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Edge Effects and the Extinction of PopUI_avtll

Inside Protected Areas
Rosie Woodroffe* an'd Joshua R. Ginsberg

Theory predicts that smail populations r.n.ay be .driven to extinction by raﬁdom, fly

ations in demography and loss-of genetic

size is a poor predictor of extinction in large carnivores inhabiting protected. are

Conflict with people on reserve borders is the major cause of mortality in such PopE

lations, so that border areas represent population sinks. The species most likely

disappear from small reserves are those that range widely—and are therefore m

exposed to threats on reserve borders—irrespective of population size. Conservat i

efforts that combat only stochastic processes are therefore unlikely to avert extincfiofy
- N . . By

L

diversity through drift. However, populaf

The contention that small populations are

“vulnerable to extinction through stochastic
processes has a sound theoretical basis in’

both demography and population genetics
(1). Management of small populations has
therefore dominated both the theory and
practice of conservation biology for nearly
20 years (2). However, most empirical evi-
dence supporting this contention is indi-
rect, because direct measures of size are
rarely available for populations that have
subsequently become extinct (3). - . ..

If small populations are vulnerable,
large carnivores should be especially ex-
tincrion-prone because their trophic posi-
tion constrains them to living at low pop-

ulation densities. However, carnivore pop- :

ulations are also exposed to’ strong exter-
nal pressures because their requirements
conflict with those of local people. Where
large carnivores survive outside protected
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~"effects could contribute to the extinc

=1 We investigated the relative

 areas, intentional or accidental kill
humans frequently limits their nuith
(4). Even within protected areas, ¢
with humans is usually the single
-important cause of adult mortali
Most of this mortality occurs when '&in
. vores range beyond reserve borders;
- such deaths account for proportion
: .mortality comparable with those kno
~ cause decline in harvested populatio}
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impact on overall population dynam
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data on population extinctions for 10
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Table 1. Results of logistic regressions on the presence and absence
of large carnivores in protected areas falling within their historic ranges
(7, 8). Wherever possible, data on population densities and home range

sizes are taken from the regions for which critical reserve sizes were

determined (77). Population density refers to the density of adults aver-
aged across studies; home range size refers to the mean area used
by each adult female (or social group for social species).

2 REPORTS

Change in deviance

due to Critical y
, . No. of : Population density Home
Species Region reserve size range size
reserves Reserve Reserve (km?)+ (adults/100 km3)} (lgnz)t
age size
Lycaon pictus East Africa 46 3.15 26.59™ 3606 2.4 (4) 823.1(12)
(African wild dog)
Canis lupus Western Canada 44 0.0 _1o.82% 766 1.1(9) 684.6 (11)
(gray wolf) )
Cuon alpinus India 71 1.69 30.59"* 723 10.6 (1) 68.8(2)
(dhole) .
Panthera leo East Africa 32 1.39 17.61** 23 16.2(12) 121.4 (59)
(lion) .
Panthera tigris India, Nepal 154 0.0 39.1™* 135 363 16.9 (3)
(tiger) , .
Panthera uncia India, Nepal, Pakistan 30 1.27 - 21.09™* 116 4.6 (6) 29.3(2)
- {snow leopard) . :
; Panthera onca Central America 28 0.91 - 120,98 69 6.8 (2) . 18.8(5)
. (jaguar) v
; Crocuta crocuta East Africa 37 5.14* 20.22" 179 74.5 (8) 34.9(12)
¢ (spotted hyena) S
{ Ursus americanus California 45 1.48 7 13.05"* 36 58.0 (3) 19.8 (32)
¢ (black bear) L . ’ :
} Ursus arctos Western Canada, 54 0.78 w1848 3081 2.0(5) 773.8(36)
1 (brown bear) Northwest U.S. . : : .
‘P =<0.05. tThe area for which the logistic model predicts a 50% probablhty of population persistence.

P = < 0.0001.

suitable habitat has become fragmented.

In all of these regions, people kill large
carnivores that range outside the protect-
ed areas (5). For each region, we identified
protected areas that fell within the former
geographic range of the species, treating
complexes of contiguous reserves as single
protected areas (6). We determined the
presence or absence of the species in each
of these protected areas, using a combina-
tion of published and unpublished data
{7). Because none of the species has highly
specific habitat requirements, and all have

fexperienced range contractions within the

last century, their absence from those pro-
tected areas that contain suitable habitat
can be taken as evidence of local extinc-
tion. We excluded areas where evidence

Yindicated that extinction had occurred be-
ifore the reserves were designated. We re-

corded the size of each protected area
(reserve size) and the time elapsed be-
tween the dates when the area was offi-

extinction, using logistic regression, a
‘standard technique for the analysis of bi-
‘nary data (8). All 10 species were more
likely to disappear from small reserves
%than from larger ones, but extinction was
‘telated to reserve age in only one species
%(Table 1). The statistical effect of reserve
islze was very strong for all species, but
]
!

cally designated and when it was surveyed:
ifor carnivores (reserve age). .
1  We investigated the relation between
iteserve size, reserve age, and carnivore

there was considerable variation in the
size of the reserves from which each spe-
cies had disappeared (Fig. 1). We derived
a measure of critical reserve size by using
the logistic regression models to predict
the area at which populations persisted
with a probability of 50%. This measure is
analogous to the LDg, of a drug, the dose
that, administered to. experlmental sub-
jects, kills exactly half of them. Critical

reserve size varied among species by over

two orders of magnitude (Table 1).

If probability of extinction is deter-
mined primarily by population size, then
critical reserve size should be related to
average population density, because the
size of a population at, 1solatlon will be
determined by the populatlon density and
the area of the reserve. ‘In contrast, if
extinction is caused by edge effects, criti-
cal reserve size should be related to home
range size, as long as reserve shape varies
randomly with reservé “area. Population
density and home range size will not nec-
essarily be correlated with one another,
because carnivores that rahge widely tend
to occupy overlapping home ranges (9).

For each species, we collected data
from published reports to estimate average
population density and average female
home range size’ within the regions for
which we investigated population extinc-
tion (Table 1). We avoided statistical
nonindependence of measures from closely
related species by analyzmg phylogeneti-

.Flg 1. Propomon of reserves of various szes, )

$Numbers in parentheses give sample sizes,

.
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i

|
i
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=

05
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o5

Proportion of reserves ocoupled
°
(¢}

0s

7102 102109 103-10¢ >10% <102 102103 103104 >104
Reserve area (kn12)

which 10 species of large camivores have persist-
ed (7). Population persistence is related to reservi
area for all species (Table 1). Curves show the 3g
probability of persistence predicted by logistic re- =
gressions fitted to the binary data (8); filled curcles ]
show the critical reserve sizes (+SE) for which th v
models predict a 50% probability of populat|on
persistence. Species: (A) black bear; (B) jaguary;
(C) snow leopard: (D) tiger; (E) spotted hyena; (F), 38
lion; (G) dhole; (H) gray wol; (|) African wild dog 08
grizzly bear.
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cally independent contrasts, calculated
from a composite phylogeny for the Car-
nivora (10). All contrasts were calculated
with log-transformed data, and all regres-

sions of contrasts on contrasts were forced

through the origin.

h A
After controlling for phylogeny, average -
female home range size was a good predictor ;-

of critical reserve size (Fig. 2) (> = 0.84,

Fig = 42.1, P < 0.0005). The effect of

population density was much weaker (**°
= 0.52, F; 3 = 8.8, P < 0.05), and disap-,-
peared entirely after we controlled for home °
range size (multiple regression: overall, F;3:
= 20.6, P < 0.005; effect of density, t =
0.82, P > 0.4; effect of home range size, t = -
4.00, P = 0.005). As expected, contrasts for.,
population density and female home range”
size were only weakly intercorrelated (rg =
~0.69), partly because some species were _
social and partly because home range ovei-
lap was high in species with large home
ranges (9, 11). ' SR
These results show that, in a reserve of
given size, wide-ranging carnivores are more

likely to become extinct than those with::
smaller home ranges, irrespective of popu- - -
lation density. Thus, population size is a”. :

relatively poor predictor of extinction
among carnivores. Ranging behavior medi-
ates contact with human activity, contact
that accounts for a very high proportion of
adult mortality in all of these species. Our
results therefore indicate that human-in-
duced mortality contributes more to the
extinction of populations of large carni-
vores isolated in small reserves than do
stochastic processes. Conservation measures
that aim only to combat stochastic process-
es are therefore unlikely to avert extinctioni.
Instead, priority should be given to mea-
sures that seek to maximize reserve size or to
mitigate carnivore persecution on reserve
borders and in buffer zones. '

linear

critical reserve size

0.0 0.2 04 0.6 0.8 1.0 1.2

Female home range size
d Hnear

)

Fig. 2. Relation between phylogenetically inde-
pendent contrasts in log(critical reserve size) and
log(female home range size) calculated for 10 spe-
cies of large camivore. r2 = 0.84, Flg=421,P
< 0.005. The effect remains strong after control-
ling for the (nonsignificant) effect of population
density t = 4.00, P = 0.005).
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