mostefficient possible design for actual
sampling.

In designing field studies, the exercise illustrated in Fig. 11.2 can provide a
useful pilot study and guide to actual sampling. For example, digital elevation
models (DEMs) can provide a variety of indices that can be used as proxies for
soil moisture or edaphic gradients (Moore etal., 1991). DEMs (or derived secon-
dary indices) canbe sampled usinga variety of designs to find asample arrange-
ment (number of points per cluster, cluster spacing) and intensity (number of
samples) that can capture the pattern with a logistically feasible sampling
effort.

1.4 Model-integrated sampling designs

Multi-scaled sampling designs are efficient when the pattern to be
described is simultaneously fine-grained and of large extent. But in many
cases, even a multi-scaled design is simply not supportable for logistical
reasons. For example, a design to capture topographic grain in Sequoia-Kings
Canyon National Park (the case considered by Urban ezal., 2000), might require
thousands of sample points— probably too many for asingle inventory, and cer-
tainly too many to consider resampling through time. In these cases, it is
important to consider thatall data are not created equal: some observations are
much more informative about specific hypotheses while other data might not
provideanyinsightatall.

In field studies over small extent, ecologists sometimes can get away with
over-sampling —essentially a “shotgun”approach that collects the appropriate
dataalong with extraneous data that are not useful for the specific application
at hand. This can work for small study areas but is simply unsupportable for
large-scale efforts. An alternative approach is to use a model to help discover
which observations will be most useful for a specific application or research
task. Here I illustrate this approach with three examples, proceeding from
simple(conceptual) models to more complicated simulation models.
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11.4.1 The rare herb Fusilli puttanesca

The first example is purely hypothetical and is used to present a logical
structure for guiding sampling schemes. Fusilli puttanesca is a relic herb that
grows in riparian meadows in the southern Appalachian foothills. Because of
itsshowy flowersit is much prized by hikers and narure buffs, who decimateiits
populations near roads and trails. The research question at hand is, What limits
the local abundance of this species? Is its distribution habitat-limited? Does it
behaveasa metapopulation (a “population of populations” in more-or-less dis-
cretehabitat patches; Harrison, 1994; Hanksi, 1998) and is it dispersal-limited?
Or is human impact the chief constraint on its distribution? The key to this
application is that only a few observations might be needed to shed light on
these questions; the task is to isolate these observational cases. Importantly, a
naiveapproach of simply combing the study area for the plants will be woefully
inefficientand may notanswer the question athand.

First, assume that this task can be simplified by collapsing all habitat
patches into binary cases: good habitat versus non-habitat, connected versus
isolated in terms of population dispersal, and near versus far from trajls as an
index of the likelihood of disturbance by hikers. Then note that the three
factors and two levels yield only eight combinations of conditions; these com-
binations can be represented readily in a decision tree (Fig. 11.3). From a stand-
point of thoroughness, sampling each branch of the tree, with some
replication, completely addresses the questions at hand. In terms of experi-
mental design, this is a full factorial design corresponding to a balanced
ANOVAmodel.

Sampling a decision tree is a straightforward task if it can be posed within
the framework of a geographic information system (GIS). In a GIS the identifi-
cation of locations that meet a number of conditions simultaneously (e.g., meet
the definition of “habitat,” within a threshold distance of other habitat, and
farther thana threshold distance from roads or trails) isaccomplished via “map
algebra” (intersection), and these locations can then be subsampled using a
random orstratified design (see below).

This decision-tree structure is contrived, but for a reason. This approach is
consistent with a powerful statistical approach to this sort of question, that of
classificationand regression tree (CART) modeling (Breiman etal., 1984; Moore
etal,, 1990). ACART model is a nested regression approach in which data cases
(observations) are partitioned recursively in a tree-like structure. In a typical
case, the samples might be labelled occupied versus unoccupied samples for a
given species, or similarly, habitat versus non-habitat, or near versus far and so
on. In the case of a binary dependent variable (e.g., habitat versus non-habitat)
and interval-scale predictor variables (e.g., elevation, slope, rockiness, and so
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( habitat: near stream? )

no: not habitat yes: habitat

( dispersal: near source? )

no yes

[

dlsturbance near trail? )
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A? A A? A? A? A? P A

FIGURE 11.3
Adecision tree highlighting the role of habitat availability, accessibility (dispersal
limitation), and local disturbance (decimation by hikers) in governing thelocal
distribution of a hypothetical species. Branches are labelled A (absent) or P (present);
? indicates an uncertain orindeterminate branch. Note that if disturbance is the
primary agent of concern, only two of the branches provide data thatare
unconfounded by other factors. Note also that few cases seem unequivocal,
depending on thestrength of the three constraints.

on), thesolution isequivalent toa set of nested logistic regressions that identify
critical values on the independent variables that best classify the input
samples. The final classification tree is comparable to the dichotomous trees
used as taxonomic keys.

For my present purpose, it is especially useful that one can posita decision tree
as a guide to sampling, in effect posing a working hypothesis about the relevant
factors controlling species distribution. Field data collected according to this
design can then be used in CART analysis to actually estimate the model — that s,
to find theactual critical values that define habitat, isolation, or disturbance prob-
ability. Of course, this approach also assumes that the first decision tree is fairly
reasonable or else the sampling might miss the solution badly! Fortunately, this
approach can also be self-mending in that as samples accrue, a better estimate of
the overallsituation (explanatory model and CART solution)can be refined.

Note that in terms of sampling efficiency, a design that represents all
branches of the decision tree is thorough but not necessarily efficient. Indeed,
for a complicated or multi-levelled tree, the implied sampling effort might be
untenable for logistical reasons. In these cases, it is worth noting that some
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hypotheses can be isolated quite parsimoniously in the decision tree. For
example, if the primary interestin these herbs is in hiker impact, then note that
the only cases that offer any clean insight into this are those samples that are
good habitat and not dispersal-limited. Samples that are isolated or poor
habitat might be unoccupied for those reasons and thus can tell us nothing
about disturbance. That s, only two of the branches of the tree are of immedi-
ateinterest(the two farthest to the rightin Fig. 11.3)and sampling effort can be
adjusted accordingly. Likewise, if dispersal limitations are the primary concern
then habitats close to trails or otherwise prone to disturbance are confounded
and not useful for a study of dispersal. Thus, by focusing on specific hypothe-
ses, the sample effort can be drastically reduced and focused in a tactical way.
Indeed, thelevel of statistical control over extraneous factors might welllead to
increased statistical power.

Of course, in some cases the underlying model is sufficiently complex thata
simple decision tree does not provide enough leverage on the problem to be
useful as a guide to sampling or monitoring. In these cases, more complicated
models canbeapplied.

11.4.2 The Mexican spotted owl

The Mexican spotted owl (Strix occidentalis lucida), a sister subspecies of
the more notorious northern spotted owl, occupies mixed-conifer and
pine—oak forests of the American Southwest including southern Utah and
Colorado, Arizona and New Mexico, and parts of northern Mexico. It was listed
as federally threatened in 1993, largely under threat of habitat loss. Over parts
of its range, primary habitat occurs as higher-elevation forests on mountains
separated by desert (so-called “sky islands™) and it is easy to envision the species
actingasaclassical metapopulation (Harrison, 1994; Hanski, 1998)in the sense
of spatially discrete populations coupled by infrequent dispersal. The Recovery
Plan mandated by the Endangered Species Act (US Department of the Interior
Fish and Wildlife Service, 1995) specifically considered landscape context and
connectivityinits deliberationsand recommendations (Keittezal,, 1995).

Keitretal. (1995,1997) devised an approach in which they attempted to iden-
tify those habitat patches that might be especially important to long-term per-
sistence of the owl. Habitat patches might be important for two reasons. Large
patches are important simply through their area alone; larger patches produce
more owls and consequently have a significant impact on metapopulation
recruitment. More interestingly, a patch might also be important because of its
spatial location and role as a dispersal conduit or stepping-stone; these patches
needn’t be large yet can still have an important effect on the metapopulation
viaimmigration and emigration.
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Keittetal. (1997) defined landscape connectivity in terms of average travers-
ability, indexed as correlation length. The index is computed from raster data
in which a habitat patch is a cluster of adjacent cells of “potential owl habitat”
as defined by forest cover types. Correlation length depends on patch areas and
shapes:

C,=3A.R, (11.1)

whereA, is patch areaasa proportion of total map area; R, is the patch’s radius of
gyration (Stauffer, 1985), the mean Euclidean distance from each cell in the
cluster to that cluster’s centroid (compact clusters have smaller radii than long
or irregular clusters); and there are 7 patches in the landscape. Correlation
length is the expected distance that one might traverse the map while remain-
ingin “habitat”and thus serves as a useful index of connectivity.

The authors performed a patch-removal sensitivity analysis in which they
sequentially removed each habitat cluster and recomputed correlation length
for the landscape. They then ranked the patches in terms of the magnitude of
change in correlation length on patch removal; that is, the highest-ranking
patch was the one whose removal resulted in the largest decrease in correlation
length. Raw ranks tended to highlight thelargest patches as being most impor-
tant, because of the area term in the formula (eq. 11.1) (Fig. 11.4a, color plate).
By dividing each patch’s effect (loss of correlation length) by its area, they
focused on thearea-corrected importance of each patch (Fig. 11.4b, color plate).
This area-relativization emphasized small patches that were located in key
places for dispersal: stepping-stones.

This ranking was not intended as a definitive statement on owl population
biology. Rather, the goal was to develop and illustrate a macroscopic approach
that would identify key habitat patches from the perspective of landscape con-
nectivity and metapopulation structure. For my present purpose, itis sufficient
to note that these patches offer themselves as candidate study areas and moni-
toring locations if we wish to learn more about owl dispersal in a metapopula-
tion context. Importantly, it should be noted that these patches (highlighted in
Fig. 11.4b, color plate) tend not to be the places one might naturally choose as
study areas when working with rare or threatened species. For logistical
reasons, one would quite naturally choose locations that are prime habitatand
probably large, simply because a large number of obsetvations could be col-
lected. The analysis of Keitt et al. (1997) suggests that, for spatially distributed
metapopulations, the most informative locations for monitoring might not be
obvious, indeed, might notevensupportappreciable populations.

Urban and Keitt (2001) have since extended this approach to embrace the
computational framework of graph theory (Harary, 1969; Gross and Yellen,
1999). Graph theory is a well-developed body of theory concerning flux or



304 DEAN L. URBAN

routing in networks, broadly defined. Urban and Keitt used graph theory to
index patch importance to the metapopulation in terms of recruitment flux,in
the sense of Pulliam’s (1988) metapopulation model, and also in terms of long-
distance traversability, in the sense of Levins’s (1969) original “spreading-of.
risk” model of metapopulations. Patch-removal sensitivity analysis thyg
permits ranking habitat patches on multiple criteria in a computationally
expedient framework. Again, because the approach is macroscopic, it need not
provide a definitive answer about the actual importance of each habitat patch
inthelandscape; but the patches thus identified are certainly prime candidates
for further study or monitoring.

The macroscopic approach amounts to a sensitivity analysis of an underly-
ing explanatory model couched in metapopulation theory. The approach is
macroscopic in that it relies on map analysis without actually invoking details
ofa metapopulation model(i.e., there is no explicit parameterization of demo-
graphic processes or dispersal). In the next example, I consider a more explicit
simulation model.

11.4.3 Climatically sensitive sites in the Sierra Nevada

The mixed-conifer forests of the Sierra Nevada of California are climatically
sensitive over multiple time-scales (Stephenson, 1998) and are currently the
focus of an integrated research program in Sequoia-Kings Canyon and
Yosemite National Parks, aimed at anticipating the possible consequences of
anthropogenic global change (Stephenson and Parsons, 1993). These forests
are host toa variety of species including the giant sequoia (Sequoiadendron gigan-
teum), whose narrow distribution with respect to elevation (a proxy for tempet-
ature in steep mountains) suggests potentially drastic impacts of rapid climate
changeinagreenhouse world.

One goal of the Sierra Nevada Global Change Research Program is toidentify
sites that might serveas potential “early warning” sites and thus form the back-
bone of 2 monitoring program. Our approach to this has been to use a simula-
tion model to characterize the physical template of these landscapes, and then
to analyze the model to find locations that might be most sensitive to climatic
change.

The Sierra has a Mediterranean climate with mild winters and very dry
summers. Withan increase in elevation, temperature decreases while precip-
itation increases; importantly, the precipitation changes from rain to snowat
middle elevations, and it is the persistent snowpack that develops at middle
elevations that provides growing-season soil moisture which supports the
mixed-conifer zone. The soil moisture balance represents a complex interac-
tion with temperature as it affects the partitioning of precipitation into
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snow versus rain, the dynamics of snowmelt in the spring, the onsetand end
of the growing season in terms of plant phenology, and evaporative demand
during the summer. Urban et al. (2000) developed a simulation model that
adjusts monthly temperature, radiation, and precipitation for topographic
position (elevation, slope,and aspect) and that, in conjunction with soils data
and plant canopy characteristics, simulates the soil water balance for these
sites. Urban (2000) then performed a sensitivity analysis of the model to
quantify the sensitivity of soil moisture to variation in tem perature and pre-
cipitation. The sensitivity analysis was conducted across the full parametric
space of the model, so that the relative sensitivity of different elevations,
slopes, and aspects could be defined. Model sensitivity was then regressed on
these terrain variablesand these regressions were used in a GIS to map model
sensitivity from parameter space into geographic space. The analysis also
included a measure of uncertainty in the model. Because the model simu-
lates a discrete point in space it could not attend the complexities of lateral
hydrologic flow and consequent microtopographic effects on soil water
drainage. Uncertainty due to topographic drainage was included by high-
lighting locations in the study area with contrasting topographic drainage
indices. A false-color grid composite was generated to highlight regions of
the Kaweah Basin, one of three large basins comprising Sequoia-Kings
Canyon National Park, in terms of their relative sensitivity and uncertainty
(Fig.11.5, color plate).

In this figure the magenta zone is simultaneously sensitive to'variation in
temperature and precipitation. This zone represents roughly 17% of the basin.
That is, the potential monitoring sites that seem most sensitive to climate
change represent only about one-sixth of the study area — an appreciable focus-
ing of any monitoring effort.

Urban (2000) went further, to select climatically sensitive sites that would
also allow the placement of sample quadrats on contrasting topographic posi-
tions within a logisitically reasonable distance (100 m) and close to roads or
major trails (500 m, a concession to the rough terrain and a humanitarian
gestureto field crews!). These furcher restrictions reduced the target sampling
domain to less than 2% of the study area: a substantial focusing of sampling
effortand efficacy.

In these examples, note the trend toward increasing complexity of the
“model” underlying the sampling. In the first example the model was a simple
hypothesis; in the case of the spotted owl, a staticanalysis of an implicit model;
and in this last example, a formal analysis of a dynamic simulation model. The
underlying principle is the same in each case, however: by using a model as a
guide todesigning a sampling scheme, the scheme can be focused substantially
and with greaterefficiency than conventional designs.



306 DEAN L. URBAN

1.5 Monitoring temporal change: Trend detection and efficiency

Note in the case of metapopulation dynamics there is a long-term com-
mitment to monitoring implicit in the underlying model: metapopulations
are defined by between-patch dispersal events that might occur only once per
generation or so (Harrison, 1994; Hanski, 1998). Similarly, monitoring for the
effects of anthropogenic climate change mandates an investment in monitor-
ing that extends well beyond the scope of typical research programs. The tem-
poral aspects of large-scale monitoring programs, however, have not received
asmuchattentionas they might warrant.

A contrived example illustrates the potential implications of ignoring spa-
tiotemporal dynamics in long-term monitoring programs. Consider a species
whose distribution is patchy and which disperses from population centers,
Over time, such a population would exhibit spatial drift, as is typically seen in
population models implemented as cellular automata or explicitly spatial
partial differential equations. Clearly, if one were to establish a set of monitor-
ing stations randomly (i.e., without reference to initial occupancy), then the
actual stations occupied by the species would change over time. On average,
one might expect the proportion of occupied stations to remain relatively con-
stant for a stable population — a classical definition of a metapopulation. If,
however, the species of interest is quite rare, then it would be completely rea-
sonable to set up monitoring stations in locations where the species actually
occurred. This would be especially likely if initial studies of the species led to
site selection such that adequare sample sizes could be garnered for demo-
graphic studies. If such sites were retained for monitoring (recognizing the
value of extending the initial studies), then over time the monitoring will
almost certainly show a population decline as the species drifts away from the
initial site. This sort of bias would seem especially awkward, to say the least, for
monitoring programs aimed at rare or threatened species.

While contrived, the example is not unrealistic. For example, Sutter (1986)
compared a variety of monitoring approaches for the rough-leafed loosestrife
(Lysimachia asperulaefolia) in savanna—pocosin ecotones, a fire-maintained
habitat in the southeastern coastal plain of North Carolina. Resamplings of
fixed locations showed a marked population decline over as little as two years.
ButLysimachiais rhizomatous, and in fact the population seems to be petsisting
quite well, even increasing: it merely moved.

Similarly, for species with fine-grained microhabitat affinities for particular
successional stages, succession itself would lead to an apparent change in
species abundances as monitoring sites succeed to other microhabirats and
species move to find suitable sites. The “shifting mosaic” nature of vegetation
(Watt, 1947; Bormann and Likens, 1979; Smith and Urban, 1988) predicts that
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as vegetation undergoes succession/disturbance dynamics, any species depen-
dent on microhabitats mustalso ride these dynamics in space and time (Urban
and Smith, 1989).

One solution to the complexities implied by spatiotemporal dynamics is to
use what are called rotating-panel (Duncan and Kalton, 1987; Schreuder et al.,
1993) or partial resampling (Usher, 1991) designs. In this, a fixed number of
sample pointsis established for theinitial survey. At the nextsurvey time, a per-
centage of the original samples is resampled (say 80%),and a set of new samples
is established to fill out the sample size (here, 20% new plots). At the next
survey, the procedure is repeated: some samples are discarded and some new
samples are established. While it may seem costly to discard samples each time,
the overall sample is in a sense refreshed by the new samples. In monitoring
spatial processes, this design ensures thatas populations drift the sampling can
discover them. Rotating-panel designs are not much used in ecology (but see
Lesser and Kalsbeek, 1997; White ez al., 1999), but certainly warrant further
consideration,

Note thatthis discussion has focused on correctly detecting the trend in pop-
ulation dynamics through monitoring. While thisisimportant, even crucial, to
natural resource management, it begs an equally important issue of detecting
the processes or constraints responsible for the observed trend. For example, is
the population declining because of habitat area in itself, is habitat isolation
important, or is it some other constraint or process? More in-depth goals in
monitoring would seem to require sampling schemes based on model analysis,
suchas described above.

1.6 Opportunities in adaptive management

The issue of effective monitoring of landscapes fits neatly into a larger
framework of adaptive management. Adaptive management (called “learn-~
ing by doing” by Walters, 1986} is not new (Holling, 1978) but is emerging to
playacentral (but notuncontroversial) role in resource management(Walters
and Holling, 1990; McLainand Lee, 1996; Johnson 1999a,b; Lee, 1999). Key to
the concept of adaptive management are several defining elements (Lee,
1999): that management is bioregional (landscape-scale or larger), that
governance and implementation are collaborative (involving stakeholders),
and importantly, that managers rarely know enough about the systems they
hope to manage. The framework of adaptive management s intuitive, involv-
ingan underlying model of the system which leads toa management strategy
or policy, a monitoring program, and a mechanism for evaluation and reac-
tion (Fig. 11.6). The approaches to model-based monitoring schemes
described above are an attempt to strongly couple the initial stages of this
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‘ model )—»Laction )—»(monito%/aluate )

revise?

FIGURE 11.6

Schematic of the adaptive management approach. Stakeholders are involved actively
in the modeling, action {managementstrategy or policy), and evaluation phases,
Approaches to model-based monitoring schemes discussed in this paper strongly
couple the first and third stages of the process.

process, by forcing the monitoring scheme to proceed directly from the
underlying model.

This approach is consistent with Lee’s (1999) appraisal of adaptive manage-
ment on several important issues. First, the approach recognizes that a rigor-
ous model-based approach to sampling will likely yield useful and reliable data
atlowest cost and most rapidly. Second, the model analysis implicit in the deci-
sion-tree approach, and explicit in the later examples, provides a means of
emphasizing the central factors identified as being important to the underly-
ing model, while also providing a means of controlling or excluding extrane-
ous factors. Again, data are expensive and some focus on specific factors is
logically and logistically necessary. The approach using sensitivity or uncer-
tainty analysis recognizes that “our ignorance is uneven” (Lee, 1999) and thus
the most important uncertainties should be addressed rigorously and early.
This isalso in agreement with Johnson’s (1995) advocacy of simulation models
as learning tools that can be used to identify critical uncertainties for adaptive
management. Finally, because model-based or experimental approaches
always run some risk of “surprise” or unanticipated results, the feedback from
evaluation to model revision — and by extension, to a revised monitoring
scheme - provides fora flexible approach that evolves as we learn (Ringold etal,
1996).

1.7 Summary

Imaketwo pointsin this discussion. First, landscapes are largeand often
comprise patterns that are fine-grained, and so conventional sampling
approaches will seldom perform as efficiently as designs geared explicitly
toward capturing such patterns. Multi-staged stratified designs tend to be
more efficient, capturing spatial patterns with fewer samples than simple
designs (stratified or random). Importantly, sampling designs often can be
tested and fine-tuned in advance by experimenting with alternative designs
using digital data from astudy area, such as terrain-based indices or land-cover
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maps. Such cyber-sampling pilot studies can lead to a substantial reduction in
the sampling intensity and consequent logistical expense of sampling, while
still capturing the patterns of interest. Any design, of course, should be con-
firmed and further modified as necessary througha pilorstudy in the field.

Second, Iemphasize thatall dataare not created equal: some observationsare
more informative about particular hypotheses than others. Thus, when the
goal is to provide as much leverage as possible for a particular hypothesis or
working model, sampling can be focused dramatically by explicitly incorporat-
ing the model into the sampling design. This can be accomplished in a simple
manner using tree-based guides (decision trees, classification trees), or more
formally through the use of computer simulation models.

Irshould be emphasized that model-guided designs also test the model effi-
ciently, gathering observations that would confirm or disprove the model.
Thus, usinga model as a guide can be useful even if the model is preliminary or
inadequate, because data collected subject to the model’s assumptions can only
improve the model (note that the most effective way to improve a model is to
force it to fail: Mankin ez al,, 1975). Model-guided designs thus can emerge asa
component of adaptive management, with the underlying model providing
tests that will ultimately improve the model itself. This approach thus elevares
monitoring from a rather passive role to a more active and integrative role in
resource managementand landscape ecology.

Acknowledgments

My work in the Sierra Nevada was sponsored largely by USGA/BRD con-
tract No. G- 1709-1, continuing under Agreement No. 99WRAG0019, with
additional support of the forest modeling activities from National Science
Foundation grants DEB 9552656 and DBI 9630606. The cyber-sampling and
decision-tree approaches described here were developed as laboratory exercises
inmy Spatial Analysis and Landscape Ecology classes, respectively, and I appre-
ciate the studentinvolvement that has refined these exercises over the past few
semesters.

References

Bormann, F.H. and Likens, G.E.(1979). Pattern
and Process in a Forested Ecosystem. Springer-
Verlag, New York.

Breiman, L., Friedman, J.H., Olshen,R.A. &
Stone, C.).(1984). Classification and Regression
Trees. Wadsworth and Brooks/Cole,
Monterey, CA.

Christensen, N. L., Bartuska, A.N., Brown, J. H.,

Carpenter, S., D’Antonio, C., Francis, R.,
Franklin, J.F.,MacMahon, J. A., Noss, R. E,,
Parsons, D.J., Peterson, C.H., Turner, M. G. &
Woodmansee, R.G.{1996). The report of the
Ecological Society of America Committee on
the scientific basis for ecosystem
management. Ecological Applications, 6:
665-691.

309



310 DEAN L. URBAN

Clark,J.S., Fastie, C., Hurrt, G, Jackson, S.T.,
Johnson, C.,King, G.A., Lewis, M., Lynch,].,
Pacala, S., Prentice, C., Schupp, E. W., Webb,
T. 11 and Wyckoff, P.(1998). Reid’s paradox of
rapid plant migration: Dispersal theoryand
interpretation of paleoecological records.
BioScience, 48: 13-24.

Clark,J., Silman, M., Kern, R.,Macklin, E.and
HilleRisLambers, J.(1999). Seed dispersal
near and far: patterns across temperate and
tropical forests. Ecology, 80: 1475-1494.

Cochran, W. G.(1997). Sampling Techniques, 3rd
edn.John Wiley, New York.

Dixon, M., Olsen, A.R. &Kahn, B. M. (1998).
Measuring trends in ecological resources.
Ecological Applications, 8: 225-227.

Duncan, G.J., &Kalton, G.(1987). Issues of
design and analysis of surveys across time.
Internarional Statistical Review, 55:97-117.

Forman, R.T.T. & Godron, M.(1981). Patches
and structural components for alandscape
ecology. BioScience, 31: 733-740.

Forman, R.T.T. & Godron, M. (1986). Landscape
Ecology.John Wiley, New York.

Goldsmith, F.B. (ed.}(1991). Monitoring for
Conservation and Ecology. Chapman & Hall,
London.

Gross, J., & Yellen,J.(1999). Graph Theory and its
Applications. CRC Press, Boca Raton, FL.

Halpin, P.N.(1995). A cross-scale analysis of
environmental gradients and forest pattern
in the giant sequoia—mixed conifer forest of
the Sierra Nevada. PhD dissertation,
University of Virginia, Charlottesville, VA.

Hanski, I.(1998). Metapopulation dynamics.
Nature, 396: 41-49.

Harary, F.(1969). Graph Theory. Addison-Wesley,
Reading, MA.

Harrison, S.(1994). Metapopulations and
conservation. In Large-scale Ecology and
Conservation Biology, eds. P.J. Edwards, N.R.
Webb & R. M. May, pp. 111-128. Blackwell,
Oxford, UK.

Holling, C.S.(ed.)(1978). Adaptive Environmental
Assessment and Management. John Wiley, New
York.

Hunsaker, C.T., Graham, R.L., Suter,G.W. 1,
O’Neill, R. V., Barnthouse, L. W. & Gardner, R.
H.(1990). Assessing ecological riskon a
regional scale. Environmental Management, 14:
325-332.

Johnson, B.L.(1995). Applying computer

simulation models as learning tools in
fishery management. North American Journa] of
Fisheries Management, 15: 736-747.

Johnson, B.L.(1999a). Introduction to the
special feature: Adaptive management—
scientifically sound, socially challenged?
Conservation Ecology, 3(1)art 10,
http://www.consecol.org/vol3/iss1/art10.

Johnson, B.L.(1999b). The rolzof adaptive
management as an operational approach for
resource management agencies. Conservation
Ecology, 3(2)art8,
http://www.consecol.org/vol3/iss2/art8.

Keitt, T., Franklin, A. & Urban, D.(1995).
Landscape analysis and metapopulation
structure. In Recovery Plan for the Mexican
Spotted Owl, vol 2,ch. 3.US Departmentof the
Interior Fish and Wildlife Service,
Albuquerque, New Mexico.

Keitt, T.H., Urban, D.L. &Milne, B. T.(1997).
Detecting critical scales in fragmented
landscapes. Conservation Ecology, 1(1) art 4,
heep://www.consecol.org/vol1/iss1/art4

Lee, K.N.(1999). Appraising adaptive
management. Conservation Ecology, 3(2)art 3,
http:// www.consecol.org/vol3/iss2/art3.

Lesser, V.M. & Kalsbeek, W.D.(1997).A
comparison of periodicsurvey designs
employing multi-stage sampling.
Environmental and Ecological Statistics, 4:
117-130.

Levins, R. (1969). Some demographicand
genetic consequences of environmental
heterogeneity for biological control. Bulletin
of the Entomological Soctety of America, 15:
237-240.

McLain, R.J. & Lee, R. G.(1996). Adaptive
management: Promises and pitfalls.
Environmental Management, 20: 437-448.

Mankin, J. B., O’Neill, R. V., Shugart, H. H.and
Rust, B. W.(1975). The importance of
validation in ecosystems analysis. In New
Directions in the Analysis of Ecological Systems,
part 1, Simulation Councils Proceedings Series,
vol. 5, ed. G.S.Innis, pp. 6371, Simulation
Councils,LaJolla, CA.

Moore, D.M.,Lee, B.G. & Davey,S.M.(1991).A
new method for predicting vegetation
distributions using decision tree analysis ina
geographicinformation system.

" Environmental Management, 15:59-71.

Moore,1.D., Gryson, R.B. &Ladson, A.R.

(1990). Digital terrain modelling: a review of
hydrological, geomorphological, and
biological applications. Hydrological Processes,
5:3-30.

Nusser, S. M., Breidt, F.J. & Fuller, W. A. (1998).
Design and estimation of investigating the
dynamics of natural resources. Ecological
Applications 8:234-245.

Pulliam, H.R.(1988). Sources, sinks, and
population regulation. American Naturalist,
132:652-661.

Ringold, P.L., Alegria, J., Czaplewski,R.L.,
Mulder, B.S,, Tolle, T. & Burnett, K. (1996).
Adaptive monitoring design for ecosystem
management. Ecological Applications, 6:
745-747.

Schreuder, H.T., Gregoire, T.G. & Wood, G. B.
(1993). Sampling Methods for Multiresource
Forest Inventory. John Wiley, New York.

Smith, T.M. & Utban, D.L.(1988). Scaleand
resolution of foreststructural pattern.
Vegetatfo, 74: 143-150.

Stauffer, D.(1985). Introduction to Percolation
Theory. Taylor & Francis, London.

Stephenson, N.L.(1998). Actual
evapotranspiration and deficit: Biologically
meaningful correlates of vegetation
distribution across spatial scales. Journal of
Biggeography, 25: 855-870.

Stephenson, N.L. & Parsons, D.J. (1993). A
research program for predicting the effects of
climatic change on the Sierra Nevada. pp.
93-109. In Proceedings of the 4th Conference on
Research in California’s National Parks. US
Department of the Interior National Park
Service Transactions and Proceedings Series
no.9.eds S.D.VeirsJr., T.J. Stohlgren & C.
Schonewald-Cox, US Department of the
Interior National Park Service, Washington,
D.C.

Stow, C.A., Carpenter, S. R., Webster, K.E. &
Frost, T. M. (1998). Long-term
environmental monitoring: some
perspectives from lakes. Ecological
Applications, 8: 269-276.

Sutter, R.D. (1986). Monitoring rare plant
species and natural areas: Ensuring the

Tactical monitoring of landscapes 311

protection of our investment. Natural Areas
Journal, 6:3-5.

Turner, M. G.(1989). Landscape ecology: The
effect of pattern on process. Annual Review of
Ecology and Systematics, 20:171-197.

Urban, D.L.(2000). Using model analysis to
design monitoring programs for landscape
managementand impact assessment.
Ecological Applications, 10: 1820-1832.

Urban, D.L. &Keitt, T. H.(2001). Landscape
connectivity: A graph-theoretic perspective.
Ecology, 82:1205-1218.

Urban, D.L. & Smith, T. M. (1989). Microhabitat
pattern and the structure of forest bird
communities. American Naturalist, 133:
811-829.

Urban, D.L.,O’Neill, R. V. & Shugart, H. H.
(1987). Landscape ecology. BioScience, 37:
119-127.

Utban, D. L., Miller, C., Halpin, P.N. &
Stephenson, N. L.{2000). Forest gradient
response in Sierran landscapes: The physical
template, Landscape Ecology, 15: 603-620.

US Departmentof the Interior Fishand
Wildlife Service (1995). Recovery Plan for the
Mexican spotted owl, vol. 1. US Department of
theInterior Fish and Wildlife Service.
Albuquerque, NM.

Usher, M. B.{1991). Scientific requirements of a
monitoring programme.Ined.F.B.
Goldsmith, Monitering for conservation and
ecology, pp. 15-32. Chapman & Hall, London.

Walters, C.(1986). Adaptive Management of
Renewable Resources. Macmillan, New York.

Walters, C.,and C.S. Holling (1990). Large-scale
managementexperiments and learning by
doing. Ecology, 71:2060-2068.

Watt, A.S.(1947). Pattern and process in the
plantcommunity. Journal of Ecology, 35: 1-22.

White, G.C., Block, W.M., Ganey, J. L., Moir, W.
H., Ward, ].P, Franklin, A.B., Spangle, S.L.,
Rinkevich, S.E., Vahle,J.R., Howe, F.P.and
Dick, J. L.(1999). Science versus political
reality in delisting criteria for a threatened
species: the Mexican spotted owl experience.
Transactions of the North American Wildlife and
Natural Resources Conference, 64: 292-306.



EDITED BY

JIANGUO LIU
MICHIGAN STATE UNIVERSITY

WILLIAM W. TAYLOR
MICHIGAN STATE UNIVERSITY

Integrating Landscape Ecology
into Natural Resource Managemer

559 UNIVERSITY PRESS

WL



PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The PitrBuilding, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
TheEdinburgh Building, Cambridge CB2 zRU, UK

40 West 20th Street, New York, NY 10011-4211, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz deAlarcén 13, 28014 Madrid, Spain

Dock House, The Waterfront, Cape Town 8001, South Africa

hetp://www.cambridge.org
© Cambridge University Press 2002
This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
noreproduction of any part may take place without
the written permission of Cambridge University Press.
First published 2002
Printed in the United Kingdom at the University Press, Cambridge
Typeface Lexicon (TheEnschedé Font Foundry) 1014 pt System QuarkXPress™ [sE|
Acatalogue record for this book is available from the British Library
Library of Congress Cataloguing in Publication data
Integratinglandscape ecology into natural resource management / edited byJianguoLuiand
William W. Taylor.
. cm.
Includes bibliographical references(p. ).
ISBN 052178015 2—-ISBN 0521784336 (pb.)

1. Landscapeecology. 2. Naturalresources. L Liu, Jianguo, 1963~ . Taylor, William W.

QHs41.15.135 Is6 zo02
333.7~dc2t 2001052879

ISBN 052178015 2 hardback
ISBN 0 52178433 6 paperback

Contents

Listof contributors

Foreword
EUGENE P. ODUM

Preface
Acknowledgments

PARTI Introductionand concepts
t Couplinglandscape ecology with natural resource management:

Paradigm shifts and new approaches
JIANGUO LIU AND WILLIAM W. TAYLOR

PARTT Landscapestructure and multi-scale management
2 Integrating landscape structure and scale into natural resource

management
JOHN A. WIENS, BEATRICE VAN HORNE, AND BARRY R. NOON
Focal patch landscape studies for wildlife management:
Optimizing sampling effortacross scales

JULIE M. BRENNAN, DARREN J. BENDER,

THOMAS A. CONTRERAS, AND LENORE FAHRIG

Managing for small-patch patterns in human-dominated
landscapes: Cultural factors and Corn Belt agriculture

ROBERT C. CORRY AND JOAN IVERSON NASSAUER

Alandscape approach to managing the biota of streams
CHARLES F. RABENI AND SCOTT P. SOWA

Xiv

xvi

xviii

21

23

68

92

114

vii



