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Ecological Thresholds as a Basis for Defining
Management Triggers for National Park Service Vital
Signs—Case Studies for Dryland Ecosystems

By Matthew A. Bowker, Mark E. Miller, R. Travis Belote, and Steven L. Garman

Introduction

Threshold concepts are used in research and management of ecological systems to describe and
interpret abrupt and persistent reorganization of ecosystem properties (Walker and Meyers, 2004;
Groffman and others, 2006). Abrupt change, referred to as a threshold crossing, and the progression of
reorganization can be triggered by one or more interactive disturbances such as land-use activities and
climatic events (Paine and others, 1998). Threshold crossings occur when feedback mechanisms that
typically absorb forces of change are replaced with those that promote development of alternative
equilibria or states (Suding and others, 2004; Walker and Meyers, 2004; Briske and others, 2008). The
alternative states that emerge from a threshold crossing vary and often exhibit reduced ecological
integrity and value in terms of management goals relative to the original or reference system.
Alternative stable states with some limited residual properties of the original system may develop along
the progression after a crossing; an eventual outcome may be the complete loss of pre-threshold
properties of the original ecosystem. Reverting to the more desirable reference state through ecological
restoration becomes increasingly difficult and expensive along the progression gradient and may
eventually become impossible. Ecological threshold concepts have been applied as a heuristic
framework and to aid in the management of rangelands (Bestelmeyer, 2006; Briske and others, 2006,
2008), aquatic (Scheffer and others, 1993; Rapport and Whitford 1999), riparian (Stringham and others,
2001; Scott and others, 2005), and forested ecosystems (Allen and others, 2002; Digiovinazzo and
others, 2010). These concepts are also topical in ecological restoration (Hobbs and Norton 1996;
Whisenant 1999; Suding and others, 2004; King and Hobbs, 2006) and ecosystem sustainability
(Herrick, 2000; Chapin and others, 1996; Davenport and others, 1998).

Achieving conservation management goals requires the protection of resources within the range
of desired conditions (Cook and others, 2010). The goal of conservation management for natural
resources in the U.S. National Park System is to maintain native species and habitat unimpaired for the
enjoyment of future generations. Achieving this goal requires, in part, early detection of system change
and timely implementation of remediation. The recent National Park Service Inventory and Monitoring
program (NPS 1&M) was established to provide early warning of declining ecosystem conditions
relative to a desired native or reference system (Fancy and others, 2009). To be an effective tool for
resource protection, monitoring must be designed to alert managers of impending thresholds so that
preventive actions can be taken. This requires an understanding of the ecosystem attributes and
processes associated with threshold-type behavior; how these attributes and processes become degraded;
and how risks of degradation vary among ecosystems and in relation to environmental factors such as
soil properties, climatic conditions, and exposure to stressors. In general, the utility of the threshold
concept for long-term monitoring depends on the ability of scientists and managers to detect, predict,



and prevent the occurrence of threshold crossings associated with persistent, undesirable shifts among
ecosystem states (Briske and others, 2006). Because of the scientific challenges associated with
understanding these factors, the application of threshold concepts to monitoring designs has been very
limited to date (Groffman and others, 2006). As a case in point, the monitoring efforts across the 32
NPS 1&M networks were largely designed with the knowledge that they would not be used to their full
potential until the development of a systematic method for understanding threshold dynamics and
methods for estimating key attributes of threshold crossings.

This report describes and demonstrates a generalized approach that we implemented to formalize
understanding and estimating of threshold dynamics for terrestrial dryland ecosystems in national parks
of the Colorado Plateau. We provide a structured approach to identify and describe degradation
processes associated with threshold behavior and to estimate indicator levels that characterize the point
at which a threshold crossing has occurred or is imminent (tipping points) or points where investigative
or preventive management action should be triggered (assessment points). We illustrate this method for
several case studies in national parks included in the Northern and Southern Colorado Plateau NPS &M
networks, where historical livestock grazing, climatic change, and invasive species are key agents of
change. The approaches developed in these case studies are intended to enhance the design,
effectiveness, and management-relevance of monitoring efforts in support of conservation management
in dryland systems. They specifically enhance National Park Service (NPS) capacity for protecting park
resources on the Colorado Plateau but have applicability to monitoring and conservation management of
dryland ecosystems worldwide.

Background: Threshold and State-and-Transition Concepts

Salient features among frameworks of ecological thresholds include concepts of reference
conditions, feedback dynamics, threshold triggers, properties of the progression after a threshold
crossing, and changes in restoration potential along this progression. Native or reference conditions
typically are the desired state for conservation management, and consist of community phases and
transitions among phases due to natural disturbances and climate variability. Negative feedbacks of the
reference system confer system resilience and maintain the community phases within a characteristic
range of variability. For instance, a negative feedback that inhibits shrub dominance in some grasslands
is the interaction between amount of grass cover and fire return interval. Given sufficient grass cover,
wildland fire events are frequent and large enough to maintain grassland structure because of the
selective elimination of fire-intolerant woody plants. Phases comprising the natural range of reference
conditions differ in their vulnerability to a threshold crossing. Phases with degraded resilience are more
vulnerable and may be described as “at risk” of a persistent transition to an alternative state (Briske and
others, 2008). Identifying the patterns that increase vulnerability to change, and identifying the
underlying reasons for these patterns, can define preventive management goals (Bestelmeyer, 2006).

Biotic and abiotic mechanisms may trigger threshold crossings (Beisner and others, 2003; Briske
and others, 2006). Biotic mechanisms include altered biotic structure and interactions, such as plant-
herbivore interactions. Abiotic mechanisms (for example, extreme soil erosion) motivate threshold
crossings through the modification of inherent site characteristics. A single trigger may initiate a
threshold crossing, or the temporal order or spatial convergence of multiple triggers may be critical. For
example, drought or intensive livestock grazing alone may not trigger a state change, but the two factors
in combination or in sequence may trigger such a change through adverse effects of one stressor on
ecosystem resilience to the other stressor (Scheffer and others, 2001). Triggers result in conditions that
exceed the resilience of the reference system and lead to an increasing dominance of positive,
destabilizing feedbacks. Triggers often initiate changes in the pattern or spatial structure of an



ecosystem (for example, decreased vegetation cover or increased patchiness) with subsequent and often
non-linear changes in processes (for example, soil erosion and nutrient cycling; Peters and others,
2004).

The progression after a threshold crossing is characterized by increasing dominance of positive
feedbacks and changes in pattern and processes (Briske and others, 2008). As this progression unfolds,
there is a continual loss of properties of the reference condition. Multiple alternative states, each with
their own set of varying community phases, can occur along this threshold progression with some states
becoming stable as negative feedbacks of the alternative state confers resilience. Progression can lead to
a degraded state where features of the reference condition are effectively no longer present. Degraded
states may no longer afford provision of services such as water, livestock forage production, or desirable
recreational opportunities, and may no longer support the biodiversity of native systems.

The potential for restoration to pre-threshold conditions is determined by the amount of residual
properties of the reference condition and the resilience of the new, alternative state (Suding and Hobbs,
2009). Where extensive site preparation and reintroduction of native species are required for conversion
to pre-threshold conditions, the costs may effectively prohibit restoration. In some cases, complete
restoration to native conditions may never be possible because of the extinction of native biota (that is,
species and genomes) or the loss of inherent properties (for example, soil fertility) necessary to support
reference conditions.

Focused study and interpretation of threshold processes and consequences benefit from using
conceptual models of ecosystem dynamics. State-and-transition models (STMs) are a type of conceptual
model that have become prominent in rangeland management and are used to illustrate reference
conditions of an ecosystem, ecosystem responses to natural and anthropogenic drivers, and the
mechanisms of transition among distinctive states of an ecosystem (Bestelmeyer and others, 2003,
2009). These models also provide a basis for discerning levels of system properties indicative of the risk
and occurrence of transition among states (Briske and others, 2008).

Identifying indicator levels signaling an impending threshold crossing is a critical component in
the design of effective monitoring. Monitoring efforts should result in alerting land managers of
indicator levels in advance of a threshold crossing, to account for lag-time in decision making and
uncertainty in the effectiveness of remediation actions. From a statistical perspective, the number and
frequency of monitoring observations required to provide early warning is dependent on the differences
among the current status of the indicator, the early-warning status level, and the inherent spatial and
temporal variability of the indicator. Realistically, given uncertainty in early-warning levels and
inherent variability of indicators, monitoring resources are likely insufficient to statistically detect a
declining trend within a time period sufficient for decision making (Field and others, 2004). Bennetts
and others (2007) have proposed the use of management assessment points along a continuum of
indicator values to safeguard against uncertainties in estimates of threshold crossings, in indicator
variability, and in the efficacy of a monitoring or sampling design. We propose that indicator values
associated with key critical probabilities of transition are useful assessment points. However, a
fundamental component for establishing assessment points are credible estimates of resource and
environmental conditions indicative of impending threshold crossings. Here we provide a means of
making reasonable estimates of indicators used in NPS I&M programs corresponding to probabilistic
assessment points in several ecosystems.



Methods Overview

A General Approach to Applying Threshold Theory to Management

We developed a general approach for identifying properties of thresholds to inform estimates of
management assessment points in a long-term monitoring context. Our approach relies on using
conceptual models of threshold dynamics and various sources of information to verify the conceptual
model, and to make informed estimates of threshold crossings and associated indicator values:

(1) Identification of target ecosystems.—We adopted the U.S. Department of Agriculture
Natural Resource Conservation Service (USDA NRCS) ecological site concept as a framework for
ecosystem classification and model development. Ecological sites are land units differentiated by (a)
physical attributes including inherent soil properties (texture, depth, and horizonation), geomorphic
setting, and climate; (b) the potential (rather than current) vegetation associated with these physical
attributes within a specific ecoregion; and (c) characteristic dynamics in response to climate,
management, and other driving factors (Herrick and others, 2005; Bestelmeyer and others, 2009).

(2) Conceptual models of system dynamics.—We developed STMs to organize current
knowledge or hypotheses about the dynamics and community phases of specific ecological sites, the key
alternative states representative of degradation pathways, and the transitions that are possible among
these states. Possible triggers of transitions among alternative states and pattern and process indicators
of specific degradation pathways were identified or hypothesized based on published literature,
unpublished expert knowledge of an ecological site, or general ecological principles. Identifying triggers
is most useful because observations of their occurrence could initiate preventative management actions.
This process- and theory-based focus in the construction of the STM, contrasts with pattern-based
efforts which seek to define states based on classification of multivariate community structure data (for
example, Allen-Diaz and Bartolome, 1998). These data-driven approaches offer the credibility of being
based on real data, but assume that a dataset is likely to capture all of the important states that are
possible within a given ecological site, and that the identified states are fundamentally and functionally
distinct (Bestelmeyer and others, 2003). We instead advocate using available data to test specific
elements of a priori process-based conceptual STMs, as a means of calibrating and validating the
model.

(3) Model calibration.—Model building is an iterative process, and it is important to include a
calibration step. Calibration included testing the concepts presented in the model using available
datasets, or subjecting them to the scrutiny of an expert panel. This enables an opportunity to revise the
model; identify new transitions and associated triggers, processes and indicators; and allow an
estimation of confidence that the revised model is reasonable.

(4) Identification of key transitions and estimation of tipping and assessment points.—The
calibrated model is used to identify the most likely transitions that might be detected by a monitoring
program, emphasizing those known to be of concern to management, such as the persistent conversion
of perennial grasslands to ecosystems dominated by invasive annuals or woody plants. The values of
key indicators at the point of a threshold crossing (when one state abruptly transitions to another) are
estimated. We refer to these as tipping points; they are approximately equivalent to restoration
thresholds (in the sense of Bestelmeyer, 2006). In the present work (2013), we typically apply a
probabilistic definition to the tipping point concept—the point at which a transition is nearly certain, or
95 percent probable. Because abrupt transitions-in-progress are seldom observed, statistical methods are
used to model the tipping points in indicator values using samples representative of discrete states. In
data-sparse situations, these estimates are derived from expert knowledge rather than statistical
modeling. The assessment points are another set of indicator values which trigger management action



prior to observing a tipping point, so that the undesired transition can be avoided. These values occur
chronologically before tipping points and allow managers sufficient response time. They are based on
the range of natural variability in the reference or less-degraded state when data are available or based
on the opinions from an expert panel when data are lacking. Again, in the present work we use a
recurring set of critical transition probabilities as an operational definition of assessment points: 5
percent is the point at which a transition is reasonably possible, 25 percent is the point at which a
transition ceases to be an uncommon event, and 50 percent is the point at which a transition or lack
thereof are equally probable.

Case Studies

We present seven case studies that illustrate different methods for identifying assessment points
based on contrasting scenarios of data availability and quality. The case studies represent ecological
sites in NPS units on the Colorado Plateau, where the general monitoring goal is to provide early
warning of system decline in sufficient time for management actions to avert impending undesirable
changes. At one end of the gradient, there is a data-rich case study, Semidesert sandy loam (Fourwing
saltbush [Atriplex canescens]), for which a single large, spatially replicated range assessment dataset
was available. Using a single large dataset is preferable because it sidesteps the issue of observer and
study bias. The Mesa Top Pinyon-Juniper ecosystem of Bandelier National Monument is another data
rich case study in which a single dataset adds a rich temporal component. Other case studies represent
situations for which data from multiple imperfect sources exist, including Semidesert shallow sandy
loam (Blackbrush [Coleogyne ramosissima]-Utah juniper [Juniperus osteospermal), Desert shallow
sandy loam (Blackbrush), Mesa top pinyon [Pinus edulis]-juniper [Juniperus monosperma), and
Semidesert stony loam (Shadscale [Atriplex confertifolia]). In these cases, data from various sources
were pooled to increase replication, increase spatial coverage, or include important gradients and
stressors. There also were several data-sparse ecological sites for which only some data existed. The
data was either not comprehensive in terms of capturing community structure and ecosystem function,
or poorly replicated in space or time. These sites included Clayey fans and Limy uplands. Methods for
each case study are summarized briefly in the following paragraphs, and described more fully in the
following sections devoted to case studies.

Northern Colorado Plateau Network (NCPN) Integrated Dataset

We compiled an integrated dataset from multiple sources with representation of several
ecological sites found in the NPS I&M Northern Colorado Plateau network: Semidesert sandy loam
(Fourwing saltbush), Desert shallow sandy loam (Blackbrush), Semidesert shallow sandy loam (Pinyon
Pine-Utah Juniper-Blackbrush), Semidesert stony loam (Shadscale), among others. 627 cases (plot-level
datapoints) were compiled from 7 data sources. These include: (1) the Arches National Park vegetation
mapping dataset (Coles and others, 2009), which provides plant community composition and some
ground cover data by cover class; (2) the Capitol Reef National Park vegetation mapping dataset (Clark
and others, 2009), which provides quantitative plant community composition and some ground cover
data from two data collection periods and multiple disturbance regimes; (3) the NPS 1&M network
dataset (Witwicki, 2009a, 2009b), which provides quantitative plant community composition, soil
stability, gap size distributions, ground cover, and multiple years of sampling; (4) the Grand Staircase-
Escalante National Monument rangeland health assessment data set (Miller, 2008), which provides
quantitative plant community data, soil stability, and ground cover; (5) Bowker and others (in press),
which provides plant community composition, soil stability, gap size distributions, ground cover among
other data, and multiple disturbance histories in the Dugout Ranch and portions of Canyonlands; (6) the



Canyonlands vegetation mapping dataset (J. Belnap, US Geological Survey, written commun. 2011) and
(7) the NPS monitoring protocol development dataset (Miller and others, 2007), which provides plant
community composition, soil stability, gap size distributions, and ground cover among other data.

Time since grazing is estimated conservatively by subtracting the last possible date of grazing
activity from the date of data collection. In the case of the NCPN dataset, the first year of plot
establishment was used. In the entire database, this calculation resulted in time since grazing estimates
of: 0, 3, 10, 14, 20, 21, 26, 27, 31, 32, 33, 34, and 44 years, and never grazed.

Southern Colorado Plateau Network (SCPN) Data Sources

Unlike in the NCPN, each unit in the SCPN tends to be highly individualistic with little overlap
of ecological sites. In addition, there are fewer data resources in general, which makes it less useful to
integrate multiple datasets to boost replication and capture important variation; instead, we analyzed the
individual datasets deemed to be most useful. For the Mesa Top Pinyon-Juniper ecological site of
Bandelier National Monument, we focused our efforts on a watershed-scale monitoring dataset that
spanned 15 years and captured restoration manipulations and drought (Hastings and others, 2003). For
the Clayey Fans ecological site of Petrified Forest National Park, we used a set of 128 plots with plant
community composition and cover data that were initially part of the production of a vegetation map
(Thomas and others, 2009). To capture response to grazing release, we also analyzed unpublished data
reported by Johnson (G. Johnson, National Park Service, unpubl. data, 1984), and Rowlands (P.
Rowlands, National Park Service, unpubl. data, 1992), derived from two transects monitored for 20
years.

Cluster Analyses

To validate the existence of the states proposed in a priori STMs, we used cluster analyses when
sufficient data existed. We considered a cluster to be roughly equivalent to a state or phase. We used
two different techniques among the various ecological sites depending on exactly what data we
determined to cluster. Both techniques having strengths and weaknesses. Hierarchical cluster analyses
were applied in cases where we analyzed a species abundance matrix, we used Ward’s method with a
flexible beta. Distance among samples was defined as Bray-Curtis distance. The compatibility with
multiple distance measures provides a flexibility to hierarchical clustering; most community datasets are
not distributed in such a way that Euclidean distance should be used. In one case where we analyzed a
matrix containing plant functional groups and other functional properties of the site such as biological
soil crust (may be abbreviated as biological crust or biocrust in figures due to space constraints) cover
and bare ground cover, we used fuzzy cluster analysis (Equihua, 1990). Fuzzy clustering methods offer
more flexibility than hierarchical clustering when attempting to group elements which may overlap or
have vague boundaries, such as states. It calculates degree of cluster membership, and a sample may
have some degree of affinity with multiple clusters. This method is compatible only with Euclidean
distance; use of this distance measure is justified by approximate normal distributions of data,
approximate linear intercorrelation among variables, and few zero values. In our analyses, we selected
the number of clusters partially based on information remaining and partially based on our prior of how
many clusters there may be (McCune and Grace, 2002). Hierarchical cluster analyses were conducted in
PC-ORD™ 4.0 (MJM Software Design) and fuzzy cluster analyses were conducted in NCSS™ 2001
software (Hintze, 2004).



Path Model-Based Simulation and Estimation of Thresholds

A Priori Path Model

Each transition among states or phases is related to a set of interrelationships among system
components. For example, consumption of herbaceous forage by grazing animals may decrease fire
frequency which may enable tree colonization. This set of interactions might be expressed as a path
diagram of the form: grazing—fire frequency—tree density. Such systems underlying transitions may
be simple or complex and can be well-described by a path model. A path model is a construct for
organizing known or hypothesized behaviors in systems and can be used (1) to test the probability that
the model captures the correct causal structure, (2) to partition the multiple effects that one system
component can have on another, and (3) to make a prediction. The path diagram serves as a
visualization of the model. It illustrates relationships among variables in a network. Normally, a
relationship among variables is described as a linear function. In our applications, the end point of the
path models is state membership, a binary variable. It may have one or more direct predictors. These
predictors may have causal interrelationships. Finally, the predictors may in turn be predicted by one or
more upstream predictor variables that do not directly influence state membership. A causal relationship
is indicated by a directed arrow. Using linear regressions we established the mathematical relationships
expressed in the path model using available data. State membership was predicted as a multiple logistic
function of multiple variables in the model. When considering membership in one state or the other, the
output is the probability that a sample will belong to, for example “state 2” rather than “state 1”.
Although this predicts state membership in a static dataset in most cases, from a frequentist perspective,
it might be considered the probability of transition from one state to another. This assumption is
strengthened when data from before and after an apparent transition are available for the same set of
samples.

Parameterization of Model and Simulation of Data

We separately parameterized each of these linear and logistic regression equations (see previous
section) for each arrow in the model, estimating slopes and intercepts, and error about the regression
line. This system of equations, solved in the “upstream” to “downstream” sequence, illustrated in the
path model formed the basis of the simulation of data with the correlative structure of the real data. The
advantage of simulated data is that we can produce a large sample size, and can interpolate holes in the
sampling scheme. Each linear regession was modeled with an appropriate amount of random error
(based on the root mean square error [RMSE], the standard deviation around the regression line). This
was accomplished in a Microsoft® Excel spreadsheet wherein the linear regression formula referenced
the x data in one column, and the output and estimate of y in another column. We simulated error
following a normal distribution using the Microsoft® Excel function = Norms(Rand( ), u, sd). Where
Norms simulates a standard normal distribution, the Rand function generates random numbers, p
represents the mean value, which is approximated by the output of the corresponding regression
equation. The sd represents the standard deviation of the distribution, and is approximated by the
standard deviation of the data around the corresponding regression line. In order to simulate a wide
variety of combinations of the predictors of probability of transition, we generally solved the system of
equations, with error, for the entire range of plausible values for the farthest “upstream” variable. For
example, if the farthest upstream variable was time since grazing, we might solve the system of
equations for every 0.5 year from 0 to 50. We solved this 100 separate times, which enabled us to
calculate a mean probability of transition and the 95-percent confidence interval for each value. We
determined the values of all variables in the network at critical probabilities. Our critical probablitities



were: 5 percent, the threshold beyond which transitions are a reasonable possibility; 95 percent, the
threshold beyond which transitions are almost certain; 50 percent, the threshold at which transition or
lack thereof are equiprobable; and 25 percent, the threshold beyond which transitions cease to be rare.
The 95 percent value can be considered to be similar to a tipping point, whereas the other values might
be viewed as assessment points.

Other Statistical Analyses

We often used non-metric multidimensional scaling (NMDS) ordinations or occasionally other
ordination techniques as a visual tool to illustrate cluster analysis results. Correlations of individual
species with ordination axes helped us to determine and illustrate how clusters differed from one
another. Model simulations of some transitions did not warrant a complex treatment like the path model
assisted simulations described above (preceding section). These transitions were simply modeled using
either linear or logistic regression.

Expert Opinion Surveys

Because of the incomplete nature of the available data for data-sparse case studies, we pursued
an alternative strategy for the validation of the states and dynamics delineated in the STM. Our
approach has much in common with the Delphi technique of engaging expert opinion panels in that it is
a multiphase, iterative approach, that uses a “straw-document” as a starting point and engages
participants individually so that outputs are not disproportionately affected by dominant personalities
(Linstone and Turoff, 1975; Oliver, 2002). This approach has proven to be useful when, “the problem
does not lend itself to precise analytical techniques but can benefit from subjective judgements on a
collective basis” (Linstone and Turoff, 1975, Page 4). We constructed email-based questionnaires in two
stages: (1) model calibration and (2) estimation of tipping and assessment points in indicators that
enable detection of proximity to threshold crossings. Based on literature findings, and past experience,
we drafted a STM including a catalog of states, phases, and transitions. We identified a list of potential
expert consultants and recruited them to participate in the survey. The format of the model calibration
survey included a draft STM including a diagram and a description of state charcateristics, and a
questionnaire asking respondents to identify any states, phases, or transitions that should be removed
from or added to the model. Our questionnaires specifically use estimates of confidence in responses, an
important measure of uncertainty. We revised the model, according to respondent comments. We also
calculated an aggregate confidence value. The second phase of the survey was more focused on
thresholds associated with key transitions. This survey consisted of a revised STM with aggregate
confidence values and a questionnaire in which respondents were presented with a set of indicators and
characteristic units and then asked to estimate tipping and assessment points for each. Responses were
average-weighted by confidence to estimate tipping and assessment points.



Case Study 1: Semidesert Sandy Loam (Four Wing Saltbush)

Background

The Semidesert sandy loam (SDSL) ecological site is widely distributed throughout the
Colorado Plateau region of North America and is significant for past and current use for livestock
grazing (USDA NRCS major land resource area 35, ecological site 035XY215UT). This ecological site
occurs on flat to gently sloping landforms at 1,310-2,010 m elevation and receives 20—-30 cm mean
annual precipitation. Soils are formed in moderately deep to very deep (from 50 to greater than 150 cm)
aeolian and alluvial deposits from sandstone and are moderately alkaline with sandy loam or loamy sand
texture. In relatively undisturbed settings, the vascular plant community typically has a grassland aspect
and is characterized by a mixture of perennial Cs (Hesperostipa comata and Achnatherum hymenoides)
and Cy4 (Sporobolus spp.) bunchgrasses, C4 thizomatous grasses (Pleuraphis jamesii and Bouteloua
gracilis), shrubs, and annual herbaceous species. In contrast with many dryland ecosystems, most
common shrubs (for example, Krascheninnikovia lanata and Atriplex canescens ) are palatable to
livestock and shrub-dominated communities can occur with long-term absence of livestock grazing.
Plant nomenclature here and throughout follows Natural Resources Conservation Service (2010).
Biological soil crust (Belnap, 2003) is another biotic functional type that is a characteristic component
of relatively undisturbed SDSL sites (Kleiner and Harper, 1972; Bowker and Belnap, 2008). Biological
soil crusts have yet to be widely incorporated in conceptualizations of dryland ecosystem dynamics
despite evidence of their functional significance for soil stabilization (Belnap, 1995; Warren, 2003),
nutrient cycling (Evans and Lange, 2003), hydrologic processes (Warren, 2003), and mediation of plant
establishment (Belnap and others, 2003; Escudero and others, 2007). Biological soil crusts also are
notable for their lack of resistance to surface disturbances which can result in long-term reductions in
spatial continuity, biological diversity, physical structure, and functionality (Belnap and Eldridge, 2003;
Miller, 2008).

Canyonlands National Park preserves regionally significant examples of SDSL ecosystems that
remain relatively undisturbed by human activities exclusive of anthropogenic atmospheric changes.
Within Canyonlands National Park, however, there also are extensive examples of SDSL ecosystems
with persistently degraded composition, structure, and function attributable to impacts of past livestock
grazing (for example, Neff and others, 2005; Belnap and others, 2009). Domestic livestock were
introduced to this area in the late 1880s and portions of Canyonlands were grazed by livestock until
1974. Livestock grazing remains an important economic activity on adjacent lands outside Canyonlands.
Unlike many semiarid grasslands, neither fire nor frequent grazing by herds of large mammals are
characteristic natural disturbances associated with the SDSL site. Thus grazing and associated surface
disturbances by livestock represent novel disturbances in this system.

Method Details

A Priori State-and-Transition Models

Field observations, published literature (Kleiner and Harper, 1972; Neff and others, 2005;
Belnap and others, 2009), and an existing USDA NRCS ecological site description (USDA NRCS
ecological site 035XY215UT) provided the basis for developing a STM articulating hypotheses about
system dynamics, degradation pathways among alternative states, and associated ecosystem patterns,
processes, and feedbacks. The conceptual model identifies four ecosystem states based on persistent
differences in the relative abundance of biotic functional types. States one and two are dominated by
biological soil crusts. State one lacks functionally significant invasive exotic annuals (for example,



Bromus tectorum or Salsola sp.), whereas they are present in state two. The first state represents the
desired condition relative to NPS management goals, whereas states two through four represent
increasing degrees of degradation to be avoided or mitigated. The third state is characterized by the
replacement of biological soil crust by bare ground and a vascular plant community dominated by
perennial grasses or palatable shrubs with significant levels of invasive annuals. The fourth state is
characterized by persistent dominance by invasive annual grasses or forbs.

Data

The best available dataset is derived from a broad-scale ecosystem inventory project
purposefully designed to characterize ranges of variability in key compositional and structural attributes
of dryland ecosystems in Canyonlands National Park and on adjacent lands currently used for livestock
grazing (Miller and others, 2011; Bowker and others, in press). These inventory data were collected
over a 3-year period and do not quantify temporal transitions among states. However, through a
combination of targeted sampling and extensive spatial replication (substituting space for time) with
random sampling, this dataset documents current ranges of variability for the SDSL and provides a
relatively rich basis for estimating tipping points and associated assessment points. The dataset
quantified variability among 72 SDSL plots on a single soil type (Begay series; see Bowker and others,
in press for information on additional soil types) on the basis of live cover of biological soil crusts
(moss, lichen, cyanobacterial crust cover summed; excluding physical crusts primarily aggregated by
physical or chemical mechanisms) and vascular plants, ground cover, and indicators of erosion
resistance including soil aggregate stability, spacing between perennial plant canopies, and spacing
between perennial plant bases (Miller and others, 2011; sampling methods followed from Herrick and
others, 2005). Sampling was conducted both within and outside Canyonlands National Park to ensure
that the dataset included a wide range of ecosystem conditions.

Cluster Analyses

To validate the existence of the states proposed in our apriori STM, fuzzy cluster analysis
(Equihua, 1990) was applied to four state properties including biological soil crust cover, bare ground
cover, combined cover of perennial grasses and palatable shrubs, and relative cover of invasive exotic
annuals based on a Bray-Curtis distance matrix. Fuzzy clustering methods offer more flexibility than
hierarchical clustering when attempting to group elements which may overlap or have vague
boundaries, such as states.

Modeling Transitions

Based on available literature, we hypothesized that one of the transitions may be largely detected
because of the abundance of biological soil crust but is functionally related to the loss of soil
aggregating and resource capturing activities attributable to the biological soil crust. Biological soil
crusts are well-documented to provide a large degree of soil aggregate stabilization in otherwise poorly
aggregated sandy soils, decreasing erodibility and the potential for erosion (Bowker and others, 2008;
Chaudhary and others, 2009; Belnap and others, 2009). They maintain surface roughness, by preserving
the uplift created by winter frost heaving. Surface roughness may influence capture of resources such as
water by reducing the energy of overland flow, and increasing the probability of infiltration (Belnap and
others, 2003). Both surface roughness and aggregate stability promote retention of exogenous dust-
borne nutrients (Reynolds and others, 2001). Roughness enhances initial dust capture because low lying
points on a roughened surface naturally function as dust sinks, and high points provide shelter from

10



erosive forces. Soil aggregation and production of sticky polysaccharides enhance the proportion that is
retained. Because local sandstone parent materials are poor in magnetic materials, and exogenous wind
transported material is comparatively magnetic, magnetic susceptibility has been used as an index of
entrained dust within local areas. Some of these relationships are truly feedbacks; for example, it is
thought that early in biological soil crust succession, greater surface roughness will promote biological
soil crust colonization rates (Davidson and others, 2002). However, this relationship quickly switches
and roughness becomes an outcome of biological soil crust growth, age, and development. Thus,
generally speaking, many of these assymetrical feedbacks can be approximated with simple linear one
way relationships.

Using linear regressions, we estimated the slopes and intercepts of the estimated linear
relationships among biological soil crust cover and biological soil crust functional indicators. For
example, aggregate stability can be modeled as a linear function of biological soil crust cover, and the
slope and intercept terms can be estimated from available data. Appropriate transformations were
applied to biological soil crust cover data and soil aggregate stability data to improve linearity (Bowker
and others, 2008). We also conducted a multiple logistic regression with the predictors surface
roughness, aggregate stability, and magnetic susceptibility upon the binary response of state
membership. Multicollinearity can cause errors in the estimation of individual slopes of correlated
predictors, however it does not affect the overall model performance. Thus is in a predictive context
such as this, it does not constitute a problem.

In order to use these equations in a predictive framework with a realistic degree of stochasticity,
we input all these relationships into a spreadsheet. Roughness and aggregate stability were predicted
outcomes. Biological soil crust cover was assumed to be known without error, but the values of
roughness, aggregate stability and magnetic susceptibility were random draws from the expected normal
distributions. These estimates, of reasonable roughness, aggregate stability, and magnetic susceptibility
values based on a given level of biological soil crust cover, were then input into the multiple logistic
regression equation described in the preceding paragraph to generate a probability of membership in one
of two ecosystem states. Under a space-for-time replacement scenario, this probability might be
considered equivalent to the probability of transition occurring.

Using this simulation framework we solved the system of equations for all possible values of
biological soil crust cover, the ultimate causal agent in the model, in 0.5 percent increments from 0 to
100 percent. We repeated the simulation 100 times, averaging the probabilities of transition and
computing their standard deviations.

Exploratory analyses indicated that the transition from S3 to S4 was less suited to this path
model assisted technique because upstream relationships were not particularly strong and had poor
predictive power. Instead, we applied a simple logistic regression approach of cluster membership as a
function of relative exotic cover.

Results

Cluster Analysis: Semidesert Sandy Loam

The cluster analysis distinguished three clusters analogous to states in our a priori conceptual
model, and provided no evidence for states not included in the model (fig. 1). Our a priori model
hypothesized a reference state lacking invasive plants entirely and supporting biological soil crusts. The
reason this state was not detected is that all sites contained invasive annual grasses to some degree.
Thus, a biological soil crusted state with a mild degree of invasion may be the current potential for this
ecological site.
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Figure 1. Ordination of plots based on the four classification variables used in the fuzzy cluster analysis. Clusters
are noted as Biocrust, Grass-bare, and Annualized-bare. Closed symbols indicate plots that are currently
accessible to grazing, open symbols indicate plots that formerly were grazed, and circled open symbols indicate
two plots that were never grazed. Vectors indicate loadings of four classification variables on the two axes.

Final State-and-Transition Model

Our final state and transition model (fig. 2) synthesizes the results of the cluster analysis with
observed heterogeneity on the landscape. The model suggests palatable shrub and perennial grass
dominated phases of each of the first three states. These phases freely intergrade and create a fine scale
mosaic. S4, the annualized state also has two phases: one dominated by B. tectorum and one by Salsola
spp. These also intergrade. It is common to find both co-occurring, although dominance tends to shift
from B. tectorum to Salsola as elevation or precipitation decrease. We describe the states and phases in
table 1.
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Figure 2. State-and-transition diagram for Semidesert sandy loam. Solid boxes refer to ecosystem states and

dashed boxes represent phases within those states.
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Table 1. Catalog of states and phases in Semidesert sandy loam.

State Phase Structural properties Functional properties Feedbacks
S1. Biological soil crust ~ P1. Grassland Biological soil crust dominant or co- High biological soil crust cover High resource retention promotes plant
dominated dominant relative to vascular plants; maintains high capacity for resource community resilience to climatic
perennial grasses abundant relative to capture and retention (including fluctuations and natural disturbance.
shrubs, with variable grass composition due  nutrients, water, litter, seeds) even with
to climate fluctuations, soil variability, site flucations in plant cover. 1.2
history. High degree of soil-surface
roughness.
P2. Shrubland Similar to S1P1 but with palatable shrubs Same as S1P1. Same as S1P1.
abundant relative to perennial grasses.
S2. Biological soil crust ~ P1. Grassland Similar to S1P1 but invasive exotic annuals  Similar to S1P1, but presence of Same as S1P1.
dominated -- invaded present. Cover of invasive invasive annuals can cause greater
annuals fluctuates with climate. climate-driven fluctuations in cover
and production relative to S1P1.
P2. Shrubland Similar to S1P2 but invasive exotic annuals  Similar to S1P2, but presence of Same as S1P2.
present. Cover of invasive invasive annuals can cause greater
annuals fluctuates with climate. climate-driven fluctuations in
cover and production relative to SIP2.
S3. Invaded grassland P1. Grassland Biological soil crust replaced by bare Loss of stability and roughness Accelerated losses of soil resources
(or shrubland) ground; otherwise similar to S2P1. Major associated with biological soil crust and seeds contribute to declines in
decline result in major decline in site capacity =~ plant community resilience to climatic
in soil-surface roughness relative to S1P1 for resource capture and retention; fluctuations and to declines in
and S2P1. accclerated losses of soil, nutrients, vegetative cover and production, which
water, litter, and seeds occur. ' result in further declines in site
resistance to erosion and resource loss.
P2. Shrubland Biological soil crust replaced by bare Similar to S3P1, although rates of Same as S3P1.
ground;
otherwise similar to S2P2. Major decline resource loss may be greater in
in soil-surface roughness relative to S1P2 shrubland due to relative lack of
and S2P2. perennial grass cover.
S4. Annualized P1. Grasses Dominated by invasive exotic annual Dominance by annuals results in high Same as S3P1, but greater. Potential
grasses (for example, Bromus). Native fluctuations in cover due to climate spiraling declines in resource
annuals with corresponding high (and availability and site productivity.'
may present but perennials sparse. potentially extreme) fluctuations in
resource loss/erosion’.
P2. Forbs Dominated by invasive exotic annual forbs ~ Same as S4P1. Same as S4P1.

(for example, Salsola). Native annuals may
be
present, but perennials sparse.

! Neff and others (2005); “Belnap and others (2009)
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Transitions and Threshold Estimation

Based on every possible value of biological soil crust cover from 0 to 100 percent (at 0.5 percent
intervals), aggregate stability and roughness were predicted from the values of biological soil crust
cover, and magnetic susceptibility was predicted from the values of roughness (see equations in fig. 3).
Finally, transition probabilities were predicted based on aggregate stability, surface roughness, and
magnetic susceptibility. Thus for each of our critical probabilities (95 percent, 50 percent, 25 percent, 5
percent), we could simultaneously extract a set of values for biological soil crust, aggregate stability,
surface roughness, and magnetic susceptibility. These values were: (1) soil aggregate stability: 4.7, 4.9,
5.0, and 5.17 (unitless scale from 0 to 6); (2) magnetic susceptibility: 0.10, 0.14, 0.16, 0.20x10°
standard international units; (3) surface roughness: 5.4, 8.8, 10.5, 14.8 percent deviation from chain
length [(1 — straight line distance from end to end of chain laid across a surface / length of chain) x
100]); and (4) biological soil crust cover: 7.5, 22.5, 30, 49.0 percent (fig. 4).

R?=10.59
tability aeE
agg. stability = -1 . iy
4 ; stability ['~ robability of transition =
\(9.87 +3.295 (Vbiocrust)) S A o o055

(roughness)—22.7 (mag. Suscept.)

R?=0.52 R?=0.82

----------
. transition

mag. suscept. =
0.0436+ 0.0107(roughness)

————— ——————— -

roughness =
3.75 +0.225 (biocrust)

R*=0.73

Figure 3. Path model showing a predictive framework integrating both linear regressions and logistic regressions to
result in a state transition probability output. Boxes are measured variables. Arrows (paths) represent hypothesized
causal relationships; dashed black paths did not enhance predictive capability, and were subsequently ignored;
solid black arrows represent relationships retained and modeled using linear regressions, widths are scaled based
on variance explained, regression equations are adjacent; and gray paths represent relationships retained and
modeled using multiple logistic regression, regression equation is adjacent.
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Figure 4. Path analysis-assisted multiple logistic regression models of the probability of transition from state 2 to 3,
given the values of three variables (aggregate stability, surface roughness, magnetic susceptibility) which are linked
by the common causal influence of biological soil crusts. The left graph represents the solution of the model across
all possible values of biological soil crust values. Because the path model predicts the values of the predictors
based on a causal model ultimately rooted in biological soil crust cover, the values of all three predictors increase
as biological soil crust cover increases. The right graph depicts the outcome of the same model, simulated with a
realistic level of stochasticity. Error bars represent the 95 percent confidence intervals of the outcome of 100
simulations. Dashed lines represent predicted critical probability values (5, 25, 50, and 95 percent).

The effect of stochasticity was to make the curve less steep (fig. 4). The mean simulated
probability did not reach 100 percent, even at 0 percent biological soil crust cover. The point at which
probability begins to diverge from zero occurs at higher biological soil crust values. The mean
probability values most closely corresponding to our critical probability values are: 7.5 percent
biological soil crust (95 percent probability), 22.5 percent biological soil crust (50 percent probability),
26.5 percent biological soil crust (25 percent probability), and 41 percent biological soil crust (5 percent
probability). If we account for stochasticity and determine instead the 95 percent confidence interval
surrounding transition probabilities for many levels of biological soil crust cover, different results are
attained. Probability values of 25 percent were within the confidence intervals starting as low as 30
percent biological soil crust, and probability values of 5 percent were within the confidence intervals
starting as high as 49.0 percent biological soil crust, owing to the stochasticity introduced into the
model.

Our logistic regression analysis of the transition from S3 to S4 was “perfect” in that the pseudo
R” was 1.0. Such functions are unstable because the logistic curve is so steep that the parameters are
difficult to estimate. The precision of the estimates in this case is not important because the transition
occurs abruptly between 26 and 27 percent relative exotic cover; pinpointing it further would not
enhance our ability to detect a transition.

Interpretation

Biological soil crust abundance is strongly influenced by compressional disturbances, such as
hoof action or human foot traffic. Climate also may play a role in dictating how much biological soil
crust is present in a given year, and climate change may dictate the future trajectory of change especially
in most national parks where compressional disturbances are tightly regulated. When considering the
transitions from a biological soil crusted grassland to a grassland with bare interspaces, biological soil
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crust cover must remain high, and therefore bare ground must remain low, to ensure a less than 5
percent probability of transition. As biological soil crust cover is reduced to approximately 49 percent,
transition becomes possible. If crust cover is then reduced to about 30 percent, transitions cease to be
uncommon (25 percent probability). A very small further reduction to about 23 percent biological soil
crust cover leads to equiprobability that a transition has or will occur. Finally, if biological soil crusts
are allowed to decrease to about 7.5 percent then a transition almost certainly has occurred or will occur.
A previous analysis of this data (Bowker and others, in press) suggested a tipping point of about 30
percent based on cover of bare ground, with assessment points falling between 20 and 30 percent. These
two findings are complementary because when biological soil crust is lost it is replaced by bare ground.

The transition from grasslands with bare interspaces to annualized communities is much more
abrupt and simple. All of the critical probabilities are between 26 and 27 percent. If exotic annuals
compose more than 26 percent of the plant community, a transition has occurred or is imminent. This
value corresponds reasonably well with a value of 28.3 percent based on classification trees (Bowker
and others, in press). The NPS 1&M network is well equipped to detect these changes because
biological soil crusts, exotic annuals and bare ground are currently being monitored in multiple national
parks with SDSL ecosystems.
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Case Study 2: Mesa Top Pinyon-Juniper
Background

At Bandelier National Monument, ecological site mapping has not yet been completed. SCPN
and park staff defined the Mesa top pinyon-juniper ecological site as a basis for the NPS 1&M program
work, based on landscape position and dominant vegetation (DeCoster and Swan, 2011). As suggested
by the name, it was (until recently) characterized by open woodlands of Pinus edulis and Juniperus
monosperma. Soils are a mosaic of material derived from rhyolitic tuffs, pumice, and some eolian-
deposited material (Hibner, 2000). This ecological site has a complex history full of drastic changes. It
is not easily ascribed a reference state. The area was densely populated by puebloan cultures from 1150
to 1550, and it is believed that the mesa tops were deforested (Allen, 2004). After centuries of recovery,
sheep and cattle grazing occurred from the 1880s to 1932, followed by persistence of feral burros
(Hastings and others, 2003). It is widely believed that because of grazing, a herbaceous groundstory was
diminished, favoring higher density of trees and initiating soil erosion (Miller and Wigand, 1994;
Brockway and others, 2002). It is also widely believed that the elimination of the herbaceous vegetation
removed fire from the ecosystem (Allen, 2004). Even with the creation of the Bandelier National
Monument and the retirement of grazing, high erosion rates continued possibly exacerbated by a
drought in the 1950s (Davenport and others, 1998). Because of the erosion problem, it was thought that
the mesa tops were in a persistent degraded state characterized by unsustainable erosion rates. This led
managers to initiate both small- and large-scale manipulations based on selective thinning of mature
trees and scattering the woody debris into eroding interspaces (Jacobs, 2002; Hastings and others,
2003). This practice led to a decrease in erosion rates and an impressive increase in herbaceous
vegetation (Hastings and others, 2003). The landscape was highly altered by a drought in the first years
of the current millennium (Breshears and others, 2005; Gitlin and others, 2006). This unusually warm
drought killed about 90 percent of the mature P. edulis trees, largely leaving Juniperus woodlands.
Some large scale restoration activities have occurred after the drought, taking advantage of dead trees,
to redisperse woody debris to interspaces.

Method Details

A Priori State-and-Transition Models

Field observations, published literature, and discussion with NPS staff provided the basis for
developing a STM articulating hypotheses about system dynamics, degradation pathways among
alternative states, and associated ecosystem patterns, processes, and feedbacks. The conceptual model
identifies six ecosystem states based on persistent differences in the relative abundance of biotic
functional types. We omit prehistorical states because too little is known about them. We include a pre-
grazing historical state but acknowledge that this also is poorly understood and that the ecosystem may
have permanently transitioned away from this state.

Our a priori model hypothesizes a savanna ecosystem with an overstory of P. edulis and J.
monosperma, characterized by occasional fire which prevents a thicketization (Jacobs, 2002). This state
is not prone to high erosion rates. Introduction of grazers coupled with fire suppression leads to a more
closed woodland state; this state is erodible, but is not actively eroding. From a woodland state, a nexus
of an erodible soil surface and high water erosivity (propensity for water to move sediment) can lead to
an actively eroding woodland state. Erosion prevents establishment of plants in the interspace. A crown
fire in the woodland state is also likely to lead to a treeless, actively eroding state with compromised
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overstory and understory. Drought is a major force influencing various woodland states by causing tree
mortality, especially in P. edulis, although Juniperus spp. are not immune (B. Jacobs, NPS, oral
commun. 2011, Bowker and others, 2012b). A woodland may experience major mortality in the
overstory, allowing an eventual release or “green-up” effect benefiting grasses and forbs and creating an
open woodland with herbaceous understory. An actively eroding woodland also will lose trees due to
drought, possibly transitioning into a treeless, actively eroding state. Restoration treatments consisting
of removal of mature trees and dispersing slash throughout the interspace may transition woodlands or
actively eroding woodlands into open woodlands or restored savannas with herbaceous interspaces and
low erosion rates. Maintenance by fire may transition these ecosystems back to the reference savanna
state.

Data

We focused our analysis on a 15-year dataset documenting a landscape-scale experiment
(Hastings and others, 2003). The “paired watershed study” examines two adjacent watersheds draining
the low elevation mesa tops in Bandelier National Monument. One watershed was selected for a
treatment that consisted of removal of about 70 percent of the trees and dispersing the slash throughout
the interspaces (Frijoles Mesa), whereas the other was left as an untreated control (Garcia Mesa). Each
mesa was monitored along twenty 100-m line transects that ran from mesa tops downslope; each can be
subdivided into upper and lower 50-m segments, and have been analyzed in this way in the past (Jacobs
and others, 2002). This results in a sample size of 80 transects in total. The data include pre-treatment
data from 1996, and capture an extreme drought that led to mass tree mortality. One-half of the thinned
samples were subjected to an experimental prescribed fire in spring 2010. The transects were monitored
annually from 1996 to 2000, and again in 2008 and 2010. Data collected include plant percent cover by
species (separated into live and dead fractions) and ground cover. The strong spatial replication,
temporal richness, and combination of imposed and unplanned ecosystem change make this an
extremely high value dataset for this purpose.

Cluster Analyses

We validated and revised definitions of states and phases of our a priori state-and-transition
model by conducting a hierarchical cluster analysis of both live and dead plant functional group cover
(with the exception that J. monosperma and P. edulis were treated at the species level rather than using a
tree functional group), rock cover, litter cover, downed wood cover, and bare ground cover. For the
purposes of our analysis, we treated upper and lower sections of transects as unique observations (as
previously done in published accounts of this experiment), and treated transect readings of different
years as independent observations. The consequences of these simplifications are that it should be more
difficult to ascribe the lower and upper segment of a transect, or transect observations in different years
to separate clusters. This is because upper and lower segments will tend to resemble each other more
than will different transects, and a single transect at a given time point will tend to be similar to itself at
a different time point. Thus, from the standpoint of clustering data, this can be considered a conservative
analysis. Nevertheless, in practice we had no difficulty ascribing different cluster membership to the
same transect through time, or transect segments linked in space.

Based on the expected number of clusters in our a priori models (6), we examined results for 2—
10 cluster solutions. Cluster analyses are subjective descriptive tools and should not be viewed as strict
hypothesis tests. We used the following guidelines to select the best number of clusters: (1)
acknowledging that we may not observe all of the clusters in our a priori model (and that their absence
does not prove they do not exist), and that additional clusters may exist that we did not anticipate, we
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selected a solution with a number of clusters reasonably close to our prior expectations; (2) we accepted
clusters which were a good match with our prior expectations, if they existed; (3) we accepted
unanticipated clusters when they were consistent with a mechanistic explanation as to how they could
emerge (for example dictated by abiotic factors or a likely outcome of a given disturbance); (4) we
aimed for the number of clusters which explained about one-half the variation in the data. We selected
the solution that best satisfied all of the above criteria. To help us define the characteristics of our
clusters we applied indicator species analysis (Dufrene and Legendre, 1997) and viewed NMDS
ordinations. Similar clusters were grouped as phases of states as an interpretive aid.

Temporal Dynamics

As an additional aid to the development of a final state and transition model, we tabulated cluster
membership for each transect segment over time. This assisted us in determining which transitions were
possible and which triggers (treatment, drought) were likely involved. Because interannual variation can
lead a transect of one cluster to resemble another cluster temporarily (that is, not invoking a persistent
transition), we focused on apparent shifts which were observed in more than one time point.

Modeling Transitions

Using a state-and-transition model with states and phases validated in empirical data, we focused
on individual transitions from one state or phase to another. There were four state transitions for which
we had sufficient data to model a state transition. We extracted samples which had undergone shifts in
cluster membership and possibly state transitions. In the one case where it yielded a sufficient number
of samples, we applied a strict protocol to ensure that we were using samples that had undergone a clear
transition. This was the transition from productive woodlands to open canopied woodlands. We selected
samples which had been in the productive woodlands clusters in 1996, and had belonged to the open
woodlands cluster in 2010. To be included, the samples had to have either occupied the open woodlands
cluster for at least the final two samplings consecutively, or occupied this cluster in 2010 and in at least
two other years regardless if the years were consecutive. After culling the dataset to only these samples
we selected the data for the final year in which the sample occupied the productive woodlands clusters
and the first year in which the sample occupied the open woodlands cluster consistently. We were left
with a dataset of pairs of before and after transition observations.

For three other transitions, this approach would have yielded too few samples for analysis.
Instead, we applied a more liberal set of inclusion rules. For a given beginning and end state of interest,
we extracted data for all samples that had occupied both states of interest during the span of sampling.
We calculated the means of numerous variables for the beginning and end state for each sample.

In most cases, we hypothesized fairly simple transition mechanisms represented either as 3-
variable path models, or more simply, multiple logistic regression models. We then used these equations
to determine the values for the predictors at which the transition probability of interest was 5 percent, 25
percent, 50 percent, and 95 percent.

Results

Cluster Analysis

We selected an eight-cluster solution which largely confirmed our conception of ecosystems
states (fig. 5), but revealed some common variants within those states. We found evidence of both
productive and unproductive woodlands. Unproductive woodlands may be those undergoing accelerated
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erosion, although this is not known with certainty. Productive woodlands are characterized by high litter
and two clusters: Cluster 1 has a higher ratio of J. monosperma to P. edulis than cluster 2. Unproductive
woodlands are characterized by bare ground: Cluster 3 has a higher cover of shrubs and J. monosperma
than cluster 4. Open woodlands, represented by cluster 5 exhibit some degree of herbaceous vegetation
and high cover of dead P. edulis. Savannas are represented by 3 clusters: Cluster 6, 7, and 8 differ in the
amounts of litter, and live and dead herbaceous cover.

o @
* o O o [m}
. ° . o
Woodlands- Woodlands- Open woodlands Savannas
productive unproductive A ciusteres
B cluster 1 Cluster 3 @ Cluster 5 [ Cluster7
Q Cluster 2 & Cluster 4 Cluster 8

Figure 5. Diagrams showing six versions of an non-metric multidimensional ordination based on the eight-cluster
solution. (.A.) Symbols are scaled according to percent cover of bare ground, which is especially high in clusters 3
and 4. (B.) Symbols are scaled according to percent cover of litter, which is high in clusters 1,2, 5and 7. (C.)
Symbols are scaled according to live P.edulis cover, which is high in clusters 1, 2, and to a lesser extent 3. (D.)
Symbols are scaled according to dead P. edulis cover, which is high in cluster 5. (E.) Symbols are scaled according
to live forb cover, which is high in clusters 6, 7 and 8. (F.) Symbols are scaled according to dead grass cover, which
is high in cluster 7.
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Temporal Analysis

An examination of cluster assignments of transect segments over time, in relation to known
perturbations or manipulations, reveals much about possible transitions (table 2). For example, overall
productive and unproductive woodlands prevail in similar numbers prior to treatment. Both treatment
and drought lead to a greater prevalence of open woodlands over the course of monitoring. Treatment
increases the prevalence of savannas. The effects of burning are unclear; in 50 percent of cases no state
transition is observed.

Transitions from unproductive woodlands to open woodlands are observed, as are a few from
unproductive woodlands to savannas. These apparent transitions come about from either an increase in
litter retention or herbaceous cover (these transitions are short-lived or thus far not proven to persist).
There is not a clear relationship of treatment or drought to these transitions. The most frequent outcome
was for unproductive woodlands to remain unchanged, or move toward another state only to later
regress.

A much clearer representation emerges for transitions from productive woodlands to open
woodlands or savannas. Drought can suddenly transition a productive woodland into an open woodland,
and does so in a majority of cases. Thinning can elicit the same response followed by transitions to
savannas, or occasionally induce a lasting direct transition to savannas. Previously thinned transects are
less obviously affected by subsequent drought.

Open woodlands appear to be an unstable state and can transition to savannas, especially under
thinning, stay the same, or regress to unproductive woodlands.
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Table 2. Cluster membership of samples through time.
[Clusters are color coded according to final state-and-transition model : red, unproductive woodlands; yellow, productive
woodlands; blue, open woodlands; green, savannas]
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Final State-and-Transition Model

To a large degree, our a priori model was reasonably well-supported by the data. Three of the
hypothesized states were confirmed and retained as states in the final model: Savannas, Open
woodlands, and Unproductive woodlands (roughly equal to eroding woodlands in the a priori model).
One hypothesized state (reference) was never observed, but its absence does not prove that it cannot
exist, only that it was not observed, thus it is retained in the final state-and-transition model. One
unanticipated difference between our a priori hypotheses and the observed clusters were the existence
of productive and unproductive woodlands. We associated the latter with eroding woodlands that have
been the target of restoration activities. We had conceived of the difference among eroding and non-
eroding woodlands to be determined by erosive forces, however there were clear differences in tree
productivity. Productive woodlands were in some cases associated with patches of high pumice
accumulation, though not always. These revisions result in a state-and-transition model with five states
and two phases each for productive and unproductive woodlands and three phases in the savannah state

(fig. 6).
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Figure 6. State-and-transition diagram for Mesa top pinyon-juniper. Solid boxes represent ecosystem states.
Dashed boxes indicate phases within states. Arrows indicate transitions. In some cases, phases within the
reference state are not connected to any others by arrows; this is our method of representing spatial variants of the
reference state that are determined by abiotic factors, or cases where we simply do not have a strong hypothesis
for the relationship among phases.

S'1. Reference savannas: This state is not directly observed and may not currently exist within
Bandelier. A similar state is assumed to have existed in the past as recently as the 19th century but is not
clearly documented (Miller and Wigand, 1994). It also is a current desired ecosystem state and the target
of restoration activities. This state would have a tree (Pinus-Juniperus) and herbaceous component.
Overstory canopies are open. The state is expected to be resilient to low-intensity ground fire (Jacobs,
2002). Erosion rates are low. Understories may be composed of native grasses, forbs or a mixture.

82. Productive woodlands: These woodlands are thought to be the result of past grazing. They are
characterized by litter buildup on the soil surface and a higher density and canopy cover of either J.
monosperma or P. edulis, or both. Because of the litter cover, these woodlands are less likely to be
consistently eroding at accelerated rates. Shade and litterfall prohibits much herbaceous vegetation. The
dichotomy between these productive woodlands and other unproductive woodlands (see S3) is probably
partially related to spatial mosaics of pumice cover. Most extant productive woodlands have at least
moderate and possibly high pumice cover (cluster means > 17 percent).
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S2Phasel. P. edulis-dominated: This phase is characterized by a Pinus-Juniperus overstory dominated
by live P. edulis and has declined significantly in abundance after the 2001-03 drought. The existence
of this phase is supported by cluster 1. P. edulis cover averages about 38 percent, and J. monosperma
also is present. Summed herbaceous plant cover is the lowest of all clusters at 7 percent. Total cover is
intermediate among clusters, but biomass is likely highest. Mean pumice cover is 17% percent.

S2 Phase2. J. monosperma-P. edulis codominated: This phase is characterized by a Pinus-Juniperus
overstory dominated by live J. monosperma and is more resistant to change during drought. The
existence of this phase is supported by cluster 2. This phase supports somewhat less litter and less
summed plant cover (54 percent). J. monosperma and P. edulis are roughly equally represented with
mean cover of 20 percent and 19 percent, respectively. Herbaceous cover is low and similar to the P.
edulis-dominated Phase 1. Pumice cover is much higher than any other cluster at 53 percent.

83. Unproductive woodlands: These woodlands are thought to be the result of past grazing and the
subsequent initiation of accelerated erosion that tends to arrest ecosystem recovery (consistent with
Davenport and others, 1998). They are characterized by bare soil surfaces and contain only depauperate
woodlands or shrublands. Pumice cover is low to moderate (cluster means < 16 percent).

83 Phase 1. Herbaceous: This phase is characterized by overall low productivity. Summed plant cover
is the lowest of any cluster at only 39 percent. Even J. monosperma and P.edulis attain only 5 percent
cover or less. Moderate cover of herbaceous vegetation is common (24 percent).

S3 Phase 2. J. monosperma-dominated: In this phase, the bulk of the productivity is accounted for by
J. monosperma (17 percent cover), and a modest summed herbaceous component (18 percent), mostly
forbs.

84. Open woodlands: This state is characterized by sparse live trees, either from drought mortality
(Breshears and others, 2005; Gitlin and others, 2006) or restoration treatments (Jacobs, 2002; Hastings
and others, 2003). Cluster 5 supports the existence of this state. In the case of the former, many may still
be standing. In the case of the latter, tree debris has been redistributed across the site. The soil surface
generally is not bare, but rather is covered by litter and supports some sparse understory of herbaceous
vegetation. This state is not characterized by accelerated erosion. Live P. edulis cover is reduced to
about 5 percent, whereas substantial J. monosperma cover remains (16 percent). Total summed cover is

relatively low (57 percent), but compared to other woodland clusters, herbaceous cover is relatively
high.

S35. Restored savannas: This state is composed of derived savannas, mostly from restoration activities.
Live trees are sparse, and tree debris has been redistributed to interspaces. An understory of forbs and or
grasses is common, some of which may be dead or senescent. The permanence of this state is unknown
but several examples appear to have persisted for multiple years. This state is not characterized by
accelerated erosion. Effects of fire are not yet fully known, but it appears that these derived savannas
can often resist a state transition because of fire. These may become equivalent to S1 (Reference
savannas) if they can withstand fires and maintain their savanna physiognomy, after the course woody
debris has degraded. Exotic species likely compose a portion of the herbaceous understory.
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S5 Phase 1. Transitional: This phase is supported by cluster 6. Tree cover is minor, averaging about 8
percent. Herbaceous cover is only slightly higher than some woodland states. The lack of dead
herbaceous vegetation suggests that the herbaceous component is recently established. This
interpretation is supported by the fact that most transects which eventually transition to the savanna
state, initially occupy this phase (table 2).

S5 Phase 2. Forb-grass codominated: This phase is supported by cluster 7. Tree cover is the lowest of
all clusters, yet summed total cover is the highest of all clusters at 81 percent. Live forbs and grasses are
about equally represented, with summed cover of about 30 percent each.

S5 Phase 3. Forb-dominated: This phase is supported by cluster 8. Tree cover is again very low, and
summed total cover high. The herbaceous vegetation is mostly forbs which are about 50 percent more
abundant than live grasses. The cluster is characterized by relatively high amounts of dead grasses,
suggesting accumulation of senescent material. An alternative explanation is that the grasses died during
the drought.

Transitions and Threshold Estimation

Transition 6: S2. Productive woodlands to S4. Open woodlands: We selected live P.edulis as the
primary determinant of membership in either the productive woodlands or open woodlands states. We
screened properties of the understory and determined that live forbs was the one which most improved
upon predictions made by live P. edulis alone. Because live P. edulis partially determines live forbs, we
constructed a very simple path model (fig. 74), wherein live forb cover was predicted as a linear
function of proportional P.edulis cover (R° = 0.35), with a component of random error. Probability of
transition was predicted as a logistic function of proportional cover of live P. edulis and live forbs. The
pseudo R’ of our predictive equation was 0.76. The equations were as follows:

live forb cover =-1.53-17. 71 (live P. edulis cover) (1)
probability of transition = (2)
1/1 +e -(1.5379281-17.7095556 (live P. edulis)+438.29148 (live forb cover))
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Figure 7. A. Path model articulating a predictive framework integrating both linear regressions and logistic
regressions to result in a state transition probability output. Boxes are measured variables. Solid black arrows
represent relationships modeled using linear regressions, widths are scaled based on variance explained,
regression equations are adjacent; gray paths modeled using multiple logistic regression, regression equation is
adjacent. B. Results of simulations based on the path model, illustrating critical probabilities of transition as a
function of proportional P. edulis cover.

We solved for the proportional P. edulis cover required for a 5 percent, 25 percent, 50 percent,
and 95 percent probability of transition (fig. 7B). At proportional P.edulis cover of 0.34, a transition
probability 5 percent becomes possible. A transition probability of 25 percent first becomes possible at
0.23. A transition probability of 50 percent first becomes possible at 0.16. Even if P.edulis cover is
reduced to 0, a transition is not certain; the highest probability of transition observed was about 93
percent. Corresponding values of forb cover (0.005, 0.007, 0.009) are very low and would need to be
measured very precisely. Nevertheless they help distinguish these clusters with more certainty.

Transition 7: S3. Unproductive woodlands to S4. Open woodlands: Because both states are
characterized by low to medium tree cover, we screened key understory properties and selected litter as
the primary determinant of membership in either the productive woodlands or open woodlands states.
Accumulation of litter likely signals decreased erosion activity, and is thus a good indicator of transition
to a more productive state. Bare ground was the variable which most improved upon predictions made
by litter alone. Because litter partially determines bare ground, we constructed a very simple path model
(fig. 84), wherein bare <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>