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ABSTRACT: To identify natural resources in need of conservation, and assess the effectiveness of on-
going management practices, a ‘reliable’ monitoring program is necessary. It is critical to assess the
reliability of our data, and our data analyses, so that we draw the appropriate conclusions regarding the
natural resource of interest. One way to evaluate this reliability is through the use of statistical power
analysis. Although power analysis may provide valuable insights into the design and results of a study
or monitoring program, its misuse may lead to inappropriate conclusions and management actions.
This review describes the appropriate use of statistical power analysis in the context of natural areas
management, and points out numerous misuses, some of which are not widely recognized. Alternative
approaches to traditional power analyses are presented, along with a discussion of their advantages and

disadvantages.

Index terms: confidence intervals, null hypothesis significance testing, parameter estimation, power

analysis, Type II error

INTRODUCTION

As the world’s natural resources are degrad-
ed and destroyed, monitoring the health of
remaining resources becomes increasingly
important. Evaluating the ecological in-
tegrity of natural ecosystems has assumed
a critical role in the activities of many
university researchers, private foundations,
and governmental agencies concerned with
conservation. A critical issue in monitoring
ecological resources is the reliability of the
resulting data. All monitoring programs
face practical, financial, and logistical
constraints, which restrict the amount of
information obtained. Given the limited
data available, and the amount of inherent
variability that characterizes most natural
systems, an important question is: How
likely are we to detect important changes
when such changes exist? Or, perhaps the
more relevant question is: How likely are
we to fail to detect important changes when
such changes are in fact occurring? The
reliability of our data, in statistical terms,
when hypotheses are tested, is the subject
of power analysis.

Over the past two decades, ecologists have
been extolled to use power analysis, both
when planning studies and interpreting
results (e.g., Toft and Shea 1983; Peterman
1990a, b; Thomas and Juanes 1996; Stefano
2001). This review focuses on problems
with power analyses in the evaluation of
ecological monitoring data, and discusses
potential alternative approaches. It has
critical implications for how we should
approach data analysis and, ultimately, how
we should manage natural resources.

ELEMENTS OF POWER

Statistical power is the probability that a
null hypothesis will be rejected if the null
hypothesis is in fact false. It is the comple-
ment to Type Il error (). Discussions of the
relationships between power and Type I and
Type Il errors can be found in Toft and Shea
(1983) and Peterman (1990a). Statistical
power increases with higher values of o
(the probability of making a Type I error),
larger sample sizes, and greater effect sizes.
The effect size includes the magnitude of
difference in the parameter of interest, as
well as the variance of the measurements.
The variance of the measurements includes
both natural variability and measurement
error. Thus, for the components comprising
effect size, power increases with an increas-
ing magnitude of difference and decreases
with increasing natural variability and
increasing measurement error. Measure-
ment error is not frequently mentioned
in discussions of power (and not easily
identified once data are collected), yet
anything that can be done to make sampling
more accurate will increase power (Steidl
et al. 1997; Stoehr 1999; Lenth 2001).
If effect size is a standardized measure
(e.g., the correlation coefficient, r), it is
dimensionless, and there is no associated
sample variance, although measurement
error will still have an influence (Jennions
and Moller 2003).

Statistical power does not exist outside of
formal hypothesis testing; conversely, it is
always a facet of such testing, although it
is frequently ignored (e.g., Yoccoz 1991).
Power is usually desired to be at least 0.8
(B = 0.2) (Cohen 1988; Stefano 2003),
although values of power as low as 0.5 are

Volume 27 (1), 2007

Natural Areas Journal 83



sometimes considered acceptable (Murphy
and Myors 2004). In practice, it is often
difficult to obtain power much greater
than 0.8 (i.e., a very large sample size is
necessary).

There are two types of power analyses:
prospective and retrospective. Prospective
power analysis is conducted before a study
is initiated, most commonly to determine
the sample size necessary to achieve a
target power level. It may also be used to
evaluate competing sample designs. Retro-
spective power analysis is conducted after
a study is complete, and is only relevant
when one has failed to reject the null hy-
pothesis. Retrospective power analysis has
frequently been employed to determine the
likelihood that the null hypothesis would
have been rejected if it was false, given
the parameters of the study. This use of
retrospective power analysis is invalid,
however (see below). An important, yet
frequently overlooked point is that prospec-
tive and retrospective power for the same
study are not necessarily equivalent (see
Zumbo and Hubley 1998).

It is possible to make a third type of error,
termed a Type III error (Leventhal and
Huynh 1996). This occurs when one rejects
the null hypothesis and concludes the direc-
tion of difference in the population is the
same as that in the sample, even though
the alternative hypothesis is nondirectional.
The actual difference in the population may
be in the opposite direction, however, in
which case a Type III error has been made.
The existence of this potential third type
of error has led to a revised definition of
power, which is the conditional probabil-
ity of rejecting the null hypothesis and
correctly identifying the true direction of
difference (Leventhal and Huynh 1996).
When conducting such tests, power will be
less using the revised definition than using
the traditional definition. The likelihood
of making such an error, however, must
be very small in most cases .

RELEVANCE TO HYPOTHESIS
TESTING

Power analysis is inseparably linked with
null hypothesis significance testing. The

origin of employing a preset significance
threshold to make a binary decision regard-
ing a null hypothesis stems from Neyman
and Pearson’s work, developed as a sort of
quality control for determining acceptable
rates of defective products in cost-benefit
analyses (e.g., Neyman and Pearson 1967).
The purpose of the Neyman-Pearson ap-
proach was not to inform belief, but to
establish rules for behavior, in which the
outcome was some practical yes-no deci-
sion (Oakes 1990). In fact, Neyman and
Pearson’s original papers contained no
application in which a scientific hypoth-
esis was of primary interest (Birnbaum
1977). The other major school of thought
influencing modern frequentist statistical
concepts was the Fisherian approach, in
which P-values were emphasized, rather
than some specific significance thresh-
old. Fisher (1955) rejected Neyman and
Pearson’s emphasis on power.

Modern hybrid statistical theory combines
elements of both the Fisher and Ney-
man-Pearson schools of thought, at times
supplemented with a somewhat Bayesian
interpretation of what significance means
(Gigerenzer et al. 1989). Yet, this attempt
to fuse opposing theories into a single one
has generated much confusion regarding
even basic statistical concepts (Sedlmeier
and Gigerenzer 1989) .

Statistical power must be interpreted
relative to the null hypothesis under test.
The null hypothesis is usually one of no
difference or no effect (also called the nil
hypothesis; Cohen 1994). The alternate
hypothesis is usually that there exists
a non-zero difference or effect, but the
magnitude of this effect is not specified.
The problem is that a null hypothesis of
no difference is usually trivial or known to
be false before initiation of a study. This
is especially true in ecological situations.
No two populations are likely to be exactly
the same when compared across space or
over time. Given a large enough sample
size, even a very small difference can be
detected (Utts 1988; McBride et al. 1993;
Johnson 1999; Anderson et al. 2000).

This has led some to state, rather cynically,
yet accurately, that failure to reject a null
hypothesis does not mean no difference

actually exists, but simply that the sample
size was too small. Thus, most tests of null
hypotheses are actually tests of whether
the sample size was large enough (John-
son 1999). This process of testing what
is already known has been referred to as
“gratuitous” significance testing (Abelson
1997), and such null hypotheses have been
referred to as “‘silly” (Robinson and Wainer
2002). In practice, significance tests are
often not taken seriously (Guttman 1985).
The real issue is not whether there is any
relationship among the variables under
study, but the magnitude of the relation-
ship .

PROBLEMS, MISUSES, AND ABUSES

Throughout this section, I refrain from
identifying authors who have misused
or abused power analyses in some way.
Examples of such misuse are not difficult
to find in the literature.

Statistical assumptions and
estimation

Power analyses, like statistical tests in
general, are only valid if the appropriate
statistical assumptions are met. These
assumptions are frequently not met in
environmental studies, however, which
are notorious for non-normality, hetero-
geneous error structure, over-dispersion,
and spatial-temporal dependency (Fox
2001). Many field studies suffer from
pseudoreplication and nonrandomization
(Hurlbert 1984; Suter 1996). Hypothesis
testing was designed for experimental
rather than observational studies.

All valid power analyses require the specifi-
cation of possible parameter values, which
necessarily involves a subjective aspect
and includes the possibility of bias. Power
analyses for more complex statistical tests
(e.g., repeated measures ANOVA) require
additional assumptions and the estimation
of multiple parameters.

Prospective power analysis

The primary problem with prospective
power analysis is that one must specify
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the effect size prior to data collection.
This quantity is frequently unknown,
however, and is usually the reason for
gathering the data; if the researcher knew
the effect size, he would probably not be
conducting the study. This can be a serious
problem because power may be very sensi-
tive to small changes in estimated effect
size (Rotenberry and Wiens 1985). Even
when investigators are able to accurately
determine a priori the amount of power
associated with their study, they may be
able to do little beforehand to change that
power level because of financial or logisti-
cal constraints.

Retrospective power analysis

In retrospective power analysis, the focus is
usually on determining the power of a test
when the null hypothesis was not rejected.
The estimated effect size obtained from
the data should not be used to calculate
statistical power after the analysis, however
(Goodman and Berlin 1994; Hayes and
Steidl 1997; Steidl et al. 1997; Thomas
1997; Gerard et al. 1998; Hoenig and
Heisey 2001; Lenth 2001; Nakagawa and
Foster 2004). Statistical power refers to the
pre-experiment probability of obtaining a
hypothetical group of results; it is not a
property of a particular data set (Greenland
1988; Goodman and Berlin 1994) .

If a large P-value is obtained in a study,
calculations using the observed effect size
will always indicate low power. Observed
power and the P-value are both dependent
upon the observed effect size (Nakagawa
and Foster 2004). Once one has failed to
reject the null hypothesis, power calculated
from the observed effect size adds nothing
to the interpretation of results (Hoenig and
Heisey 2001). This problem is not widely
appreciated, and many canned software
programs use the effect size determined
from the sample to do retrospective power
analyses, even though it is inappropriate
(Thomas and Krebs 1997).

The appropriate use of retrospective
power analysis presents a conundrum to
the experimenter: one cannot use the best
estimate of effect size, which is arguably
that obtained from the data at hand, but

the effect size must be estimated based on
some other information. Because of this,
some have recommended that retrospec-
tive power analyses simply never be done
(Goodman and Berlin 1994; Gerard et al.
1998). Others concede retrospective power
analysis may have “extremely limited” ap-
plications, perhaps only in ‘meta-analyses’
(Hoenig and Heisey 2001). For example, a
recent meta-analytic survey of journals fo-
cusing on animal behavior by Jennions and
Moller (2003) revealed statistical power to
be quite low: 0.13-0.16 to detect a ‘small’
effect and 0.40-0.47 to detect a ‘medium’
effect (‘small’ and ‘medium’ effects as
described by Cohen 1988) .

One possible solution to the subjectivity
involved in estimating effect size is to use
approximations obtained from other stud-
ies of similar taxa or habitats, or derived
from a survey of multiple studies. As an
example of the latter, Gibbs et al. (1998)
present a table of variability estimates for
various plant and animal groups derived
from several hundred studies.

Unbiased retrospective power analysis may
also be possible by estimating the effect
size that would have been necessary for a
study to achieve a particular level of power
(Steidl et al. 1997; Gerard et al. 1998). This
type of power analysis could, and probably
should, however, be done in the planning
stages of a study.

Interpretation of the effect size

Some power analyses may be misinter-
preted, in that the effect size is perceived
as the actual amount of change that can
be detected in a population. For example,
one may conduct a power analysis and
determine that an effect size of 20% can
be detected, for a given o and n, and with
a particular level of power. It would not
be appropriate, however, to conclude that
a difference of 20% exists in the popula-
tion if the null hypothesis is one of no
difference. One would have to conclude,
at the specified level of power, that there
either is or is not a nonzero difference in
the population of interest (i.e., reject or
fail to reject the null hypothesis).

The estimated effect size represents the
amount of change or difference in the
parameter of interest as a function of the
variability in the sample, which will allow
one to reject the null hypothesis given the
levels of o and n. It does not represent the
magnitude of change or difference in the
population. This is clearly evident when
one considers that the magnitude of differ-
ence in the population is absolute, whereas
the effect size in the analysis, for a given
level of power, will vary depending upon
o and n (i.e., with a larger sample size, one
could detect a smaller effect size).

Length of time and effect size
necessary to obtain desirable power

A related issue is that power analyses con-
ducted in relation to long-term monitoring
programs are often described in terms of
the amount of annual change that can be
detected over a multi-year period (e.g., a
5% annual rate of change over 10 years).
Yet, populations do not change at a con-
stant rate. What these analyses actually
measure is the ner change in population
size (e.g., a ~50% net change). Thus, even
if change was gradual (e.g., 5% per year),
one would not be able to detect a difference
after four or five years. Depending upon
the methodology used, either a constant
small amount of change occurring each
year or a major change occurring in a
single year would yield the same results
as far as power is concerned. Ecologically,
however, these scenarios convey very dif-
ferent messages .

Perhaps the most worrisome aspect of
many attempts to incorporate power into
ecological monitoring programs is that to
obtain a desirable level of power, one has
to settle for a relatively large effect size,
and this may only occur after a considerable
period of time. Frequently, the ability to
detect an effect size of up to 50% within
10 or 20 years, with power of at least 0.8,
appears to represent an acceptable conven-
tion. If one follows the convoluted logic
involved, and accepts the effect size to be
equal to the actual change in the popula-
tion, the conservation implications are
cause for alarm. In a scenario in which one
were monitoring threatened or endangered
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species, for example, up to half of the
population would be lost before one would
be willing to admit that the population
was actually declining (at all). Moreover,
reversing a 10- or 20-year trend is likely
to be much more difficult than reversing
a trend of shorter duration. The use of
traditional null hypothesis testing along
with power analyses in such cases could
easily do more harm than good, and could
put an already threatened or endangered
population at much greater risk than the
use of other analytical methods.

High population variability or
measurement error

If natural variability is high, it simply may
not be possible to achieve an acceptable
power level. An example of the effect of
sampling variability on power is provided
by de la Mare (1984), who calculated that,
because of large sampling variabilities,
whale abundance could decrease by 50%
over 20 years, yet the power of testing
the null hypothesis of no decline would
be only 0.31.

Furthermore, the power to detect a decline
in abundance will decrease as populations
become smaller if the coefficient of varia-
tion of the population estimate increases.
If a population becomes small enough, the
most likely outcome of any survey method-
ology will be a nonsignificant trend, even
when the population is actually declining
(Taylor and Gerrodette 1993). Thus, for the
species with the smallest populations (and
presumably at the greatest risk), if we wait
for a statistically significant decline before
instituting stronger protective measures, the
species will probably go extinct first.

What should o and 3 be?

The probability of making a Type I er-
ror, @, is usually set by convention to be
0.05, a value considered by many to be
arbitrary (e.g., Peterman 1990a; Mapstone
1995; Cherry 1998; Johnson 1999; Stoehr
1999; Anderson et al. 2000; Stefano 2001;
Robinson and Wainer 2002). The existing
convention for B is 0.20 (Stefano 2003).
This implies that a Type I error is four
times more serious than a Type II error.

(The fact that power is often not mentioned
in many studies implies that frequently a
Type II error is not even serious enough
to consider!) Traditionally, scientists have
guarded against making Type I errors more
vehemently than Type II errors because
Type I errors have been perceived as more
costly. This may be true in pure science, in
which accepting a falsehood (committing
a Type I error) could lead to much time
and money being wasted in investigating
a phenomenon that does not exist. The
preference for Type I or Type II error
varies, however, and traditionally many
applied scientists have been more will-
ing to commit Type I than Type II errors
(Shrader-Frechette and McCoy 1992).

In the context of an ecological monitor-
ing program, a Type I error might mean
that we think a population is in danger of
declining when in actuality it is not. The
cost would be resources expended in order
to mitigate the decline; the population,
however, would likely not suffer. If a Type
II error was made, however, we might fail
to note a real decline in a population. The
population could decline to a dangerously
low level or even go extinct. The cost
would be greater resources necessary to
rescue the population from such a low level
or, in the extreme case, extinction of the
population. Thus, a Type II error may have
a much greater cost than a Type I error in
ecological monitoring programs.

One way to increase statistical power
involves an attempt to balance o and [ in
a compromise analysis (Peterman 1990a;
Stefano 2001, 2003; Field et al. 2005). If
one is able to estimate the cost associated
with each error type, it is possible to adjust
the ratio of the probability of each type of
error to balance the costs. This approach,
while logical, will often have the advan-
tage of increased statistical power, as it
will usually result in o being increased.
The problem is that it is often difficult
to put an objective cost on the two types
of error. One may be able to estimate the
cost to rescue a declining population, for
example, but what is the monetary value
of a species that goes extinct?

Decisions regarding the appropriate ratio
of o and [ should be made before any data

are collected (Stefano 2001). Field et al.
(2004) present a cost function approach for
determining optimal o levels. Mapstone
(1995) presents a set of decision rules for
setting values of o and .

In addition to a priori specification of o, or
a compromise analysis attempting to bal-
ance o. and [ for a particular application, a
third option exists: a priori specification of
power. Thus, instead of controlling primar-
ily for Type I error (as is usually done), it
is possible to control primarily for power,
and use the resulting o level as determined
by the sample size and other parameters
of the analysis (as in Lindley et al. 2000).
Such an approach would be valuable with
threatened or endangered species, in which
a Type II error would be associated with
extinction, or other cases in which the cost
of a Type II error is much greater than the
cost of a Type I error.

Reporting power

True statistical power can never be known
exactly; it is a conditional probability, and
can only be estimated (Taylor and Muller
1995; Steidl et al. 1997). It is analogous to
finding the mean of a large population: we
can estimate the mean from a sample, but
we do not know the true mean. Although
we usually report variances associated
with our estimates of mean (i.e., standard
deviations, standard errors), rarely is the
variability associated with power estimates
reported. Yet, confidence intervals of power
estimates can be very large (Gerard et
al. 1998), and it has been suggested that
one should report them whenever power
is estimated (Thomas 1997; Hoenig and
Heisey 2001). Unlike confidence intervals
for other variables, one-sided intervals may
frequently be sufficient for power, as one
is usually interested in the least amount
of power that characterizes a test (Taylor
and Muller 1995).

Statistical vs. Biological Significance

An important consideration in the use of
power analysis is the difference between
statistical significance and biological
significance (Yoccoz 1991; McBride et
al. 1993; Reed and Blaustein 1997). A
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powerful test (large sample size) may
detect a very small difference, yet this
difference may not be meaningful bio-
logically. Conversely, a test with a small
sample size may not yield a significant
result even when a large difference exists
in the population. As emphasized earlier,
statistical significance, and P-values, varies
with sample size. Biological significance
is often subjective.

ALTERNATIVES TO POWER ANALYSIS

Why test null hypotheses?

Given the difficulties associated with, and
misinterpretations plaguing hypothesis
testing and power analysis, why do so
many take this approach? Traditional null
hypothesis testing has long been the sub-
ject of controversy (see Nickerson 2000
for a comprehensive review). For years,
statisticians have warned against excessive
use of hypothesis tests, and failure to use
methods (such as parameter estimation and
confidence intervals) that are often simpler
and more informative (e.g., Carver 1978,
1993; Guttman 1985; Utts 1988;Yoccoz
1991; Shaver 1993; Cohen 1994; Good-
man and Berlin 1994; Kirk 1996; Steidl
et al. 1997; Cherry 1998; Gerard et al.
1998; Johnson 1999; Anderson et al. 2000,
2001; Hoenig and Heisey 2001; Colegrave
and Ruxton 2003; Nakagawa and Foster
2004). For some unknown reason, ecology
has lagged behind other sciences in terms
of awareness and discussions of problems
associated with null hypothesis significance
testing (Anderson et al. 2000).

Perhaps it is the notion that one is not
really doing science unless one is testing
hypotheses. Modern hypothesis testing has
its roots in Popperian inference, which
attempts to test hypotheses that can be
clearly falsified (Popper 1959), and Platt’s
(1964) paradigm of strong inference, which
emphasizes the formulation of alternate
hypotheses. Hypothesis testing is a cor-
nerstone of the hypothetico-deductive sci-
entific method (Johnson 1999). Traditional
null hypothesis testing emphasizes making
binary decisions regarding some threshold
level of significance. This may be necessary
for some decision-making processes, but

if our primary goal is to obtain a greater
elucidation of a pattern or process, this may
not represent the best approach.

Parameter estimation and confidence
intervals

Parameter estimation with confidence in-
tervals may provide more information than
hypothesis testing, be more straightforward
to interpret, and easier to compute. Param-
eter estimation emphasizes the magnitude
of effects, and the biological significance
of the results, rather than making binary
decisions (Shaver 1993; Kirk 1996; Stoehr
1999). There is no formal classification of
error associated with parameter estimation.
It is assumed that the estimate is not accu-
rate, and the width of the confidence inter-
val provides information on the degree of
uncertainty (Simberloff 1990). Parameter
estimation with confidence intervals is also
preferable to hypothesis tests because the
former removes the focus from decision-
making and allows the reader of a research
report to draw his own conclusions (Utts
1988). Narrow confidence intervals are also
more resistant to sources of random error
than low P-values (Poole 2001).

Of course, one may test hypotheses and
estimate parameters. However, if one first
tests a hypothesis and the test results in a
rejection decision, and then one proceeds
to estimate the parameter, confidence limits
should be computed conditionally based on
the specified outcome of the test (Meeks
and D’Agostino 1983). Such conditional
confidence intervals will be wider than un-
conditional confidence intervals computed
independently of hypothesis testing. Such
conditional estimation is usually discour-
aged, and confidence intervals conducted
in the absence of hypothesis tests are
preferred (Meeks and D’ Agostino 1983).
In fact, parameter estimation makes hy-
pothesis testing unnecessary. Once a confi-
dence interval has been constructed, power
calculations generally yield no additional
insights (Hoenig and Heisey 2001).

Non-null hypotheses

It is possible to create a null hypothesis
that specifies a value that is biologically

meaningful, rather than using the tradi-
tional null hypothesis of no difference or no
effect. For example, if a resource manager
would be alarmed if a population changed
by 20%, one could posit a null hypothesis
that the population in question changes by
less than 20%. The alternate hypothesis
would be that the population changes by
20% or more. In this case, a statistically
significant result would also be biologically
meaningful. Additionally, one would no
longer be testing the nil hypothesis, and
it would not likely be obvious beforehand
whether the null hypothesis was false. This
has been termed ‘minimum effect’ testing
(Murphy and Myors 2004).

Testing such hypotheses, however, requires
a different type of sampling distribution
then a null hypothesis of no difference or no
effect. For example, if the appropriate sta-
tistic were an F-test, a test for a minimum
difference would be based on a non-central
F distribution, rather than on the central F
distribution used in testing traditional nil
hypotheses. Most tables in statistical texts
and most canned software use a sampling
distribution consistent with a null hypoth-
esis of no difference or no effect (Murphy
and Myors 2004). Additionally, it is more
difficult to reject such a null hypothesis:
a much larger sample size is necessary to
achieve a similar amount of power.

Equivalence tests

Equivalence tests (sometimes called ‘bio-
equivalence tests’) evaluate interval null
hypotheses. This approach is frequently
employed in the pharmaceutical industry
(e.g., Berger and Hsu 1996), in which
emphasis is on the practical similarity of
two drugs, rather than an absolute differ-
ence (analogous to the difference between
biological significance and statistical
significance, respectively). In theory, such
equivalence tests could be employed in
many other fields, replacing traditional
null hypothesis tests (McBride et al. 1993;
Hauck and Anderson 1996; Hoenig and
Heisey 2001; Parkhurst 2001). Yet, there
have been very few applications of equiva-
lence testing in the environmental sciences
(McBride 1999).
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Unfortunately, the mathematics of testing
equivalence hypotheses are not straight-
forward. Many different equivalence tests
have been suggested. There is no ‘optimal’
test, but rather a tradeoff between the Type
I error rate, power, and the shape of the
rejection region (Dixon and Pechmann
2005). The appropriate tests have not been
developed for many potential applications,
and controversy exists over which tests
should be used (Berger and Hsu 1996;
Parkhurst 2001). An equivalence test ap-
plicable for trend detection in ecological
monitoring programs has recently been
proposed, however (Dixon and Pechmann
2005). It should be noted that confidence
intervals could also be used to evaluate the
types of interval hypotheses associated with
equivalence testing (Steiger 2004) .

Reversing the burden of proof

The discussion of power in relation to
natural resource conservation begs the
question of where the burden of proof
should be placed. Traditionally, scientists
have usually had to document a statisti-
cally significant decline or degradation
in the quality of a resource before any
conservation actions were put into effect.
Yet the sample sizes and sample vari-
ability that often characterize ecological
studies make rejection of traditional null
hypotheses generally difficult (Parkhurst
2001). Using this approach, because of
the difficulties of finding ‘statistically
significant’ changes, the resource may
decline to a severe extent before anything
is done. This is well documented in the
field of traditional fisheries management
(Peterman and Bradford 1987; Peterman
1990a). One option is to reverse the bur-
den of proof, and require any potential
exploiters of natural resources to prove
that their activities do not cause damage,
rather than assume this is the case until it
can be demonstrated otherwise (Peterman
and M’Gonigle 1992; Dayton 1998). Fox
(2001) introduced a new statistic termed
‘environmental power,” which seeks to in-
corporate a reversal of the burden of proof,
and includes a Bayesian aspect.

A related concept is the ‘precautionary
principle,” developed in the context of

marine pollution, which basically states
that potentially damaging pollutants should
be reduced or eliminated even when there
is no scientific evidence to prove a causal
link between emissions and effects (Gray
1990; Johnston and Simmonds 1990; Peter-
man and M’Gonigle 1992). This principle
could apply to the entire spectrum of en-
vironmental policy-making, including all
human impacts on the environment (Earll
1992; Ortiz 2002).

Another approach to reversing the burden
of proof is to conduct ‘reverse tests’ fol-
lowing the failure to reject a nil hypothesis
(Parkhurst 2001). Such a test would allow
one to determine whether the data support
a conclusion consistent with the null hy-
pothesis being true. A reverse test would
serve a similar function as a power analysis,
in that it would attempt to differentiate
between evidence for lack of an effect
versus uncertainty due to factors such as
a small sample size or high sample vari-
ability. Unfortunately, this approach is not
well developed; reverse tests suffer from
similar problems as equivalence tests, and
have only been applied in a limited number
of situations (Parkhurst 2001).

Although reversing the burden of truth
has obvious benefits for natural resource
protection, scientifically speaking it simply
shifts the bias inherent in hypothesis testing
from one side to the other (Suter 1996). As
scientists, we should strive to eliminate all
forms of bias from our analyses.

The information-theoretic approach

The relatively new information-theoretic
approach is an extension of likelihood
theory and avoids many of the limitations
of statistical hypothesis testing. It focuses
on relationships of variables through model
selection, as well as estimates of effect
size (Burnham and Anderson 1998, 2002;
Anderson et al. 2000, 2001). A good set of
a priori alternative hypotheses is essential
to this approach, however, which requires
an in-depth understanding of the biology
of the system under study. Frequently,
supplying an appropriate and limited set
of well-supported models a priori is dif-
ficult (Eberhardt 2003). Additionally, if all

models fit poorly, the information-theoretic
approach will only select the best of the
set of poorly fitting models (Burnham and
Anderson 1998). Likelihood also provides
no protection against trivial hypotheses
(Guthery et al. 2001). Furthermore, re-
searchers using likelihood must make
assumptions regarding the probability
distributions obtained in nature. If these
assumptions are inaccurate, the result-
ing inferences are unlikely to be useful
(Guthery et al. 2001).

Bayesian statistics

A Bayesian approach (e.g., Ellison 1996;
Wade 2000; Dorazio and Johnson 2003)
would avoid many of the problems of
hypothesis testing and power. Although an
overview of Bayesian methods is beyond
the scope of this review, it can be noted
that they are not widely used because
they are often difficult to apply, and many
researchers are not comfortable specify-
ing subjective degrees of belief in their
hypotheses (Utts 1988). As summed up
by Hoenig and Heisey (2001), the “real
world of data analysis is for the most part
solidly frequentist and will remain so into
the foreseeable future.”

Astatistical science

Guthery et al. (2001) contend that the
greatest accomplishments in the history of
science did not rely on statistical hypoth-
esis testing. Furthermore, they state that
science of the “highest order” is possible
without the use of statistical hypotheses
(but not without research hypotheses). They
propose that other, largely astatistical ap-
proaches (e.g., graphic depictions of data)
should be considered in research programs.
Cherry (1998) decries the testing of “obvi-
ous hypotheses,” and advises that it is not
necessary to test every result.

CONCLUSIONS

How important is statistical power in the
long-term monitoring of populations of
management concern? If one’s primary
goal is to answer yes-no type questions,
then it is undeniably important. Asking
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questions such as “Is the population chang-
ing?” are not likely to be informative, how-
ever. We know the population is changing.
Our focus should be on: (1) the magnitude
of this change, (2) the reliability with which
we can estimate this magnitude, and (3)
the biological relevance of this amount of
change. Parameter estimates along with
associated confidence intervals can satisfy
the first two objectives. Establishing the
biological importance will depend upon
our knowledge of the natural history of
the system, along with the findings of
other, related studies. One of the primary
recommendations from a workshop on
environmental monitoring organized by
the Ecological Society of America was that
trend studies should focus on description
of trends and their uncertainty, rather than
hypothesis testing (Olsen et al. 1997).

Ultimately, there is no statistical analysis
that can provide a magic number from
which it will be obvious what course man-
agement should take. Statistics is merely
a tool that can provide information about
a parameter of interest. Interpretation of
this information will always involve a
subjective element, and some degree of
uncertainty will always exist in any sta-
tistical analysis.

Statistics, like other fields of science,
evolves, albeit slowly. Many have advo-
cated the abandonment of traditional null
hypothesis testing, yet it persists. Others
have pointed out the need to consider
Type II error in the context of such tests,
yet relatively few currently do. Many of
those who do attempt to use power analysis
ultimately misuse it. In time, however, a
new paradigm of statistics may arise, which
will allow us to draw more appropriate
conclusions from our data. Until this hap-
pens, however, we must make the best use
of currently employed techniques, taking
care not to slip into the pitfalls that have
claimed the studies of so many.
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