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NORTHERN COLORADO PLATEAU NETWORK & PROTOTYPE    PARKS
ARCH 

Arches National Park*

BLCA

Black Canyon of the Gunnison Nat. Park

BRCA

Bryce Canyon National Park

CANY

Canyonlands National Park

CARE

Capitol Reef National Park
CEBR

Cedar Breaks National Monument

COLM

Colorado National Monument

CURE

Curecanti National Recreation Area

DINO

Dinosaur National Monument

FOBU

Fossil Butte National Monument

GOSP

Golden Spike National Historic Site

HOVE

Hovenweep National Monument

NABR

Natural Bridges National Monument

PISP

Pipe Springs National Monument

TICA

Timpanogos Cave National Monument

ZION

Zion National Monument
*Denotes Prototype Park

Northern Colorado Plateau Network and Prototype Staff

	
	
	

	Program Manager
	Dr. Angie Evenden
	(435) 719-2342

	Ecologist
	Dr. Mark Miller
	(435) 719-2340

	Data Manager
	Margaret Beer
	(435) 719-2346

	Data Mgt. Specialist
	Libby Nance
	(435) 719-2352

	GIS Tech
	Aneth Wight
	(435) 719-2348

	Program Biotech
	Sonya Daw
	(435) 719-2343

	Data Biotech
	Mike Estenson
	(435) 719-2353

	Data Biotech 
	Mary Moran
	(435) 719-2139

	
	
	


Mailing Address and Contact Info for All NCPN Staff:

Northern Colorado Plateau Network

National Park Service

2282 S. West Resource Blvd.

Moab, UT 84532

Fax: 435 719-2350   

ORGANIZATIONAL STRUCTURE FOR THE NORTHERN COLORADO PLATEAU INVENTORY & MONITORING PROGRAM
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NORTHERN COLORADO PLATEAU NETWORK TIMELINE AND PROGRAM TASKS
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Biophysical Variation

A major challenge in designing a network-wide monitoring strategy is characterizing and designing for the tremendous biophysical variation found in a network that covers over 1.1 million ac and spans 300 mi from east to west, 350 mi from north to south, 7000 ft in elevation, and from 8 to 30 inches of average annual precipitation.  The following figures and table illustrate some of the ways we have chosen to describe and illustrate natural variability across the network. 
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Acquisition of Park Input

A variety have techniques have been used to acquire Park input regarding key management issues, resources of concern, anthropogenic stressors, and expectations of the Inventory & Monitoring Program.  One of the main approaches has been through the development of our Monitoring-Needs Database.  This database was designed to capture and manage park input in the form of individual database records that characterize stressor >> resource >> effect pathways.  Park staff directly populated the database following directions provided by network staff.  The database has been used as a tool for assessing and ranking generalized, network-wide resources and stressors of concern, but it is most valuable as a tool for quickly obtaining details concerning park-specific resource issues.  

In addition to the database, parks also have provided summary descriptions of their priority monitoring needs.  These products have been supplemented by face-to-face discussions during park visits by network staff and during network technical committee meetings.  In particular, technical committee discussions of park and network issues and concerns have yielded numerous important insights.  The following two tables were developed by combining information from the Monitoring-Needs Database with each Park’s summary description of priority monitoring needs.

[image: image8.png]Generalized list of resources within NCPN units that are potentially impacted by anthropogenic stressors, based on input
provided by park staff. For each individual park unit, circular symbols in cells are coded by the percentage of database
records associated with particular resource categories in the NCPN Menitoring-Needs Database (see below for coding
scheme). Shaded rectangles indicate resources associated with high-priority monitoring needs identified by park staff.
See individual park tables for detailed lists of high-priority monitoring issues.
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The following is a good example of an individual Park’s summary of priority monitoring needs.

Zion National Park Monitoring Priorities, July 2002

Human Interface: Monitoring recreational and operational human impacts

· Human Carrying Capacity relative to resource condition/resiliency, possibly related to Visitor Experience-Resource Protection (VERP) process.

· Biological soil crusts, soil compaction/social trailing

· Hanging gardens

· Aquatic invertebrates (river/streams, springs, hanging gardens) Zion snail

· Wildlife – Human Interaction

· Mexican spotted owl

· Mountain lion

· Peregrine falcon

· Deer

· Small animal damage from human feeding

Habitat Restoration: Monitoring the effectiveness of restoration activities

· Aquatic habitats, especially removal of Virgin River channelization structures

· Virgin spinedace (managed under Conservation Agreement)

· Invasive plants

· Ground water table in floodplain (peziometers, elevation & distance from channel)

· River flow rates (cfs)

· Sediment loads below restored reaches

· Invasive Species throughout the park – includes non-native plants and animals

· Distribution, rate of spread from epicenters

· Efficacy of control/treatment

· Fire Effects – use in ecological restoration and fuels reduction

· Current monitoring based exclusively on vegetation

· Need to expand monitoring to consider soils, watershed, and animals as applicable to goals established for each planned burn.

Threatened, Endangered and Sensitive Species: to comply with legal mandates, monitor viability of populations of these species.

· T&E

· Mexican spotted owl

· Southwest willow flycatcher

· Desert tortoise

· Shivwits milkvetch

· Sensitive species

· Amphibians

· Desert bighorn sheep

Physical Resources: condition of physical resources is critical component of habitat quality for biologic communities/species

· Water Resources – covered above; surface and groundwater quality, flow, condition

· Soil Resources – covered above; soil crusts, erosion-sedimentation

· Air Resources

· Visibility (funded through NPS-ARD)

· Ozone – especially related to veg impacts (automated station on-line Sept. 2002 – ARD funded)

· Soundscape – initial inventories completed FY 01-02

· Overflights: rate, timing, routes

· Sensitive wildlife resources

Long-term Ecological Change: monitor change in biophysical resources / communities in relatively undisturbed locales; possible comparisons to lands more actively used.

· Vegetation – changes in composition, invasives

· Animals – veg utilization, species occurrence, especially small mammals

· Soils – condition of soil crusts, erosion / soil loss

· Hydrology – watershed conditions, site-specific character

Theoretical Framework

We consider the development of a theoretical framework to be a key step in the design of a monitoring strategy.  Such a framework functions to guide the development of system- and issue-specific conceptual models, and it provides insights applicable to the selection of vital-signs indicators and the prioritization of monitoring efforts.  The framework that we have adopted is based on theoretical and applied literature concerning aspects of ecosystem dynamics, sustainability, and management.  Here we present a variety of conceptual diagrams that illustrate the development of our framework.  
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Model (a) illustrating the four interactive controls of ecosystem sustainability – atmospheric resources and conditions, soil/water resources and conditions, biotic functional groups, and disturbance regime (modified from Chapin et al. 1996); and (b) the array of stressors affecting network ecosystems arranged in the model in relation to their first-order effects.  The circle represents the boundary of the ecosystem.

For vital signs monitoring, the key aspect of the interactive-control model is the associated hypothesis that interactive controls must be conserved for an ecosystem to be sustained.  Large changes in any of the four interactive controls are predicted to result in a new ecosystem with different functional and structural characteristics than the original system (Chapin et al. 1996).  The interactive-control model is an extension of Jenny’s (1941, 1980) state-factor model for understanding variations in soils and ecosystem structure and function (see also Vitousek 1994). 
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Integration of the interactive-control model with the ball-and-cup heuristic to illustrate concepts of ecological thresholds and resilience (see Scheffer et al. 2001).
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Application of the ball-and-cup heuristic to illustrate how abrupt shifts among ecosystem states can be facilitated by environmental conditions that alter system resilience to perturbations.  In (a), the resilience of an ecosystem to a generalized perturbation is shown to vary in relation to environmental conditions.  Examples indicate how ecosystem resilience to land-use perturbations can vary in relation to climatic conditions (b), and vice versa (c).  (Adapted from Scheffer et al. 2001 and concepts of Tausch et al. 1993).  

Theoretical Framework: Summary

· General model
· Factors governing ecosystem structure & function

· Controls of ecosystem sustainability

· Changes that can lead to alternative ecosystem 'states'

· Corollary hypotheses 
· Episodic events can cause ecosystems to cross thresholds between alternative states abruptly

· The probability of sudden state shifts is affected by declines in system resilience

Implications for Management and Monitoring

"Efforts to reduce the risk of unwanted state shifts should address the gradual changes that affect resilience rather than merely control disturbance.    Stability domains typically depend on slowly changing variables such as land use, nutrient stocks, soil properties and biomass of long-lived organisms.  These factors may be predicted, monitored, and modified.  In contrast, stochastic events that trigger state shifts (such as hurricanes, droughts or disease outbreaks) are usually difficult to predict or control.    Therefore, building and maintaining resilience of desired ecosystem states is likely to be the most pragmatic and effect way to manage ecosystems in the face of increasing environmental change” (Scheffer et al. 2001:596).
Supplementary Models Related to Concepts of Ecological Thresholds
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State-and-transition model – a management-oriented tool for considering and organizing information about ecological thresholds and transitions among dynamic ‘states’.  Dynamics within the dark-lined boxes (i.e., within a dynamic state) are within the range of variability and include normal successional changes.  (Adapted from Stringham et al. 2001.)

For monitoring applications, state-and-transition models should be accompanied by mechanistic models describing how stressors affect key ecosystem components and processes (e.g., biotic functional groups, disturbance regimes, and soil/water resources and dynamics).
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Example of a state-and-transition model developed for sagebrush-steppe communities of the Intermountain West (from Stringham et al. 2001 and West and Young 2000).
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Conceptual model illustrating the application of threshold concepts to restoration and management (from Whisenant 1999).  In this framework, ‘primary processes’ include water capture and retention, nutrient cycling, and energy capture.  Whisenant’s approach is closely allied with those of Ludwig and colleagues (1997), Ludwig and Tongway (2000), Rosentreter and Eldridge (2002), National Research Council (1994), and the interagency assessment protocol developed by Pellant et al. (2000).
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