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Abstract 

Glaciers are intricately related to climate and are indicators of regional climate change. The 
scientific community, the public and park visitors are becoming more aware and concerned about 
how regional and global climate change will impact the natural resources of parks all across the 
nation. Glaciers are a key component of the naturally functioning terrestrial and aquatic 
ecosystems of the Southwest Alaska Inventory and Monitoring Network (SWAN) parks. 
Together, these interrelated natural resources create the wilderness scenic beauty and quality that 
is the SWAN. About 50% of Kenai Fjords National Park, 20% of Lake Clark National Park and 
Preserve and 6% of Katmai National Park and Preserve is covered by glaciers. For these reasons, 
the Southwest Alaska Inventory and Monitoring Network identified Glacier Extent as a vital 
sign. This document presents the protocol for mapping and monitoring glacier extent in the 
SWAN.  

Boundaries of all glacierized terrain (glacier extent) will be mapped on a park-wide scale for 
Kenai Fjords National Park, Lake Clark National Park and Preserve and Katmai National Park 
and Preserve on a repeating decadal basis. Individual glaciers (area of glacier ice within a 
hydrologic basin) will be extracted from park-wide glacier extent mapping effort and 
glaciological parameters (width, length, elevation, equilibrium line altitude, etc) will be 
quantified for each glacier. This glacier mapping effort utilizes Landsat imagery and established 
satellite imagery classification techniques, followed by careful manual editing to map glacier 
boundaries.  

As the glacier extent dataset builds, this glacier mapping effort will allow for park-by-park and 
network-wide analysis of glacier status and trends – informing park managers, scientists and the 
public how glaciers are changing. The results of this mapping effort will add to the scientific 
body of knowledge documenting observations of glacier change for much broader Alaska-wide 
and global studies. 

This SWAN glacier boundary mapping effort mirrors the glacier mapping guidelines established 
by the Global Land Ice Measurements from Space (GLIMS) program. The GLIMS program is a 
world-wide effort to map glacier extent and to provide a suite of glaciological characteristics 
describing the glacial geometry (width, length, elevation, equilibrium line altitude, etc). 
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Background and Objectives  

Background and History 
The National Park Service (NPS) has implemented a strategy through “vital signs monitoring” 
designed to observe and understand the status and long-term trends natural resources and 
ecosystem function in park units. The Southwest Alaska Inventory and Monitoring Network 
(SWAN) has identified glacier extent as an important vital sign to monitor (Bennett et al. 2006). 
This protocol describes the methods to be used to map the boundaries of all individual glaciers 
(collectively glacier extent) within the SWAN and monitor change and identify trends on a park- 
and SWAN-wide basis.  

There are approximately 85,000 to 90,000 km2 of mountain glaciers located in Alaska and 
Canada, or about 13% of the mountain glaciers worldwide, with approximately 75,000 km2 
(18.5 million acres) occurring in Alaska (Arendt et al. 2002, Kaufman and Manley 2004, 
Dyurgerov and Mier 2005, Briner and Kaufman 2008, Barclay et al. 2009, Berthier et al. 2010). 
Glacierized areas in Alaska are most extensive in the southern portion of the State due to the 
interaction of maritime climate and the abrupt rugged topography proximal to the North Gulf of 
Alaska coast (Hamilton 1994).  

The SWAN is comprised of five park units (Aniakchak National Monument and Preserve, 
Alagnak Wild River, Katmai National Park and Preserve, Kenai Fjords National Park, Lake 
Clark National Park and Preserve) encompassing over 38,000 km2 (9.4 million acres) of remote 
Alaskan wilderness. Glaciers occur in four of the five SWAN park units (Aniakchak, Katmai, 
Kenai Fjords, Lake Clark) and are a significant land cover type in three of the five SWAN park 
units (Katmai National Park and Preserve, Kenai Fjords National Park, Lake Clark National Park 
and Preserve) shown in Figure 1.  

Glaciers are important indicators of climate fluctuations over time (Hall et al. 1992, Raup et al. 
2007). Measurements of glacier change can be used to explain changes in regional climate in 
many glacierized areas of the Earth (Hall et al 2000, 2003, Sapiano 1998). Valley and mountain 
glaciers typically respond to changes in the regional climate on a decadal scale (Hall et al. 1992, 
1995, Adalgeirsdottir, 1998). Small glaciers are sensitive indicators of local climate (Sapiano 
1998). 

A glacier’s long term response to climate change is expressed geometrically (elevation and 
extent) as glacier mass is distributed through ice flow. Glacier response time ranges from 
decades for maritime (wet-warm), to thousands of years for continental (dry/cold) climates 
respectively (Raper and Braithwaite 2009). Glacier sensitivity to climate change (temperature 
and/or precipitation) is high for maritime glaciers and relatively low for continental glaciers 
(Braithwaite and Raper 2007). 

Land based termini in Alaska have been receding since the end of the Little Ice Age, 
approximately 1880 (Barclay et al. 2009). Change in glacier extent is a long-term integrated 
reaction of a glacier’s response to the present as well as past climates. A retreating glacier might 
well have a positive mass balance today, but it is retreating in response to less favorable climate 
conditions in the past. Glaciers flow slowly and have a "memory" to past climates expressed in 
how their geometry (elevation and extent) changes.  



 

It is impo
glaciers t
initiate a 
2009).  

Knowled
may be li
protocol 
decadal s
classifica
then be e
glacier ch
terrain in

Figure 1. 
in dark blu

ortant to rem
that are also 
change in g

dge of how g
inked with a
establishes a

scale for glac
ation techniq
extracted from
hange in the

n the SWAN

Southwest A
ue. 

member that t
strongly for

glacier dimen

glaciers are r
aquatic and t
an approach 
cier extent o
ques followe
m the park-w
 SWAN park
preclude the

Alaska Invento

there are ma
rced by other
nsions but ca

reacting to cl
errestrial eco
whereby La

on a park-wid
d by detailed
wide glacier
ks. The expa
e use of grou

ory and Monit

2 

any glaciers, 
r, non-clima
an’t be accou

limate chang
osystem fun
andsat satelli
de basis usin
d manual ed
extent shape

anse and ina
und-based gl

toring Networ

like surging
atic factors. A
unted for all 

ge in SWAN
nction and re
ite data can b
ng a combina
diting. Indivi
efiles allowi

accessibility 
lacier monit

rk location ma

g glaciers an
A change in 
the change 

N parks and h
sponse is lac
be analyzed 
ation of auto
idual glacier
ing for in-de
of much of t

toring techni

ap. Glacierize

nd tide water 
climate may
(Barclay et a

how this cha
cking. This 
on a repeati

omated 
s boundaries

epth analysis
the glacieriz
iques. 

ed areas are s

y 
al. 

ange 

ing 

s will 
s of 
zed 

 
shown 



 

3 

 
Geography and Climate Topographic Setting  
The SWAN region is located between 57° to 61° north latitude and 149° and 158° west 
longitude. The SWAN parks are mountainous (rising abruptly from sea level and approaching 
2,300 m) parks composed of some of the most rugged and impressive terrain in North America.  

Climate and Climate Trends 
Alaska can be divided into five major climatic regions: Arctic; Interior and Copper River Basin; 
West Coast; Bristol Bay and Cook Inlet; and the South Coast. The SWAN is primarily located in 
the South Coast and Cook Inlet regions (Shulski and Wendler 2007), although the northwestern 
portions of LACL are dominated by conditions of the Interior and Copper River Basin region. 
The South Coast region boarders the north Gulf of Alaska is influenced by strong maritime air 
masses resulting in high precipitation and moderate temperatures. The Cook Inlet region is an 
area of transition from South Coast maritime conditions to Interior and Copper River Basin 
continental conditions. The interior and Copper River Basin regions experience warm summers, 
very cold winters, and are typically dry as a result of high pressure systems that frequently 
develop over interior Alaska (Shulski and Wendler 2007). 

Local climatic conditions of the SWAN are largely influenced by the region’s high latitude, 
proximity to the northern Gulf of Alaska, complex topography, and the interaction of these 
features with global circulation (Simpson et al. 2002). The location of the Aleutian Low during 
the winter months produces a high frequency of marine cyclones making landfall (Davey et al. 
2007) and the presence of mountains rising directly and steeply from the Gulf of Alaska (Bennett 
et al. 2006, Davey et al. 2007) create maritime influences that interact with steep topography to 
create patterns of high precipitation on the windward side of the mountains, which in-turn leads 
to over 5,700 km2 (1.4 million acres) of glacier ice within the SWAN parks (Table 1 and Figure 
2). 

Table 1. Glacier ice within the SWAN parks (circa 1960). 

Park Park Area (sq. km) Glacier Area (sq. km) Glacier Area (%) 

Katmai 16,591 1,000 6 

Kenai Fjords 2,699 1,450 53 

Lake Clark 16,330 3,300 20 

Total 35,620 5,750 16 

 

Alaska’s climate record is brief and there are few weather stations compared to the rest of the 
USA and even fewer stations that are proximal to glacierized regions. A 50-year trend analysis of 
24 Alaskan weather stations indicate that annual and seasonal mean temperatures have increased 
throughout the State with the highest increases coming from the interior part of the State 
(Stafford et al. 2000, Wendler and Shulski 2008). Arendt and others (2009) found that between 
1950 and 2000, winter and summer temperatures have increased 2.0˚ ± 0.8˚ and 1.0˚ ± 0.4˚ C, 
respectively. Observed summer warming is reflected in the recent summer observations of 
increased glacier thinning in Alaska (Arendt et al. 2002).  
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Glacier Characteristics - Kenai Fjords National Park  

There are approximately 1,450 km2 (360,000 acres) of glacier ice/permanent snowfields in 
Kenai Fjords National Park (KEFJ), comprising approximately 53% of the park area 
(Hydrography data set, NPS - Alaska Regional Office). The Harding Icefield is the dominate 
feature in the Landsat image shown in Figure 3. The administrative boundary of KEFJ was 
created in 1978; the western boundary of the park bisects both the Harding Icefield and the 
Grewingk-Yalik Glacier Complex.  

The SWAN glacier monitoring effort will include mapping the entire Harding Icefield and the 
Grewingke-Yalik Glacier Complex. Mapping only that portion of these glacier systems occurring 
within the park boundary would be short sighted and not allow for a complete analysis of glacier 
status within and proximal to the park. 

The main body of the Harding Icefield is 1,786 sq km, (approximately 80 km x 30 km in area), 
about 2/3rds of which occurs within the boundary of Kenai Fjords National Park. The bulk of the 
Harding Icefield occurs at elevations between 900 m and 1,300 m. Dozens of outflow glaciers 
flow down valleys and terminate on land, in lakes or in the Gulf of Alaska.  

A few kilometers to the southwest of the Harding Icefield is the Grewingk-Yalik Glacier 
Complex (approximately 35 km by 10 km in area), about 1/3rd of which occurs within the 
boundary of Kenai Fjords National Park. Elevations here reach 1400 m (~4,600 ft) above sea 
level. This ice field spawns several outflow valley glaciers that terminate on land. There are no 
tidewater glaciers issuing from the Grewingk-Yalik Glacier complex.  
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Molnia 2007) exhibiting a strong relationship between change in length and climate change (Paul 
2010). In general, glacier length has been related to global mean temperatures (Oerlemans 2005). 
Glacier advance histories in southern Alaska during the First Millennium A.D. and the Little Ice 
Age support the inference that regional climate change was the primary control on glacier 
terminus movement (Barclay et al. 2009). At its very simplest, mass balance change of a glacier 
is propagated to the terminus with either advancement or retreat. 

The time it takes for a glacier to adjust its geometry to climate change is the glacier volume 
response time. Glacier volume response time ranges from decades to thousands of years for 
maritime (warm and wet) and continental (cool and dry) glaciers, respectively (Raper et al. 
2009). The SWAN has both types of glaciers and, thus changes observed today are at least in 
part from changes in climate that occurred tens to hundreds of years ago. Though climate change 
and resulting change in glacier mass balance is complex, recent studies suggest that 50-70% of a 
glacier’s reaction to climate change is exhibited in adjustments to glacier geometry (surface 
extent and elevation), while 30-50% can be measured in long-term mean mass balance (Paul 
2010). Most studies find that glacier volume reacts faster to climate forcing than glacier length 
and that temperature is more influential than precipitation and radiation (Oerlemans et al. 2007).  

Recent glacier changes observed in Alaska appear to be a result of warmer summer temperatures 
(Josberger et al. 2007). Increased freezing level heights may cause increased melting and 
reduced snowfall, especially on glaciers with termini at lower elevations. (Arendt et al. 2009). 
Glaciers of southeast Alaska appear to be thinning rapidly due to factors of climate change, 
dynamics of tide water glaciers and a rise in the equilibrium line altitude (ELA) (Larsen et al. 
2007). Some of these factors may be driving observed glacier change in the SWAN parks. 

Rationale for Monitoring Glacier Extent 
Glaciers are a significant landscape feature in the SWAN parks. Knowledge of glaciers and how 
they are changing is important in many aspects of park operations from resource management 
and planning efforts, to modeling glacier and ecosystem dynamics, to interpretive presentations, 
and understanding and addressing potential climate change. It is impossible to assess the effects 
of glacier change or to evaluate the resilience of existing habitats and plan for future 
management actions if there is a lack of basic understanding of the current state of park 
resources.  

We know that glaciers are indicators of climate change (Barclay et al. 2009) and that basic 
information about SWAN glaciers and how these glaciers are responding to climate change is 
lacking. We also know that Alaska’s glaciers have experienced steady recession since the close 
of the Little Ice Age (~mid 1800) (Molnia 2007) and that the most recent observations indicate 
that the rate of recession and glacier thinning has increased over the last decade (Larsen et al. 
2007, Arendt et al. 2009). If modeled future climate scenarios are correct, continued glacier mass 
loss (and reduced extent) of many Alaska glaciers is expected and these glacial changes will 
impart significant changes to the aquatic and terrestrial ecosystems across the SWAN region. 

Changing glacial systems in the SWAN parks are one among several important drivers 
(temperature, precipitation, fire, etc) that will impart change to ecosystems and landscapes of the 
parks. For example, melt waters from many SWAN glaciers drain directly into some of the most 
biologically productive waters in the world (e.g. Bristol Bay and the Northern Gulf of Alaska). 
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The direct and indirect effect glacier change may have on Alaska ecosystem function is not 
completely understood. What is understood, but not well quantified, is that glaciers store a huge 
amount of freshwater on the landscape. The release (melt) of this “stored water” is a factor of 
weather and climate, which in-turn is reflected in changes to freshwater flow through the SWAN. 
As glaciers in the SWAN respond to climate change, glacially fed freshwater systems will 
experience changes in volume, timing, temperature, turbidity, and water chemistry, which in turn 
will gradually impart changes to the productivity, diversity, abundance and population 
distributions of aquatic species. Change in glacier extent also affects landform and landcover 
with direct impacts to plant communities and their productivity, diversity and abundance, which 
in-turn will impart changes to the distribution, productivity, diversity and abundance terrestrial 
animal communities proximal to glaciers. These are just a few of the interlinked responses of the 
terrestrial and aquatic ecosystems to change in glacier extent. 

Monitoring changes in glacier extent will allow scientists to identify regional and park-wide 
trends and to also focus on areas of significant change and study how these linked changes affect 
ecosystem response and productivity in the SWAN parks. Understanding landscape-scale natural 
processes, the resilience of these processes and how these processes are changing and interacting 
over time will further our knowledge of ecosystem function in the SWAN. Natural processes are 
largely outside the control of natural resource managers and understanding these processes 
provides important ecological context for interpreting change in park resources and is integral to 
the preservation and protection of public lands, and to determining the appropriate management 
strategies to employ (Reed et al. 2006). 

This glacier monitoring protocol will provide valuable information for management of park 
resources and will allow for management decisions to be made based on knowledge rather than 
assumptions. This protocol will also provide valuable data and data analysis to a large global 
scientific community studying the change in the global cryosphere. In addition, fascinating data 
and information on glaciers and glacier change (extent) in the SWAN park units which will be 
conveyed to park visitors from all over the world who have a heightened awareness of glaciers 
and glacier change especially in light of global climate change.  

Another important issue in monitoring the cryosphere is Global Sea Level Rise (GSLR). GSLR 
occurs from ocean thermal expansion (steric rise) and additions of mass to the oceans (eustatic 
rise). Recent glacier melting is likely the single largest contributor to eustatic rise (Arendt et al. 
2006). The rate of world-wide glacier contribution to sea-level rise appears to have increased 
from 0.50±0.18 mm/year (1963 to 2003) to 0.77±0.22 mm/year (1993 to 2003) (Oerlemans et al. 
2007). From the mid 1950s to mid 1990s, Alaska glaciers contributed 0.14 ± 0.04 mm/year to 
rising sea level (Arendt et al. 2002). Berthier and others (2010) suggests that Alaska glacier’s are 
contributing 0.12 ± 0.02 mm/year to sea level rise over the period of 1962 to 2006. Regardless to 
what the exact contribution is, the decline in glacier extent in western Canada and Alaska 
significantly contributes to sea level rise (Bolch 2010). When compared with other glacierized 
areas across the globe, Alaska glaciers are the single largest contributors to sea level rise over the 
last 50 years (Arendt 2002), however, Alaska glaciers are some of the most poorly mapped 
glaciers in the world.  



 

13 

Measurable Objectives 
The objective of this protocol is to measure and document changes in glacier ice across the 
SWAN parks on a park-wide basis. The specific goals are to: 

 Map the extent of glacier ice in the SWAN parks on a decadal scale beginning in the 
early 1980s and continuing through the early 2000s and decadally thereafter.  

 Extrapolate individual glacier boundaries (based on hydrologic basins) from glacier 
extent shapefiles based on a terrain analysis using the best available Digital Elevation 
Models (DEM). 

 Populate a glaciological parameter geospatial dataset describing glacier characteristics 
(surface area, average length, width and elevation) for each individual glacier. This 
dataset is based on select terrain information generated from existing DEMs. 

 Quantify glaciological statistics (absolutes, averages and trends) based on glacier 
mapping and analyze how the interrelations of the glaciological characteristics influence 
a glaciers response to climate. 

 Quantify total glacier area, number of glaciers, average ablation zone elevation, average 
accumulation zone elevation, length, width, ELA and AAR. 

 Provide reliable data and data analysis to parks, the public and the global glacier 
monitoring efforts of the Global Land Ice Measurements from Space program (GLIMS).  
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Sample Design 

This protocol establishes a consistent automated approach whereby glacier extent will be mapped 
using Landsat satellite imagery beginning in the 1980s and thereafter on a repeating decadal 
scale (refer to Standard Operating Procedure (SOP) #1) followed by careful manual editing for 
the glacierized parks of the SWAN (refer to SOPs #2-4). Based on terrain and watershed 
analysis, individual glacier boundaries will be extracted from the glacier extent shapefiles and a 
dataset (attribute table) of glacier parameters will then be populated defining glaciological 
characteristics (surface area, average length and elevation), see SOP #6. The entire classification 
and editing process is completed using a Geographic Information System (GIS).  

The SWAN will adopt the Global Land Ice Measurements from Space (GLIMS) methods for 
monitoring glaciers. The goal of GLIMS program is to map the extent and change of the world’s 
glaciers through the use of multispectral satellite imagery and to provide a suite of glaciological 
characteristics describing the glacial geometry (surface area, average length and elevation). 
Adopting the GLIMS glacier mapping and database standards will not only meet the goals of the 
SWAN glacier monitoring protocol but takes advantage of glacier mapping methods and 
database design developed by glaciologists with expertise in monitoring the global cryosphere. 
The SWAN will archive its own glacier mapping data and will also provide this data to the 
GLIMS program for inclusion into the GLIMS world-wide glacier mapping dataset where glacier 
mapping data is more accessible to the public and researchers across the globe.  

The SWAN will attempt to identify two other glaciological parameters that are commonly 
reported – the equilibrium line altitude (ELA) and the accumulation area ratio (AAR) (refer to 
SOP #6). Mountain glaciers are separated into two zones, an accumulation zone, where annual 
mass balance is positive, and an ablation zone, where annual mass balance is negative. The 
accumulation zone of a typical mountain glacier covers the higher elevation areas of the glacier 
and extends down glacier to where it meets the ablation zone. The equilibrium line, the line 
across the glacier where net annual mass balance is zero, distinguishes the accumulation zone 
from the ablation zone. The altitude (elevation) of the equilibrium line is referred to as the ELA 
(equilibrium line altitude). The AAR is the ratio of the accumulation area to the area of the entire 
glacier (Meier 1962, Khalsa et al. 2004, Bidlake et al. 2010), which can be easily determined 
after the equilibrium line has been established. 

The approximate location of the equilibrium line is the firn line (i.e. snow line) at the end of the 
melt season (Khalsa et al. 2004, Braithwaite et al. 2007). The snow line altitude (SLA) is 
controlled by a fluctuation of climate (temperature and precipitation), glacier orientation, 
microclimate hypsometry and catchment area. A shift in the SLA over time indicates a change in 
temperature and/or precipitation (McFadden et al. 2010), though the overall control determining 
SLA is temperature change (McFadden et al. 2010). The snow lines can be identified on glaciers 
using late-season Landsat imagery and the altitude range can be extracted using the best 
available digital elevation model (McFadden et al. 2010; Khalsa et al. 2004). 

The ELA and AAR two important features related to the glacier mass balance, which in-turn are 
linked to a glacier’s response to a changing climate. On average, glaciers with a net mass balance 
of zero have an AAR of approximately 60% but the AAR can range from 50% to 70% for steady 
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state glaciers depending on the specific glacier characteristics (slope, elevation, aspect, length, 
width, etc.) (Zemp et al. 2009). 

Rationale for Selecting this Sampling Design 
The SWAN parks are vast, remote, wilderness parks. Access to most of the glacierized areas is 
expensive and difficult due to the terrain and ever-changing weather conditions. Most glaciers 
across the globe are studied remotely (Haeberli and Hoelzle 1995) because detailed ground-
based mass balance measurements are difficult and costly to obtain. Mapping glacier boundaries 
using satellite imagery, is recognized as a simple and effective method for documenting change 
in glacier extent (Hall 2005). For glacier studies covering large remote glaciated areas, satellite 
imagery provides one of the most efficient means for monitoring regional glacier activity 
(Fountain et al. 1997). 

Remote Sensing Satellite Imagery Options  
Landsat, ASTER, IKONOS, MODIS and SAR are the types of satellite imagery which were 
evaluated for use in this protocol. Table 2 summarizes the satellite data types evaluated for use in 
this protocol.  

The first Landsat mission was launched in 1972. Landsat imagery has a large foot print (185 km 
X 185 km) with 15 to 30 m resolution in 7 spectral bands, with a repeating orbit every 16 days, 
recovering data continuously. Thirty meter data are collected in visible and near-infrared 
wavelengths. Landsat satellite imagery is available from 1972 (Landsat 1) to the present (Landsat 
7). The next Landsat mission (Landsat Data Continuity Mission) is scheduled for launch in 2012. 

ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer ) is a sensor 
aboard the Terra satellite launched in 1999. One ASTER scene covers an area 60 km X 60 km. It 
takes nine ASTER images to cover same area of one Landsat image. ASTER has 15 to 90 m 
resolution in 14 spectral bands, with a repeating orbit every 16 days. The 15m data are collected 
in the visible and near-infrared wavelengths, 30m data in the shortwave infrared, and 90m data in 
the thermal infrared wavelengths. ASTER is an “on-demand” instrument and data will only be 
acquired if a request has been submitted by an authorized user (ASTER Science Team). Only the 
ASTER Science Team may request that the ASTER instrument acquire new data. The GLIMS 
program has the ability to request ASTER imagery be acquired of glaciated area. The cost to the 
GLIMS program is zero. 

The commercial satellite IKONOS-2 was launched in 1999. IKONOS imagery has a foot print 
(13 km X 13 km). It takes over 200 IKONOS images to cover the same area of one Landsat 
image. IKONOS has 4 m resolution in 5 spectral bands. The 4 m data are collected in the visible 
and near-infrared wavelengths. A panchromatic ban collects 1m data in the visible blue to near-
infrared wavelengths. IKONOS is an on-demand instrument, acquiring data over a location only 
if a request has been submitted to observe that area. The expense of acquiring IKONOS images 
over the glacier areas of the SWAN parks is high. The NPS has acquired IKONOS imagery park-
wide for KEFJ (2005) and ANIA (2005). 

MODIS (Moderate Resolution Imaging Spectroradiometer) aboard NASA’s Aqua and Terra 
satellites has a minimum spectral resolution of 250 meters, which will not meet the objectives of 
the protocol.  
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SAR (Synthetic Aperture Radar) has many different resolutions. Landsat generally produces 
better contrasting data between the glacier and the surrounding debris than does SAR, though 
SAR is not affected by cloud cover (Hall 1995). Landsat is generally a better tool to measure 
glacier area than is SAR (Hall et al. 2000). There are new SAR technologies promising new 
glacier mapping methods using InSAR coherence mapping that can mask areas that are in motion 
between two SAR scenes. This provides a mask of active ice and might be a useful algorithm for 
glacier extent mapping. SAR technology and application to glacier mapping will be monitored 
and this protocol will be modified to take advantage of any advancement that improves on 
current methodologies.  

Table 2. Potential satellite data acquisition platforms.  

Data 
Type 

Launch 
Date 

Spectral 
Bands 

Swath Width 
(km) 

Resolution 
(m) 

Ground Track - 
Repeat Cycle Georectified 

Landsat 1972 6 185 15 - 30 16 days yes 

ASTER 1999 14 60 15 16 days yes 

IKONOS 1999 4 11.3 1 3 days yes 

MODIS 1999 36 2,330 
200, 500, 

1000 
1-2 days yes 

SAR 1991 1 100 30 35 days yes 

SAR 1995 1 100 30 35 days yes 

 
Selected Option - Landsat 
Currently (2010), Landsat imagery is the best fit for the objectives of this protocol. Landsat has 
good resolution in the visible spectral range (15 to 30 m) and a large foot print (185 km X 185 
km), which is important to cover the large glaciated areas of the SWAN parks. Even with the 
large foot print, multiple scenes will be required to cover the glacier areas on a park- and 
SWAN-wide basis. Landsat imagery can also be used for retrospective studies as there is a 
Landsat data archive that dates back to 1972. Landsat provides the best combination of image 
resolution, footprint, historic data availability, and economy. 

Landsat Satellite Image Data Accuracy and Mapping Precision 
Landsat scenes are composed of pixel data. Landsat MSS (Multi Spectral Scanner) resolution is 
79 meters, one pixel representing the spectral reflectance of a piece of ground measuring 79 
meters x 79 meters. Landsat TM (Thematic Mapper) or ETM+ (Enhanced Thematic Mapper +) 
resolution is 30 meters, one pixel representing an area 30 meters x 30 meters. Table 3 reviews 
spectral and spatial specifications of the various Landsat satellites. 
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Table 3. Spectral and spatial specifications for Landsat MSS, TM and ETM+. 

Satellite Spectral Resolution (μm) Band Spatial Resolution (m) 

Landsat 1-3 MSS Band 4: 0.50 - 0.60 Green 79 
  Band 5: 0.60 – 0.70 Red 79 
  Band 6: 0.70 – 0.80 Near IR 79 
  Band 7: 0.80 – 1.10 Near IR 79 

Landsat 4-5 TM Band 1: 0.45 – 0.52 Blue 30 
  Band 2: 0.52 – 0.60 Green 30 
  Band 3: 0.63 – 0.69 Red 30 
  Band 4: 0.76 – 0.90 Near IR 30 
  Band 5: 1.55 – 1.75 Mid IR 30 
  Band 6: 10.4 – 12.5 Thermal 120 
  Band 7: 2.08 – 2.35 Mid IR 30 

Landsat 7 ETM+ Band 1: 0.450 – 0.515 Blue 30 
  Band 2: 0.525 – 0.605 Green 30 
  Band 3: 0.630 – 0.690 Red 30 
  Band 4: 0.760 – 0.900 Near IR 30 
  Band 5: 1.550 – 1.750 Mid IR 30 
  Band 6†: 10.40 – 12.5 Mid IR 30 
  Band 7: 2.080 – 2.35 Thermal 60 
  Band 8: 0.52 – 0.92 Thermal 60 

 
The level of change that can be detected in a Landsat image is dependent on the resolution of the 
imagery, which is directly related to the precision with which a glacier boundary can be 
identified, plus any geolocation/registration error for the image (Raup and Khalsa 2010).  

The geolocation/registration error of Terrain Corrected TM or ETM+ Landsat data is 30 meters 
between images (EROS Data Center pers. comm. 2006). For a clean glacier terminus (i.e. not 
debris covered), changes of terminus positions can be determined to within ± 40 meters when 
analyzing Landsat TM and ETM+ scenes. The accuracy decreases to ± 113 meters when 
analyzing data between Landsat MSS and TM or ETM+ scenes (Hall et al. 2003). 

Error Estimation 
Accuracy of the glacier boundaries/outlines derived from image classification using automated 
methods is generally estimated to be one pixel in most accuracy studies. However, the accuracy 
estimates may vary widely by region depending on the quality of the images, the methods used 
and the presence of debris-covered glaciers (Racoviteanu et al. 2009). Regional glacier boundary 
mapping projects using band ratio techniques indicate a ±2% error for clean glacier ice. 
Boundaries of debris covered glacier ice are more difficult to accurately map via automated 
techniques and are manually improved, thus adding an addition ±.5% error. For regional glacier 
boundary mapping efforts, the cumulative glacier boundary mapping error is estimated at ±2.5% 
(Bolch et al. 2010).  
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Current Status – Landsat Program 
Launched in 1984, the Landsat 5 Thematic Mapper is currently functioning well beyond it’s 
designed life expectancy of 3 years and has collected over 900,000 individual satellite images 
across the globe. Landsat 5 continues to collect imagery suitable for use in this protocol even 
today. 

Launched in 1999, Landsat 7 ETM+ stopped functioning as designed in June 2003 and currently 
collects data in Scan Line Corrector (SLC)-off mode. This malfunction causes an increasing 
amount of data loss as you move away from the scene center towards the sides of the scene. 
Landsat 7 ETM+ imagery collected post June 2003 is not acceptable for use in this protocol. 

NASA and the USGS are currently developing the Landsat Data Continuity Mission, scheduled 
for launch in December 2012. This will extend the availability of global earth observing satellite 
imagery to the interested public and scientific community.  

Criteria for Site Selection 
The area to be monitored is driven by the extent of glacier ice within each of the three major 
glacierized SWAN parks. Figure 1 and Table 1 summarize the extent of glacier ice within the 
SWAN parks and this represents the approximate size of the area to be monitored. 

Sampling Frequency and Replication 
Time-series glacier studies utilizing Landsat imagery produce very good results when repeated 
on approximately a decadal scale (Bayr et al. 1994, Hall et al. 1995, Li et al. 1998, Hall et al. 
2000, Hall et al. 2003). Remote sensing using satellite imagery, in combination with a 
Geographic Information System provides an effective means to analyze the state of glacier cover 
(Khalsa et al. 2004), and as the dataset is built up over decades, trends in glacier change can be 
determined (Li et al. 1998).  

In support of this protocol, SWAN-wide glacier extent mapping will be repeated decadally. In 
the context of this protocol, decadal means 10 years, ± several years, but is wholly is dependent 
on the availability of quality late-season Landsat imagery. 

Data Quality - Landsat 
Landsat data will be acquired on approximately a decadal scale. Late-season, cloud-free Landsat 
imagery is required to support this protocol. The seasonal timing of imagery acquisition ensures 
that the seasonal snowpack has melted as much as possible and that the amount of new snow is 
minimized. Landsat imagery (historic data or future data) will meet the following standards: 

Satellite imagery over glacier areas will be cloud-free or very minimal cloud cover 

Satellite imagery will be acquired as late into the melt-season as possible, but prior to any 
seasonal snow. For the SWAN parks, this acquisition window is typically mid-August through 
mid-September, the later into the ablation season the better. July scenes will not meet the 
requirements of this protocol due lingering of the prior season’s snow fall. 
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Methods 

Background 
Automated classification of satellite imagery is a reasonable and effective method to employ to 
delineate glacial ice boundaries. However, heavy debris on glaciers causes the glacier to have a 
similar reflectance as the surrounding moraine and/or mountain material (Hall et al. 2000, 2003, 
Jacobs et al. 1997). Automated classification of ice that is completely covered in debris is not 
possible because its spectral reflectance can’t be distinguished from surrounding 
moraine/mountain material (Sidjak and Wheate 1999). When a glacier is in recession, debris may 
become concentrated on the surface of part or all of the glacier tongue. Also, debris on the sides 
of valley glacier obscures the glacier boundaries. Automated classification techniques utilized in 
combination with detailed manual editing will improve the accuracy of the glacier extent 
boundary. Manual interpretation remains the best tool in mapping glacier extent in many 
situations (Raup et al. 2007). 

Other challenges to automated mapping: 

 Shadows obscuring glacier boundaries. Low sun angle and extreme topography produces 
shadows across glacier boundaries. Shadows in combination with debris covered ice 
create challenges for the automated glacier boundary mapping techniques. These 
situations are not widespread and careful manual editing of these areas will be required to 
accurately map glacier boundaries. See SOP#4. 

 Permanent/seasonal snowfields. Snow lying on ground or on a glacier is not spectrally 
different, so these two feature types aren’t distinguishable from one another. A process 
can be applied to a classified image to remove small isolated groups of pixels that are 
more likely to represent isolated snowfields not associated with a glacier, see SOP#3 and 
#4. 

 Seasonal date of the satellite image. The presence of seasonal snow can impart an error as 
large as ±3% (Bolch et al. 2010). The difference between a mid-August Landsat image 
and a September image is noticeable in the amount of seasonal snow in the imagery. 
Several factors affect the amount of seasonal snow cover lingering in a image: 1) the 
magnitude of the winter accumulation, 2) the magnitude of the summer ablation, 3) the 
date of the imagery (September is best!).  

 The presence of cloud cover in glaciated areas is problematic to automated mapping, 
however, this protocol relies on the use of cloud-free imagery. 

Some of these factors can be resolved by viewing higher resolution imagery (if available) and/or 
local expert knowledge of the area. The availability of higher resolution imagery facilitates the 
interpretation of the Landsat data in areas of uncertainty. 
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Data Acquisition 
All current and historical Landsat image data in the USGS archive are available electronically at 
no charge to the user community from EarthExplorer or the USGS Global Visualization Viewer. 
All imagery ordered from EROS is Terrain Corrected (Level 1T) and includes radiometric, 
geometric, and precision correction, as well as the use of a digital elevation model (DEM) to 
correct parallax error due to local topographic relief 
(http://edc.usgs.gov/products/satellite/landsat7.html#l7status). The Landsat geoTIFF images are 
acquired by the NPS as describe in SOP #1. Table 4 reviews Landsat imagery delivery 
specifications: 

Table 4. Landsat processing parameters for Terrain Corrected (Level 1T) imagery.  

Parameter Value 

Output format GeoTIFF 

Resampling method Cubic convolution (CC) 

Map projection UTM – WGS 84 

Image orientation Map north up 

Distribution FTP download only 

 
File Naming Convention 
As supplied via EROS Data Center: 
 
Landsat Scene Identifier: LXSPPPRRRYYYYDDDGSIVV 
 
Where:  
 

L = Landsat  
X = Sensor (M = MSS, T = TM, E = ETM)  
S = Satellite  
PPP = WRS Path  
RRR = WRS Row  
YYYY = Year of Acquisition  
DDD = Day of Acquisition Year  
GSI = Ground Station Identifier  
VV = Version  
 

Example: LE70690182000238AGS02 
 
All Landsat imagery is provide in WGS-84 UTM map projection. All imagery classification and 
editing will be done in the native projection and orientation of the original imagery. All glacier 
boundary mapping data will be provided to the GLIMS program in the original map projection of 
the Landsat imagery (WGS-84). Final glacier extent shapes will include a duplicate suite of files 
in the datum and projection required by the NPS Alaska Region (NAD-83-Alaska Albers). 
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Glacier Extent Mapping - Automated Satellite Image Classification Techniques 
Image classification for snow and glacier ice is a process by which all pixels in the image 
representing snow/glacier ice are segregated from all other pixels in the image. Applying 
threshold values to various band ratio techniques [TM4/TM5, TM3/TM5 and (TM2-
TM5)/(TM2+TM5)] are useful in automatically classifying Landsat imagery for glacier and 
snow cover (Andreassen et al. 2008, Bolch et al. 2010). Regional mapping of glacier extent in 
western Canada produced good results using the TM3/TM5 band ratio because this banding 
technique achieves good results in shadows and in areas of thin debris (Bolch et al. 2010). Some 
experimenting with the band ratio techniques and threshold values is required to achieve a 
glacier/snow classification that best represents glacier/snow and minimizes the amount of 
manual correction. Image classifications are converted to shapefiles. Polygons representing 
snow/glacier ice and nunataks are segregated and small isolated snow fields that aren’t connected 
to and/or associated with a glacier are eliminated. Details of the classification technique and 
editing process are further described in SOP #3 and #4. 

It can’t be overemphasized enough how critical the use of late-season imagery is to the 
comparative value between mapping efforts. The further into the ablation season an image is 
acquired reduces the amount of error imparted into the glacier mapping effort. Seasonal snow 
can contribute up to ±3% error (Bolch et al. 2010) in regional glacier mapping efforts. 

Manual Correction 
The polygon shapefiles and the requisite color-composite satellite image in the background will 
be loaded into an ArcGIS edit session where the shapefiles are modified to correct areas of 
misclassification. A Landsat color composite (Landsat bands 5, 4 and 2 (RGB)) works well with 
glacier studies. A true color composite can also be used (bands 3, 2, 1). 

Delineating the boundary where glacier ice contacts ground is not as simple as may first appear. 
It is a time consuming and tedious task when correcting glacier boundaries on a regional scale. 
As the interpreter zooms into an area of interest, the pixels representing the contact (glacier – 
ground contact) will trend from white (ice) to black (ground), and in many circumstances, a 
transition zone of grey pixels between. The spectral reflectance of the pixels represents surface 
conditions that contain varying proportions of ice, debris on the ice and ground. Mapping the 
glacier boundary in these situations is left up to the judgment of the image interpreter.  

Manual editing of the polygon shapefiles will more accurately capture glacier margins in the 
following areas of misclassification: 

 debris covered glacier ice (typically terminus areas) 

 shadowed snow/glacier areas 

 water bodies exhibiting higher concentrations of suspended solids (glacier flour) 

 clouds 

Editing of the glacier extent polygon shapefiles will be accomplished with the aid of local expert 
knowledge of the region’s glaciology and higher resolution photography, if available. When 
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careful attention is maintained throughout the mapping and editing effort, accuracy and 
repeatability is substantially improved, especially in areas of debris covered ice. Detailed 
procedures for manual editing of glacier boundaries are included in SOP #4. 

To help standardize glacier mapping, the definition of what falls into the category called “glacier 
extent” must be defined. The following definition of what a glacier is in the context of this 
protocol will adhere to the GLIMS definition of a glacier (Raup and Khalsa 2010). 

A glacier or perennial snow mass consists of a body of ice and snow that is observed at the end 
of the melt season. This includes, at a minimum, all tributaries and connected feeders that 
contribute ice to the main glacier, plus all debris covered parts of it. Excluded is all exposed 
ground, including nunataks.  

The following circumstances will be considered when mapping glacier boundaries: 

1. Bodies of ice above the bergschrund that are connected to the glacier shall be considered 
part of the glacier, because they contribute snow (through avalanches) and ice (through 
creep flow) to the glacier. 

2. A tributary in a glacier system that has historically been treated (and named) as a 
separate glacier should, within the GLIMS framework, be included as part of the glacier 
into which it flows. The name field for the glacier should be populated with all relevant 
names of tributaries. 

3. Any steep rock walls that avalanche snow onto a glacier but do not retain snow 
themselves are NOT included as part of the glacier. 

4. A stagnant ice mass still in contact with a glacier is part of the glacier, even if it supports 
an old growth forest. 

5. All debris covered parts of the glacier must be included.  

6. If no flow takes place between separate parts of a continuous ice mass, they should, in 
general, be treated as separate units, separated at the topographic divide. However, for 
practical purposes, such an ice mass may be analyzed as a unit at the analyst's 
discretion, if delineation of the flow divides is impossible or impractical. If the same 
system is analyzed in the same way later, it will have the same glacier ID, and can 
therefore be compared. If the system is analyzed in more detail later by breaking it into 
its component glaciers, those pieces will get new IDs (ID of system will be “parent ice 
mass” ID for each part), and future analyses of those pieces, if done in the same way, 
will be comparable. 

7. It is possible that an ice body that is detached from another may still contribute mass to 
the latter through ice avalanches, or it may no longer do so. It is practically impossible to 
tell which is the case from a single satellite image. Therefore, within GLIMS, adjacent 
but detached ice areas should, in general, be considered as different “glaciers”, 
regardless of whether they contribute mass to the main glacier through snow or ice 
avalanches. However, at the analyst's discretion, detached ice masses may be included as 
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parts of one glacier. This is similar to the situation described in 5 above. If the pieces are 
analyzed separately later, each piece should be given a new GLIMS ID, the old one being 
used as the “parent ice mass” ID for all the pieces.  

8. Regarding the lower parts of lateral snowfields, whose extent varies from year to year 
map only at the end of the ablation period, preferably in a year without snow outside of 
the glaciers, to exclude seasonal snow. Then map everything that is connected to the 
glacier. If snowfields are identifiable, they should be disconnected from the main glacier. 
For hydrological purposes they can be included in the GLIMS Glacier Database under a 
separate GLIMS glacier ID, but they must be marked as a snowfield. Lateral glacier 
outlines that might be hidden by seasonal snow or by avalanches should be labeled as 
preliminary, or even the entire glacier can be excluded. Ice avalanche cones below a 
glacier terminus (dry calving) are not a part of the glacier. 

9. Rock glaciers and heavily debris covered glaciers tend to look similar, but their geneses 
are different. GLIMS does not currently deal with the former, but does include the latter. 

Extracting Individual Glacier Boundaries 
There are many areas in SWAN parks where two or more glacier will flow from the same 
accumulation area. In these situations, individual glacier boundaries will be extracted from the 
larger glacier extent polygon feature using the best available DEM and terrain analysis 
techniques. The result will be a polygon shapefile composed of individual glaciers. Each glacier 
is representative of glacier ice within a hydrologic basin. When all individual glaciers have been 
extracted from the glacier extent shapefile, glaciological parameters describing glacier 
characteristics (width, length, elevation, ELA, etc) will be quantified in the accompanying 
attribute table. A composite of all individual glaciers is equivalent to the glacier extent, except 
the shapefiles containing the individual glacier boundaries and attributes will provide for a much 
more in-depth analysis of glacier change. SOP #5 and #6 gives general guidance in the 
procedures of extracting individual glacier boundaries from glacier extent shapefiles and 
populating attribute tables with glaciological parameters. 

Developing Local Expert Knowledge - Aerial Reconnaissance  
It is necessary to rely on or develop “local expert knowledge” in areas where the location of 
glacier margins is unclear from Landsat imagery interpretation alone (i.e. areas of debris covered 
ice, areas obscured by clouds, and areas of extreme topography resulting in shadowed ice). 
Developing “local expert knowledge” through the acquisition of oblique photography will 
facilitate the interpretation of Landsat imagery in areas where glacier margins are uncertain.  

Acquisition of time-relevant aerial oblique photography should be scheduled within one year of 
the date of the satellite image and should be acquired in the August/September time frame. The 
acquisition of aerial oblique photography will be conducted by the PI and an assistant using the 
park and/or charter aircraft, see SOP #7. For over-flights to be fully effective, the draft 
interpretation of the glacier boundaries on satellite imagery must be finished, thus identifying 
those areas where fixed wing over-flights and acquisition of aerial oblique photography will 
facilitate the mapping of glacier boundaries. It is not always reasonable to acquire oblique 
imagery in the same year as the satellite imagery; however, the availability of time-relevant 
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aerial oblique photography will help build the “expert local knowledge” necessary to more 
accurately edit the glacier boundary shapefiles.  

Acquisition of aerial oblique photography in support of this protocol may require the acquisition 
of 100s if not 1000s of photographs. Organizing this amount of data is imperative. Refer to SOP 
#8, “Geotagging and Organizing Oblique Aerial Digital Photographs in a GIS” for guidance in 
geotagging oblique aerial digital photographs and naming and organizing large numbers of 
photographs in a Geographic Information System (GIS). 

Quality Assurance/Quality Control 
Quality assurance and control is imperative in creating high quality data that is comparable 
between glacier mapping efforts. First, all Landsat imagery is acquired in standard format (see 
SOP #1) from the USGS EROS Data Center where QA/QC is a critical element in Landsat 
product. Image processing, and classification techniques are standardized (see SOP #2 and #3) 
and techniques employed for manual editing are detailed in SOP #4. By paying careful attention 
to processes outlined in these SOPs, baseline datasets created in support of this protocol will be 
of high quality and value to the park, the scientific community and the public. 

Automated Data Harvest Development 
Other glacier inventory projects are developing automated techniques to separate individual 
glaciers from the glacier extent shapefiles using the best available DEMs and terrain analysis 
tools. Efforts are also underway to automate the capture of individual glacier characteristics 
(surface area, length, elevation, slope, aspect, AAR and ELA) (Paul et al. 2010). As automated 
techniques are developed, the SOPs in this protocol will be updated to take advantage of these 
time saving efforts. 

Future Plans  
As more is learned about the glaciers of the SWAN, NPS will encourage future glacier studies 
through partnerships with other agencies and universities. This listing is meant only to identify 
some of the possibilities. 

 Link glacier observations with past and future climate changes 
 Regional and/or glacier specific ice elevation surveys (LIDAR, laser altimetry transects 

and survey-grade GPS) 
 Link change in glacier change in the SWAN to mass balance studies at Wolverine Glacier 

(USGS Benchmark Glacier) 
 Mass balance studies (Riedel et al. 2008) 
 Repeat Photography (aerial and/or surface locations) 
 Monitor the equilibrium line altitude (ELA) with imagery (Khalsa et al. 2004) 
 Monitor accumulation area ratios (AAR) 
 Laser/LiDAR elevation transect surveys 
 Permanent snowfield inventory and monitoring 
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Data Management 

This protocol requires the handling of numerous Landsat images for three SWAN parks for the 
glacier mapping effort. Many data handling steps (image classification and editing) necessarily 
result in numerous preliminary sequential datasets before a final glacier extent shapefiles (and 
accompanying data) are produced for archiving and distribution. This process necessitates the 
efficient and consistent management of all folders and files created in the glacier extent mapping 
process. Specific folder and file naming procedures are provided with the SOPs.  

A time series of Landsat imagery is acquired and geospatial glacier boundary data (attributed 
point and polygon shapefiles) are created from data handling procedures identified in SOP #3, 
#4, #5 and #6. Fields in the final shapefile (PARK_YYYY_glaciers.shp and the 
PARK_YYYY_glacier_segments.shp) attribute tables are identified in Tables #5 and #6. Fully 
documented metadata will accompany all shapefiles created in support of glacier mapping. 

Table 5. List of attributes for PARK_YYYY_session.shp. 

Attribute Value Data Type Comments 

Rc_id 4 Integer Regional center id: 4 = Alaska 

Analy_time to be determined Integer Time (in days) expended to complete the mapping (in days) 

Data_src i.e. Landsat 7 Text Name of satellite data source 

Anlst_surn Giffen Text Surname of analyst 

Anlst_givn Bruce Text Given name(s) of analyst 
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Table 6. List of attributes for PARK_YYYY_glaciers_segments.shp. 

Attributes Value 
Data 
Type 

Comments 

glac_id GxxxxxxEyyyyyN Text The GLIMS glacier ID based on geographic centre of glacier with 
3dp. xxxxxx is longitude (000.000-359.999); yyyyy is latitude (00.000-
90.000) 
(Eg79.894W,77.146N=G259894E77146N) 

glac_name Glacier name Text Name of glacier (if one exists) 

width Width in meters Integer Representative width in meters 

length Length in meters Integer Representative length in meters 

area Area in km2 Integer Area of basin (i.e., glacier + rocks) in km2 

abarea Area in km2 Integer Size of ablation area 

snowln_elev Elevation in 
meters 

Integer Elevation of snowline in imagery (i.e., not equivalent to ELA) if 
available 

min_elev Elevation in 
meters 

Integer Elevation of the lowest part of the glacier, in meters above sea level. 

mean_elev Elevation in 
meters 

Integer Mean elevation of the glacier, in meters above sea level. 

max_elev Elevation in 
meters 

Integer Elevation of the highest part of the glacier, in meters above sea level. 

 
Data Handling 
All data handling, processing, analysis is done with desktop computer. The following is a basic 
recommended directory structure for data management using “D:” for an example drive letter: 

D:\SWAN\GLACIER_EXTENT\PARK\YYYY\ORIGINAL 

D:\SWAN\GLACIER_EXTENT\PARK\YYYY\WORKING 

D:\SWAN\GLACIER_EXTENT\PARK\YYYY\FINAL 

Where PARK will be the four letter acronym for the subject park and YYYY is the year of the 
Landsat imagery. The ORIGINAL folder will be the location for the original Landsat data. 

The WORKING folder will contain a folder named IMAGERY and serves as a workspace for 
imagery classification files and raster-to-polygon conversions shapefiles. The IMAGERY folder 
will also be used to store various color composite images (geoTIFF) created. 

The WORKING folder will also contain two personal geodatabases. The naming convention of 
the first personal geodatabase is (GLACIER_Extent_PARK_YYYY), where PARK is the four 
letter acronym for the park, YYYY is the year of the imagery. This will be the workspace where 
automated classification and manual editing of the polygon shapefiles takes place during an 
ArcGIS edit session. The naming convention for the shapefiles will contain the park name and 
date of the edit session (PARK_YYYYMMDD), where MM and DD stands for the numeric 
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representation of the month and day. Attribute tables for the accompanying shapefiles will also 
be populated with appropriate data. The naming convention for the final shapefile is 
GLACIER_EXTENT_PARK_YYYYMMDD. All final shapefiles depicting glacier extent and 
the satellite image (color composite geoTIFF) upon which the shapefile is based, will be moved 
to archival status.  

The WORKING folder will contain a second personal geodatabase. When the glacier extent file 
is complete, a duplicate shapefile will be copied to the (GLACIER_PARK_YYYY) personal 
geodatabase. This will be the workspace where individual glacier boundaries will be extracted 
from the final glacier extent shapefile and glaciological characteristics will be quantified in the 
accompanying attribute table. The naming convention for the shapefiles will contain the park 
name and date of the edit session (PARK_YYYYMMDD). Attribute tables describing the 
glaciological features of each individual glacier will be populated. The naming convention for 
the final shapefile is GLACIER_PARK_YYYYMMDD. All final shapefiles depicting individual 
glacier boundaries and the satellite image (color composite geoTIFF) upon which the shapefile is 
based, will be moved to archival status.  

The WORKING folder will also contain a folder named ANALYSIS where charts, tables, and 
graphs, text documents and supporting spreadsheets where the comparative analysis with 
previous mapping efforts are developed. 

The FINAL folder will be the depository of two personal geodatabases with the final shapefiles 
depicting glacier extent and the individual glacier boundaries and accompanying glaciological 
attribute files. The FINAL folder will also house the original Landsat data and the color 
composite image used to perform manual editing of the glacier extent shapefiles. Comparative 
analysis documentation will also be found in this folder. The naming convention for the original 
imagery will be that as delivered from the EROS Data Center. The naming convention for the 
color composite image is LANDSAT_COMPOSITE_B1B2B3_IMAGE_PARK_YYYYMMDD, 
where B1B2B3 are the corresponding Landsat bands used to produce the composite image.  

The contents of the WORKING folder (preliminary work products) will be removed upon 
completion of the mapping effort and archival of the final data products. 

SOP #9 will detail a suggested directory structure and file naming convention, though folder and 
file naming convention is also addressed in SOP #1, #2, #3 and #4 and #6. 

Draft or interim data will be backed up to the SWAN server daily. These files will include 
imagery, classified imagery and preliminary shapefiles, attribute tables, and metadata. 
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Final Data Products 
The PI is responsible for checking the accuracy of the glacier extent boundary and approving the 
final shapefiles for archiving. 

The archive data for each park will consist of: 

 A color composite satellite image for which the editing of the glacier extent is based. 

 A polygon shapefile(s) outlining the glacier mapping area. 

 A point shapefile(s) identifying the point location of individual glaciers. 

 A polygon shapefile consisting of glacier ice extent and nunataks. 

 A polygon shapefile consisting of individual glaciers with fully populated glaciological 
attributes. 

 A polygon shapefile(s) of the imagery footprint. 

 A spreadsheet presenting current glacier extent and regional glaciological statistics and a 
comparison analysis with previous mapping efforts. 

When shapefiles are final, they will be delivered to the SWAN Data Manager for archiving. The 
resultant glacier extent shapefiles will be available on the NPS Alaska Regional Office 
Permanent Data Set (PDS) and will be available for analysis with many other related data sets 
maintained by the Alaska-NPS. These files will be served on the ArcGIS Theme Manager 
maintained by the AKRO GIS Team. 

Data backups at the AKRO are managed by the AKRO Information Technology team as detailed 
in the SWAN Data Management Plan, Section 11.5.  

Metadata Procedures - Documentation 
Complete metadata records will be created for each shapefile in the archive data. Metadata will 
meet Federal Geographic Data Committee (FGDC) content standards for Digital Geospatial 
Metadata (CSDGM). See Appendix B for an example of a metadata file. 

Data Distribution 
There is a suite of four shapefiles (with FGDC compliant metadata) that will be produced to 
facilitate distribution for each glacier mapping effort to the GLIMS program. Final shapefiles 
will be provided to the GLIMS program for inclusion into their global cryosphere data archive. 
Table 7 includes a listing of the shapefiles to be provided to the GLIMS program. The names of 
the shapefiles track the name of the park and the date of the satellite imagery. SOP #6 describes 
the production of these shapefiles and their associated attributes.  
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Table 7. Listing of the files to be provided to the GLIMS program.  

Shapefile name Data Type Geometry 

PARK_YYYY_session.shp  Polygon Outline of the mapping region 

PARK_YYYY_glaciers.shp  Point  Point location of individual glaciers 

PARK_YYYY_segments.shp  Polygon Line segments, glacier outlines 

PARK_YYYY_images.shp  Polygon Polygon of image footprint 
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Analysis and Reporting  

This section describes the analysis techniques, the means of reporting and presenting the time 
series analysis data. These data and reporting products will be useful in understanding how 
glaciers in the SWAN are responding to observed trends of climate and climate change.  

Analysis  
This analysis will quantify glacier extent and identify areas and/or regions of rapid and/or 
anomalous change of glacier extent in the SWAN parks (Figure 1). The richness of the 
glaciological parameter geospatial dataset describing individual glacier characteristics (average 
length, width, slope, aspect, ELA and AAR) will be fully exploited to learn how glaciers are 
responding to climate change. Glacier response to climate change will be quantified and trends 
established at various geographic scales (park-wide, region-wide, watershed-wide, individual 
glacier).  

Data analysis will be comprehensive using decadally repeating datasets representing: 

 Park-wide glacier geospatial datasets identified in Table 5. 

 Regional climate data and local climate data (if available). 

How glaciers respond to observed trends in climate change may allow for a determination of: 

 What glaciological parameter(s) appear to exert greater influence on glacier response in 
light of observed changes in local/regional climate?  

 What glaciological parameter(s) appear to be less important to glacier response in light of 
observed changes in local/regional climate? 

 Are there certain interactions between glacier parameters that appear to impart more (or 
less) influence on glacier response in light of observed changes in local/regional climate?  

 What are the regional and/or park-wide observations and expected trends of glacier extent 
based on current climate trends/modeling? 

 How observations of climate change are being projected through observation in glacier 
response and extent across the SWAN parks? 

 How many total glaciers are in each SWAN park and which glaciers are growing, which 
are receding and which are on track to disappear? 

 How are the observed changes in glaciers linked to changes in ecosystem response and 
change in the SWAN? 

As the glacier mapping dataset builds over time, time-series analysis will strengthen observations 
of glacier change and identify reliable trends that may be useful for forecasting and prediction. 
Each successive glacier extent mapping effort increases the dataset’s comparative analysis 



 

34 

qualities. As would be expected, each successive data point adds reliability and credibility to 
analyses to be conducted. 

Reporting  
The subject of glaciers and glacier change is currently very much in the public eye. Reporting the 
results of work accomplished (methods, data analysis and results) through the implementation of 
this protocol will be of interest to glaciologists, climate change researchers, landscape ecologists, 
and/or park staff. Park managers, the informed public, and other generally interested parties will 
use data and interpretations of data to gain an accurate understanding of glacier conditions in the 
SWAN parks.  

It is the intent of the SWAN to share data and reporting products about glacier mapping efforts 
widely through formal talks, presentations and casual communications with park management 
and staff, outside scientists and the public. As indicated earlier, all glacier mapping data will be 
shared with the GLIMS program where it will be widely distributed to the public and global 
scientific community studying change of the global cryosphere. 

Report Format 
An example of a report describing the details of glacier mapping efforts is found in SOP #10, 
Appendix D; this draft report presents methods, data analysis and results of glacier extent 
mapping efforts. Glacier extent statistics and trends are displayed in table form and in 
“difference” maps created by overlaying glacier extent shapefiles representing different time 
periods.  

Reports will contain: 

 A description of the project. 

 Listing of the imagery used in the analysis (type of imagery, date of imagery, image 
identifier, projection, datum, pixel size, format, level of correction). 

 A description of imagery enhancements/processing used (band ratioing, band composite, 
thresholds). 

 Accuracy of the interpretation of glacier extents based in sensor resolution and imagery 
registration. 

 Overall glacier extent change and trends on a park-by-park basis. 

 Detailed statistics regarding individual glaciological characteristics by park, region and/or 
watershed. 

 A review of climate and climate trends and how glaciers of the SWAN are responding. 

 Listing of particularly active areas that are candidates for site-specific studies. 

 Maps, tables, charts and graphs. 
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Recommended Reporting Schedule 
There are three parks in the SWAN with significant glacier cover, KATM, KEFJ and LACL. The 
goal of this protocol is to repeat glacier mapping on a decadal scale for each of these parks. As 
new mapping is complete, reporting will be performed. 
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Personnel Requirements and Training 

Glacier extent mapping and analysis described in this protocol will be accomplished by a skilled 
physical scientist who is familiar with glaciers and glacier processes. It is intended that this work 
be accomplished with NPS staff. Personnel performing tasks detailed in this protocol should 
receive up to date training with ESRI ArcGIS and ArcCatalog and ITT ENVI software. Key 
tasks and associated personnel are outlined in Table 8. Personnel experience and qualifications 
are outlined in Table 9. 

Table 8. Tasks required for achieving the goal of glacier extent mapping.  

Task  Responsible Personnel  

Data Acquisition: Physical Scientist/Technician 

Review and order imagery 

ArcGIS: Physical Scientist/Technician or Remote 
Sensing Specialist 

Satellite imagery classification 

Convert classification to polygon shapefiles 

Extract individual glaciers from glacier extent shapefiles 

Populate attributes for individual glaciers 

Create color composites of satellite imagery 

Using color composite satellite imagery as a base, edit the 
polygon shapefiles in AcrGIS 

Creating and updating metadata 

Data Analysis and Interpretation: Physical Scientist/Technician or Remote 
Sensing Specialist 

Spatial analysis - determine park-wide/region-wide area of 
glacier extent 

Trend analysis (glacier area, terminus position) 

Glaciological geospatial dataset analysis 

Data summaries 

Reporting Physical Scientist 

Data Management: Data Manager, Physical Scientist/Technician 
and Remote Sensing Specialist 

Manage directory structure and file naming convention 

Move final shapefiles to archive 

Data backups 

Data distribution 

Protocol Revisions Physical Scientist 
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Table 9. Personnel required for achieving the goal of glacier extent mapping.  

Personnel Qualifications/Experience 

Data Manager Experience with data stewardship and developing applications for data 
analysis 

Physical Scientist/Technician  Experience with ArcGIS: 

Automated classification techniques 

Conversion to polygon shapefiles 

Creation of color composite geoTIFFs 

Experience in remote sensing and manual interpretation of satellite 
imagery and derived products in glacierized regions 

Complete comparative analysis and develop reports, maps, posters to 
convey finding to management, staff, scientific community and the public 

GIS Specialist/ 
Physical Scientist/Technician 

Experience with ArcGIS: 

Geodatabases 

Feature datasets 

Feature classes 

Editing 

Various data types (raster, line and polygon) 

Map projections 

Preparation of interpretive maps 

Experience in remote sensing and manual interpretation of glacier features 
using satellite imagery and other higher resolution imagery 

Prepare comparative analysis and summary spreadsheets 
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Operational Requirements 

Workload and Data Acquisition 
Workload associated with this protocol are on a reoccurring decadal cycle, but is dependent upon 
availability of late-season, cloud-free imagery. It is not realistic to think that cloud-free, late-
season satellite imagery for all the SWAN parks will available in the year 2010, 2020, 2030 and 
so on. With this in mind, the search for acceptable imagery for a park should begin eight years 
after the last glacier mapping analysis was completed and continue until acceptable late-season 
cloud-free imagery is acquired. Due to the fact that the next generation Landsat mission launch is 
scheduled for 2012, it is recommended that imagery acquisition in support of this protocol not 
occur until the new Landsat satellite data is available, likely 2013. 

The workload associated with image preparation, automated classification and manual editing of 
glacier boundaries and analysis will be approximately three work-months per park. Preparation 
of reports and accompanying graphics will require another month for a total of .33 FTE. This 
will be a reoccurring workload approximately every ten years for each of the three glacierized 
SWAN parks (KATM, KEFJ and LACL). The work tasks will be shared among the physical 
scientist, GIS specialist and physical science technician. 

Field Investigation 
The accuracy and interpretation of glacier boundaries from imagery will be enhanced by field 
investigations where debris cover, shadows and/or clouds obscure glacier ice. With this in mind, 
following the year of imagery acquisition, it is anticipated that approximately one week of fixed 
wing over-flights be conducted to gain time-relevant local expert knowledge of identified areas 
within the SWAN parks where imagery interpretation is uncertain. See SOP #7 and #8 for flight 
planning and aerial oblique image handling and archiving. 

Software 
Currently there are four primary software packages which will be required to meet the goals of 
this protocol.  

 Standard internet browser for evaluating and ordering satellite imagery from the EROS 
Data Center website 

 Satellite image processing software package: ENVI is the current package used by the 
SWAN 

 Geographic Information System software package: ArcGIS is the current package used 
by the NPS 

 Microsoft Office (word processing, spreadsheet preparation, presentations preparation) 

Hardware 
The hardware requirements include a personal computer with a minimum of 2.0 GHZ processor 
and 2 GB or greater of memory - these are minimum requirements. To achieve maximum 
performance in processing and manipulation of imagery, more powerful processors and memory 
are preferred. A minimum hard drive capacity of 1 Tb is recommended for imagery processing.  
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Procedures for Revising this Protocol 
There will certainly be advances in satellite technologies and advancements in image 
classification methodologies through the years and this protocol will be updated to take 
advantage of future advancements satellite imagery and classification techniques. Careful 
documentation of changes to the protocol, and a library of previous protocol versions are 
essential for maintaining consistency in within the program. SOP #11 identifies the steps 
necessary for changing this protocol. Each SOP contains a revision history log that should be 
filled out when a SOP is revised. The new version of the SOP and/or protocol narrative should 
then be archived in the SWAN protocol library under the appropriate folder. 
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Standard Operating Procedure (SOP) #1 
Data Search - Landsat Imagery 

Version 1.0 
Change History 

Version numbers will be incremented by a whole number (e.g. Version 1.3 to Version 2.0) when 
a change is made that significantly affects requirements or procedures. Version numbers will be 
incremented by decimals (e.g. Version 1.6 to Version 1.7) when there are minor modifications 
that do not affect requirements or procedures.  

The following revisions have occurred to this plan since January 2011. 

Version # Date Revised by Changes Justification 

     

     

     

     

     

     

     

 

This Standard Operating Procedure describes the procedures for searching the USGS National 
Center for Earth Resources Observation & Science (EROS) EarthExplorer website for Landsat 
images in support of the Glacier Monitoring protocol for the Southwest Alaska Network 
(SWAN).  
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Overview 

Cloud-free Landsat imagery will be acquired on a decadal scale for glacierized regions of the 
SWAN. This is the primary dataset used to map glacier extent across the SWAN. A comparative 
analysis with previous mapping efforts will document change and trends in glacier ice cover in 
the SWAN parks. The seasonality of the Landsat imagery is critical. Imagery must be acquired 
late in the ablation season (mid-August to late-September) to maximize seasonal snow melt but 
also before the first winter snows appear across the landscape. Typically, sky conditions in the 
SWAN region tend to be cloudier in August and September; that combined with a 16 day 
repeating orbit of Landsat, it will not be uncommon to have to wait several years to acquire 
acceptable late-season, cloud-free imagery. The Landsat data will be archived at the NPS - 
Alaska Regional Office.  
 
Landsat 7 ETM+ satellite had a hardware failure in May 2003 and is no longer operating as 
designed. The older Landsat 5 satellite continues operate as designed. The next generation 
Landsat vehicle (Landsat Data Continuity Mission) is scheduled for launch in 2011. This mission 
is designed to continue the acquisition, archival, and distribution of multi-spectral imagery 
affording global, synoptic, and repetitive coverage of the Earth's land surfaces at a scale where 
natural and human-induced changes can be detected, differentiated, characterized, and monitored 
over time. When the new Landsat satellite data becomes available, this SOP will be updated. But 
until then, any Landsat data acquired post May 2003 in support of this protocol must be Landsat 
5 data. 
 

Landsat Data Source 

EROS Data Center is the depository and archival facility for all Landsat data acquired over the 
USA. Information about the Landsat program and products are found on the web at: 
http://landsat.usgs.gov/products_productinformation.php 
 
Current updates about the Landsat mission and data can be found at:  
http://landsat.usgs.gov/ 
 
EROS Data Center 
The Earth Resources Observation Systems (EROS) Data Center (EDC) is a data management, 
systems development, and research field center for the U.S. Geological Survey's (USGS) 
National Mapping Division. The EDC opened in the early 1970's with a handful of employees 
and the largest mainframe computer in the State of South Dakota. Today the EDC has 
approximately 600 government and contractor employees, including employees at its Alaska 
Field Office in Anchorage, Alaska, and employees at the NASA Ames Research Center in 
Moffett Field, California. And now the EDC houses one of the largest computer complexes in 
the Department of the Interior. 
 
Currently, the EROS Data Center provides all Landsat imagery free of charge to all users of the 
data. As significant changes occur to the EROS web site, this protocol will be updated. 
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EROS Data Center - Landsat Data 

To order Landsat data visit: 
http://edcsns17.cr.usgs.gov/EarthExplorer/ 
 
Instructions to navigate and order imagery from the EROS web site are available by selecting a 
“Help” button on the EROS web page. 
 
Below is a step-by-step procedure for searching and ordering imagery from EROS. To order or 
download data from the EROS website, you will need to “Sign in” if you are a registered user. If 
not, it is easy to register, creating your own username and password. 
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 Day Night – select “Day” 
 Cloud Cover – select “Less than 60%” 
 Select “OK” 

 
Based on Landsat 5 flight path and swath width, the following is a tally of the minimum number 
of Landsat scenes required to cover the glacier bearing parks in the SWAN: 

 KEFJ – 1 scene (path 69, row 18; path 69, row 19), 
 LACL – 3 scenes (path 72 row 17, path 71, row 18, path 71, row 17), 
 KATM – 1 scene (path 71, row 19). 

 
Enter your search criteria 
In this window of the webpage, you can identify the search dates (to and from), geographic 
location and you can limit the number of results returned in the search. 
 
Search Dates (From and to in mm/dd/yyyy format). Mid-August through September imagery 
should be identified in the search. Check the box “Search these months only” and your search 
becomes a seasonal search over the span of years identified. This eliminates all imagery outside 
the August-September time frame. 
 
The next step is to toggle in the upper left of the map image to pan and zoom to the region of 
interest. To move the image around, click and drag. Once your region of interest is displayed, 
click with your mouse at the northeast corner of the region of interest and click again at the 
southwest corner of the region of interest. This defines the geographic limits of the search area. 
The glacierized region of LACL is used in the example. 
 
The “Number of results” is the last item to fill out in this window. Limit the search to 100. This 
ensures that all available results will be identified.  
 
The following example shows the EROS website with search criteria appropriate for Landsat 5 
data from 1985 through 2009, seasonally for August 15 through September 30 only, returning 
100 results. 
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Standard Operating Procedure (SOP) #2 
Landsat Image Analysis in a GIS – Part 1 

Version 1.0 
Change History 

Version numbers will be incremented by a whole number (e.g. Version 1.3 to Version 2.0) when 
a change is made that significantly affects requirements or procedures. Version numbers will be 
incremented by decimals (e.g. Version 1.6 to Version 1.7) when there are minor modifications 
that do not affect requirements or procedures.  

The following revisions have occurred to this plan since January 2011. 

Version # Date Revised by Changes Justification 

     

     

     

     

     

     

     

 

This Standard Operating Procedure describes the procedures to perform simple band math (band 
ratio techniques) and determine threshold values used to automatically classify Landsat imagery 
for snow and glaciers in support of the Glacier Monitoring protocol in Southwest Alaska 
Network (SWAN) parks.  
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Overview 

This Standard Operating Procedure explains the steps to take in initiating glacier ice mapping 
using Landsat satellite imagery. Simple band math techniques are used to manipulate the Landsat 
data, which in-turn allows for the automated classification of snow and glacier ice pixels from all 
other pixels in the Landsat image. Band math technique and threshold values are evaluated using 
ArcGIS software.  
 
Attempts over the years to develop an automated classification technique to accurately define 
glacier ice extent have not proved entirely successful. Debris covered ice is likely the single 
largest obstacle to success because the reflectance of debris covered ice is the same as the 
surrounding moraine material. Manual interpretation of the Landsat data will necessarily be a 
large part of the process in areas of debris cover.  
 
The goal of this SOP is to identify an appropriate band ratio technique and threshold value(s) that 
will be used to automate the classification of permanent snowfields and glacier ice as much as 
possible and remove as much of the human interpretation component as possible from the 
mapping effort. Not only will this enhance un-biased repeatability of this protocol, but it will 
significantly reduce the workload burden for the SWAN parks. Accuracy and repeatability is 
critical to this protocol and therefore relies on the following:  
 

 Landsat satellite imagery must meet the criteria specified in SOP #1 for cloud-free, late-
season imagery.  

 Imagery classification techniques to automate as much of the glacier extent mapping 
effort as possible (refer to SOP #3). 

 Manual editing techniques of the glacier extent boundary in a GIS (refer to SOP #4) 
primarily in areas of heavy debris cover.  

 
When careful attention is maintained throughout the mapping effort, accuracy and repeatability 
is substantially increased. 
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Procedures - Mapping Glacier Extent 

What is a Glacier? 
To help standardize glacier mapping, the definition of what falls into the category called “glacier 
extent” must be clearly defined. The following is from the GLIMS definition of a glacier and is 
used for this protocol (Raup and Khalsa 2010). 
 
A glacier or perennial snow mass consists of a body of ice and snow that is observed at the end 
of the melt season. This includes, at a minimum, all tributaries and connected feeders that 
contribute ice to the main glacier, plus all debris covered parts of it. Excluded is all exposed 
ground, including nunataks.  

The following circumstances will be considered when mapping glacier boundaries: 

1. Bodies of ice above the bergschrund that are connected to the glacier shall be considered 
part of the glacier, because they contribute snow (through avalanches) and ice (through 
creep flow) to the glacier. 

2. A tributary in a glacier system that has historically been treated (and named) as a 
separate glacier should, within the GLIMS framework, be included as part of the glacier 
into which it flows. The name field for the glacier should be populated with all relevant 
names of tributaries. 

3. Any steep rock walls that avalanche snow onto a glacier but do not retain snow 
themselves are NOT included as part of the glacier. 

4. A stagnant ice mass still in contact with a glacier is part of the glacier, even if it supports 
an old growth forest. 

5. All debris covered parts of the glacier must be included.  

6. If no flow takes place between separate parts of a continuous ice mass, they should, in 
general, be treated as separate units, separated at the topographic divide. However, for 
practical purposes, such an ice mass may be analyzed as a unit at the analyst's 
discretion, if delineation of the flow divides is impossible or impractical. If the same 
system is analyzed in the same way later, it will have the same glacier ID, and can 
therefore be compared. If the system is analyzed in more detail later by breaking it into 
its component glaciers, those pieces will get new IDs (ID of system will be “parent ice 
mass” ID for each part), and future analyses of those pieces, if done in the same way, 
will be comparable. 

7. It is possible that an ice body that is detached from another may still contribute mass to 
the latter through ice avalanches, or it may no longer do so. It is practically impossible to 
tell which is the case from a single satellite image. Therefore, within GLIMS, adjacent 
but detached ice areas should, in general, be considered as different “glaciers”, 
regardless of whether they contribute mass to the main glacier through snow or ice 
avalanches. However, at the analyst's discretion, detached ice masses may be included as 
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parts of one glacier. This is similar to the situation described in 5 above. If the pieces are 
analyzed separately later, each piece should be given a new GLIMS ID, the old one being 
used as the “parent ice mass” ID for all the pieces.  

8. Regarding the lower parts of lateral snowfields, whose extent varies from year to year 
map only at the end of the ablation period, preferably in a year without snow outside of 
the glaciers, to exclude seasonal snow. Then map everything that is connected to the 
glacier. If snowfields are identifiable, they should be disconnected from the main glacier. 
For hydrological purposes they can be included in the GLIMS Glacier Database under a 
separate GLIMS glacier ID, but they must be marked as a snowfield. Lateral glacier 
outlines that might be hidden by seasonal snow or by avalanches should be labeled as 
preliminary, or even the entire glacier can be excluded. Ice avalanche cones below a 
glacier terminus (dry calving) are not a part of the glacier. 

Rock glaciers and heavily debris covered glaciers tend to look similar, but their geneses are 
different. GLIMS does not currently deal with the former, but does include the latter. 

Software Selection 
There are several satellite image processing software packages that can be used to view, analyze, 
enhance and process Landsat imagery data: ERDAS, ENVI and PCI are just a few. Recently, 
ESRI has incorporated image classification tools into their ArcGIS software package. Each of 
these software packages can perform the simple band math and threshold analyses required by 
this SOP. However, to simplify the protocol and reduce the software packages employed, the 
process will be presented here using ArcGIS.  
 

Landsat Imagery Processing and Analysis 

ArcGIS has many spatial analysis tools available for imagery analysis. A general overview of the 
tools used in support of this SOP is presented below.  
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Multi-spectral Classification Methods 
Several classification techniques using simple band math and the identification of appropriate 
threshold values can be used to classify Landsat imagery for permanent snow and glacier ice. 
The techniques are similar regardless of the specific band-math formula being used.  
 
Four simple band math techniques have been tested for glacier mapping: 
 

 NDSI ((TM2-TM5)/(TM2+TM5)) 
 NDVI ((TM3-TM5)/(TM3+TM5)) 
 TM3/TM5 
 TM2/TM5 

 
Where: 
 
NDSI is the Normalized Difference Snow Index,  
NDVI is the Normalized Difference Vegetation Index and  
TM2 refers to Landsat Thematic Mapper Band 2 and so forth. 

 
For the most part, each of these techniques (with appropriate threshold value(s)) produces good 
results for clean glacier boundaries. Each of these techniques is sensitive to the threshold 
value(s) applied and will produce varying results in areas of shadows and/or debris covered ice. 
A range of threshold values should be tested to identify the threshold value that best classifies the 
Landsat image for snow and glacier ice. These classification techniques are fast and accurate for 
clean glacier and snow boundaries, but require substantial manual editing for areas of debris 
covered boundaries.  
 
The best band math technique appears to be TM3/TM5 ratio, with appropriate threshold value(s). 
TM3/TM5 ratio appears to isolate snow and glacier ice pixels across the entire image better than 
other techniques, especially in shadow areas and areas of light debris cover. 
 
None of the techniques produce acceptable results in areas of heavy debris covered ice. These 
areas will require manual interpretation to correct the glacier margin. 
 
Time spent on the process of identifying the most effective threshold will result in an accurate 
automated mapping effort, while at the same time minimize the amount of manual editing 
required to complete the glacier mapping effort.  
 
Outlining the steps and procedures of band math and determining threshold value(s) using 
ArcGIS are presented below. The person performing these duties should be well versed in 
ArcGIS, as good results are based on a series of trial and error efforts until satisfactory results are 
achieved.  
 
Once the threshold value is identified, this information is then used to classify the Landsat data 
and produce shapefiles based on the classification (SOP #3). These shapefiles are then manually 
edited to correct areas of misclassification (SOP #4). 
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In the example above, ArcGIS was used to perform simple band math ratio of Landsat B3 
divided by B5 (B3/B5), and identify the threshold value(s) of >1.270 (for lower elevation areas) 
and >1.700 (for higher elevation areas) that are effective in mapping glacier margins. ArcGIS 
will be used to classify Landsat data for snow and glacier ice, shapefiles will be created and 
editing of the shapefiles completed in an ArcGIS work sessions as described in SOP#3 and #4. 
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Standard Operating Procedure (SOP) #3 
Landsat Image Analysis in a GIS – Part 2 

Version 1.0 
Change History 

Version numbers will be incremented by a whole number (e.g. Version 1.3 to Version 2.0) when 
a change is made that significantly affects requirements or procedures. Version numbers will be 
incremented by decimals (e.g. Version 1.6 to Version 1.7) when there are minor modifications 
that do not affect requirements or procedures.  

The following revisions have occurred to this plan since January 2011. 

Version # Date Revised by Changes Justification 

     

     

     

     

     

     

     

 

This Standard Operating Procedure describes the procedures process of classifying Landsat 
imagery for snow and glacier ice in support of the Glacier Monitoring protocol for the Southwest 
Alaska Network (SWAN). 
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Overview 

This Standard Operating Procedure describes the process of classifying Landsat imagery for 
snow and glacier ice. This is a process by which all pixels in the image representing snow/glacier 
ice are segregated from all other pixels in the Landsat image. The great majority of the glacier 
margins are captured through the classification of the Landsat imagery described in this SOP. 
The classified raster files are converted to polygon shapefiles. Polygons representing 
snow/glacier ice and nunataks are segregated and small isolated snow fields that aren’t connected 
to and/or associated with a glacier are eliminated. The steps outlined in this SOP are performed 
entirely in ArcCatalog and/or ArcGIS.  
 
The final polygon shapefiles created in this SOP will require significant manual editing using 
ArcGIS. Manual editing of the polygon shapefiles will be detailed in SOP #4 to more accurately 
capture glacier margins. Areas of misclassification are associated with: 
 

 debris covered glacier ice (typically terminus areas),  
 shadowed snow/glacier areas,  
 water bodies exhibiting higher concentrations of suspended solids (glacier flour), 
 clouds 

 
This SOP is not a comprehensive guide to using ArcGIS; a working knowledge of ArcGIS is 
necessary. 
 

Procedures - Mapping Glacier Extent using ArcGIS and 
ArcCatalog 

Mapping glacier extent requires several steps ranging from creating a color composite image to 
spatial analysis using simple math, conditional statements using threshold values, conversion of 
these results to shapefiles, manipulation of shapefiles to extract the most accurate representation 
of glacier margins and finishing up with manual editing of the shapefiles (as described in SOP 
#4).  
 
The procedures outlined here involve the creation of numerous folders and files. Care must be 
exercised in developing a rational folder and file naming structure/plan. SOP #9 (Data 
Management) presents a thorough description of the recommended folder structure and file 
naming convention.  
 
Step 1 Setup Folder and File Structure 
The basic folder and file structure is presented in SOP #1 and #2. The folder structure and 
naming convention, is further described here. The creation and naming of Personal Geodatabases 
and Feature Datasets are presented in SOP #9. Detailed file naming convention is presented 
throughout this SOP as appropriate. 
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Step 11 Cleaning Polygon Shapefiles - NonSnoIce 
Repeat the two commands outlined in Step 10, this time using the “NonSnoIce_1700_gt81225” 
polygon shapefile. 
 

 Feature-To-Line (management): Convert “NonSnoIce_1700_gt81225” 
polygon shapefile to a line shapefile and name the resultant file 
“NonSnoIce_1700_gt81225_Clean1a”.  

 
 Feature-To-Polygon (management): Convert 

“NonSnoIce_1700_gt81225_Clean1a” line shapefile to a polygon shapefile 
and name it “NonSnoIce_1700_gt81225_Clean1b”.  

 
Step 12 Edit Snow/Ice polygons 
Large lakes (e.g. Chakachamna Lake) may be classified as snow/ice polygons and/or connected 
to larger snow/ice polygons. If this is the case, these large polygon features (i.e. Chakachamna 
Lake) should be modified and deleted from the SnoIce shapefile at this point. Use the “cut 
polygon feature” found in the ArcGIS task bar and then delete the misclassified polygon. 
 
Step 13 Attribute Tables Management - SnoIce and NonSnoIce 
Add a field (Figure 3-11) to the attribute tables and calculate field values (Figure 3-12) for the 
polygon shapefiles created in Step 10 “SnoIce_1700_gt81225_Clean1b” (Figure 3-9) and Step 
11 “NonSnoIce_1700_gt81225_Clean1b”. 
 

 Add Field (management): Add a “field” called RASTER to each of the polygon 
shapefiles “SnoIce_1700_gt81225_Clean1b” and 
“NonSnoIce_1700_gt81225_Clean1b” 
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Standard Operating Procedure (SOP) #4 
Glacier Boundary Editing - ArcGIS GIS 

Version 1.0 
Change History 

Version numbers will be incremented by a whole number (e.g. Version 1.3 to Version 2.0) when 
a change is made that significantly affects requirements or procedures. Version numbers will be 
incremented by decimals (e.g. Version 1.6 to Version 1.7) when there are minor modifications 
that do not affect requirements or procedures.  

The following revisions have occurred to this plan since January 2011 

Version # Date Revised by Changes Justification 

     

     

     

     

     

     

     

 

This Standard Operating Procedure describes the process of editing automated classifications of 
glacier extent using ArcGIS and ArcCatalog software supplemented with high resolution oblique 
aerial photography (if available) in support of the Glacier Monitoring protocol for the Southwest 
Alaska Network (SWAN). 
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Overview 

This Standard Operating Procedure editing automated classifications of glacier extent using 
ArcGIS and ArcCatalog software supplemented with high resolution oblique aerial photography 
(if available). This SOP is not a comprehensive guide to ArcGIS or ArcCatalog; a working 
knowledge of this software is necessary. 
 
This SOP is an exercise in editing polygon shapefiles in GIS. Raster classifications were created 
and converted to polygon shapefiles via several processing steps as outlined in SOP #3. These 
shapefile accurately capture snow and glacier boundaries in all areas except in areas debris 
covered termini and these are the areas where glacier boundaries will be edited using the 
techniques outlined in this SOP.  
 
A true-color composite satellite image (Landsat bands 5, 4, and 2) was created in SOP #2 using 
the same Landsat scene data from which the glacier extent classification is based. The polygon 
shapefiles and color-composite satellite image will be loaded into ArcGIS where the shapefiles 
will be modified to correct areas of miss-classification. 
 
Editing the glacier extent polygon shapefiles will be accomplished with the aid of expert 
knowledge of the region’s glaciology and high resolution oblique aerial photography (if 
available). The accuracy and repeatability of this editing is substantially increased if careful 
attention is maintained throughout the mapping and editing effort, especially in areas of debris 
covered ice. 
 

Editing Glacier Extent Boundaries - Overview 

The polygon shapefiles created from the raster classification (from SOP #3) will be edited in 
ArcGIS to correct for areas of miss-classification. In order to create and maintain as much 
consistency in this glacier extent mapping effort, an understanding of what qualifies as a glacier 
must be defined.  
 
Delineating the boundary where glacier ice contacts ground is not as simple as it may first 
appear. As the interpreter zooms in to an area of interest, the pixels representing the contact will 
trend from white (ice) to black (ground), and in many circumstances, a transition zone of grey 
pixels between. The spectral reflectance of the pixels represents surface conditions that contain 
varying proportions of ice, debris on the ice and ground. Mapping the glacier boundary in these 
situations is left up to the judgment of the image interpreter.  
 
To help standardize glacier mapping, the definition of what falls into the category called “glacier 
extent” must be defined. This may seem simple, but it is more complicated than first appears. 
With this in mind, the following is from the GLIMS definition of a glacier to better define a 
glacier for this protocol (Raup and Khalsa 2010). 
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A glacier or perennial snow mass consists of a body of ice and snow that is observed at the end 
of the melt season. This includes, at a minimum, all tributaries and connected feeders that 
contribute ice to the main glacier, plus all debris covered parts of it. Excluded is all exposed 
ground, including nunataks.  

The following circumstances will be considered when mapping glacier boundaries. 

1. Bodies of ice above the bergschrund that are connected to the glacier shall be considered 
part of the glacier, because they contribute snow (through avalanches) and ice (through 
creep flow) to the glacier. 

2. A tributary in a glacier system that has historically been treated (and named) as a 
separate glacier should, within the GLIMS framework, be included as part of the glacier 
into which it flows. The name field for the glacier should be populated with all relevant 
names of tributaries. 

3. Any steep rock walls that avalanche snow onto a glacier but do not retain snow 
themselves are NOT included as part of the glacier. 

4. A stagnant ice mass still in contact with a glacier is part of the glacier, even if it supports 
an old growth forest. 

5. All debris covered parts of the glacier must be included.  

6. If no flow takes place between separate parts of a continuous ice mass, they should, in 
general, be treated as separate units, separated at the topographic divide. However, for 
practical purposes, such an ice mass may be analyzed as a unit at the analyst's 
discretion, if delineation of the flow divides is impossible or impractical. If the same 
system is analyzed in the same way later, it will have the same glacier ID, and can 
therefore be compared. If the system is analyzed in more detail later by breaking it into 
its component glaciers, those pieces will get new IDs (ID of system will be “parent ice 
mass” ID for each part), and future analyses of those pieces, if done in the same way, 
will be comparable. 

7. It is possible that an ice body that is detached from another may still contribute mass to 
the latter through ice avalanches, or it may no longer do so. It is practically impossible to 
tell which is the case from a single satellite image. Therefore, within GLIMS, adjacent 
but detached ice areas should, in general, be considered as different “glaciers”, 
regardless of whether they contribute mass to the main glacier through snow or ice 
avalanches. However, at the analyst's discretion, detached ice masses may be included as 
parts of one glacier. This is similar to the situation described in 5 above. If the pieces are 
analyzed separately later, each piece should be given a new GLIMS ID, the old one being 
used as the “parent ice mass” ID for all the pieces.  

8. Regarding the lower parts of lateral snowfields, whose extent varies from year to year 
map only at the end of the ablation period, preferably in a year without snow outside of 
the glaciers, to exclude seasonal snow. Then map everything that is connected to the 
glacier. If snowfields are identifiable, they should be disconnected from the main glacier. 
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For hydrological purposes they can be included in the GLIMS Glacier Database under a 
separate GLIMS glacier ID, but they must be marked as a snowfield. Lateral glacier 
outlines that might be hidden by seasonal snow or by avalanches should be labeled as 
preliminary, or even the entire glacier can be excluded. Ice avalanche cones below a 
glacier terminus (dry calving) are not a part of the glacier. 

9. Rock glaciers and heavily debris covered glaciers tend to look similar, but their geneses 
are different. GLIMS does not currently deal with the former, but does include the latter 

ArcGIS/ArcCatalog – Editing Glacier and Nunatak Boundaries 

ArcGIS/ArcCatalog – Folder and File Naming Convention and Data Handling 
Folder structure and naming convention, the creation and naming of Personal Geodatabases and 
Feature Datasets are presented in SOP#9. Detailed file naming convention is presented 
throughout this SOP as appropriate. 
 
The first step will be to set up a folder and file naming system as identified in SOP #9 and 
already initiated in SOP #3. Within the “PARK” folder, a Personal Geodatabase 
“PARK_YYYYMMDD” was created in SOP #3. Within the Personal Geodatabase, create a new 
Feature Dataset and name it “Editing_ArcGIS_1270,” “Editing_ArcGIS_1700” and 
“Editing_Union_1270_1700.” This is where all the editing of the polygon shapefiles created in 
SOP #3 will occur (Figure 1). 
 
The Datum and Projection of the Feature Datasets created will be equivalent to that of the 
Landsat data being processed. As indicated in SOP #1, Landsat imagery is currently delivered 
from EROS Data Center in WGS84, UTM zone 5 or 6, for the SWAN parks. 
 
Frequent file saving during this process is critically important. It will save time in the long run. 
Also be sure to backup you work files to a separate server. These procedures are outlined in SOP 
#9. 
 
Copy Polygon Shapefiles into Editing_ArcGIS_XXXX Folder 
The final polygon shapefiles that were created in SOP #3 are copied to the 
“Editing_ArcGIS_1270” and “Editing_ArcGIS_1700” and “Editing_Union_1270_1700” feature 
datasets. Rename these files using the following format: 
 
“Processing_1700”     “Editing_ArcGIS_1700”  
SnoIce_1700_gt81225_Clean1e   SnowIce_1700_Original 
NonSnoIce_1700_gt81225_Clean1e   Nunataks_1700_Original 
NunBoundSnoIce_1700_gt81225_Clean1f  NunatakBound_SnowIce_1700_Original 
 
“Processing_1270”     “Editing_ArcGIS_1270”  
SnoIce_1270_gt81225_Clean1e   SnowIce_1270_Original 
NonSnoIce_1270_gt81225_Clean1e   Nunataks_1270_Original 
NunBoundSnoIce_1270_gt81225_Clean1f  NunatakBound_SnowIce_1270_Original 
 
 “Processing_Union_1270_1700”   “Editing_Union_1270_1700”  
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For this step in the boundary modification process, there are essentially two classes of glaciers: 
 

 Individual debris covered glacier termini 
 Coalescing debris covered glacier termini (two or more coalescing glaciers) 

 
Editing Glacier Boundaries - Individual Debris Covered Glacier Termini 
For individual debris covered glaciers, this step is a simple editing task in ArcGIS. Some of the 
editing features that will be important are: 
 

 Create Tasks 
 Modify Tasks 
 Snapping  

 
In areas of coalescing debris covered glaciers, the process becomes more complicated, requiring 
several additional steps be accomplished to facilitate the editing process. This process will be 
described in the next section of this SOP. 
 
Start with the polygon shapefiles that have been cleaned of all polygons representing 
misclassification/over classification (“SnoIce_1700_1270_gt81225_Union_gt_10acres_XX” and 
“NonSnoIce_1700_gt81225_XX”). Make a copy of these shapefiles prior to conducting the 
following steps in the editing process and name the file appropriately (next in the numbering 
sequence). This ensures that you can step back to the latest version shapefile if the work becomes 
corrupt.  
 
NOTE: At this stage, the “SnoIce_1700_1270_gt81225_Union_gt_10acres_XX” is the best 
representation of clean glacier ice boundaries created in the process.  
 
The following process/example will be presented using the latest version of the 
“SnoIce_1700_1270_gt81225_Union_gt_10acres_XX” shapefile. This editing will also 
necessarily create some new polygons representing nunataks and thus these new nunatak 
polygons will be added to the most recent nunatak shapefile. 
 
ArcGIS/ArcCatalog Commands 

 Feature To Line (management): Convert the 
“SnoIce_1700_1270_gt81225_Union_gt_10acres_XX” shapefile to a line shapefile and 
name the file appropriately (next in the file naming sequence) (Figure 4-8). 
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 Merge (management): “SnoIce_1700_1270_gt81225_Union_gt_10acres_XX” and 
“NunBoundSnoIce_1700_gt81225_XX” = “SnoIce_1700_1270_ Union_ 
YYYYMMDD_XX” 

 
Now create the near final shapefiles for nunataks. This is a simple copy and naming procedure in 
ArcCatalog. This final shapefile is created from the last file in the numerical sequence for of the 
nunatak shapefiles below: 
  

 “NonSnoIce_1700_gt81225_XX”: Copy and name the file:  
  “NonSnoIce_1700_ YYYYMMDD_XX” 
 
The next step is to add a “field” called “ICE” to the attribute tables of the last two shapefiles 
using the command “Add Field.” Next, calculate the “ICE” field using the “Calculate Field” for 
ICE equal to “1” (glacier features) or “0” (nunataks/barren ground features) in the final two 
shapefiles. 
 
The final step is to “Merge” the latest “SnoIce_1700_1270_ Union_ YYYYMMDD_XX” and 
“NonSnoIce_1700_ YYYYMMDD_XX” into one shapefile representing the park-wide glacier 
extent (Figure 4-28). Name the shapefile: PARK_GlacierExtent_YYYYMMDD_FinalXX1 
 
Where: 
 

 PARK is the park acronym 
 GlacierExtent is self explanatory 
 YYYYMMDD is the year, month and day that the glacier extent mapping is based 
 Final is the version and 
 XX are the initials of the author and 
 1 is the version. 
 

Folder and file structure is shown in Figures 4-29a and 29b. 
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Standard Operating Procedure (SOP) #5 
Individual Glacier Boundary Extractions in ArcGIS 

Version 1.0 
Change History 

Version numbers will be incremented by a whole number (e.g. Version 1.3 to Version 2.0) when 
a change is made that significantly affects requirements or procedures. Version numbers will be 
incremented by decimals (e.g. Version 1.6 to Version 1.7) when there are minor modifications 
that do not affect requirements or procedures.  

The following revisions have occurred to this plan since January 2011. 

Version # Date Revised by Changes Justification 

     

     

     

     

     

     

     

 

This Standard Operating Procedure describes the process of extracting individual glacier 
boundaries from the Glacier Extent shapefile (that was created following the methods outlined in 
SOP #4) in areas where two or more glaciers share the same accumulation zone. The resulting 
glacier shapefile will contain all individual glaciers within a SWAN park unit, which in 
aggregate is equivalent to the Glacier Extent shapefile in total glacier area. This SOP supports 
the Glacier Monitoring protocol for the Southwest Alaska Network. 



 

154 

Overview 

The objectives of this SOP are to identify the boundaries of all individual glaciers on a park-wide 
basis and to define hydrologic basins for each glacier. This SOP presents an outline of the GIS 
procedures that are used to accomplish theses goals. There is currently much work being 
dedicated to this field of study and there is an effort underway to automate this procedure. When 
completed, these automated procedures will be adopted by this protocol. This will significantly 
reduce the required staff time necessary to complete the work requirement of this SOP.  

Individual Glacier Extraction 

Creating Watershed Boundaries 
A glacier extent shapefile was created using the methods outlined in SOP #4. This shapefile 
contains many individual glaciers but also contains ice masses that are composed of two or more 
glaciers that flow from the same accumulation zone – these ice masses must be separated into 
their individual glacier components based on hydrologic basin analysis. The resulting shapefile 
produced from the guidance in this SOP will be a glacier shapefile that is composed of individual 
glaciers that when looked at in aggregate is equivalent to the area of the glacier extent shapefile 
created in SOP #4. 

To accomplish this task, a watershed analysis will be performed using the best available digital 
elevation model (DEM). The purpose is to identify the ice divides for glacier masses where two 
or more glaciers originate from the same accumulation zone. The following steps guide the 
delineation of watersheds using ArcGIS. 

Directory Structure 
Use Arc Catalog to create a folder in the base PARK folder and name it 
PARK_XXXX_DEM_YYYY, where: 
 

 PARK is the four letter acronym for the NPS park unit. 
 XXXX variable in length and described the type of DEM (NED, LIDAR, ASTER, 

IKONOS). 
 DEM identifies the file as a digital elevation file. 
 YYYY represents the year of the DEM data. 

 
Example: C:\LACL\PARK_XXXX_DEM_YYYY\ 

 
Place a copy of the best available DEM into the PARK_XXXX_DEM_YYYY folder for the 
subject study area. Be sure the DEM is of the same datum and projection as the glacier extent 
shapefile that was created in SOP #4 (WGS-84 UTM Zone 5 or 6). 
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Also create a Personal Geodatabase within the PARK_XXXX_DEM_YYYY folder and name it 
PARK_WATERSHED_YYYY, where: 
 

 PARK is the four letter acronym for the NPS park unit 
 WATERSHED identifies the file as a watershed file 
 YYYY represents the year of the DEM data was created 

 
In the PARK_WATERSHED_YYYY Personal Geodatabase, create a Feature Dataset and name 
it PARK_ Glacier_YYYY, where: 

 
 PARK is the four letter acronym for the NPS park unit 
 YYYY is the year of the Landsat imagery for which the glacier mapping is based 
 Glacier is self explanatory 

 
Example: 
C:\LACL\PARK_XXXX_DEM_YYYY\PARK_WATERSHED_YYYY.mdb\PARK_Glacie
r_YYYY 

 
ArcGIS/ArcCatalog 
Load the following shapefiles and raster files into ArcGIS: 
 

 Color composite Landsat image of region of study 
 Glacier extent shapefile created in SOP #4 
 Topography maps of the project area 
 Best available DEM 

 
Complete the following: 
 

 Load the Spatial Analyst extension 
 Be sure the Spatial Analyst toolbar is visible 
 Verify that the geoprocessing environment is the same spatial reference system and cell 

size as the DEM layer.  
 Set the processing extents in the geoprocessng environment by using the glacier extent 

shapefile layer and zooming into an area that is slightly larger than the area of the glacier 
extent mapping. Set the raster processing extent to “same as display.” 

 



 

156 

Creating Watershed Boundaries 
The following steps describe the ArcGIS process utilized to create individual watersheds where 
two or more glaciers flow from the same accumulation zone. All raster files are to be saved to 
the PARK_XXXX_DEM_YYYY folder that was created above and all shapefiles created are to 
be saved to the PARK_WATERSHED_YYYY Personal Geodatabase created above. 
 
Create Flow Direction and Flow Accumulation layers from the DEM 

1. Run “Fill” tool: 
a. Input file: (the DEM of the study area - PARK_XXXX_DEM_YYYY). 
b. Output file: PARK_ Fill1: 

i. Where: PARK is the four letter acronym for the NPS park unit. 
ii. Fill1 identifies the file as and ArcGIS Fill file. 

 
2. Run “Flow Direction” tool: 

a. Input: PARK_ Fill1. 
b. Output: PARK_FlowDir1: 

i. Note: be sure the to check the box: “Force all edge cells to flow outward.”  
3. Run “Flow Accumulation” tool: 

a. Input: PARK_FlowDir1. 
b. Output: PARK_FlowAcc1. 

4. Use the Spatial Analyst raster calculator - determine the actual flow lines from the flow 
accumulation layer: 
a. Confirm that the PARK_FlowAcc1 layer is showing in the Spatial Analyst toolbar 

“layer” field. 
b. Use Raster Calculator to evaluate “FlowAcc1 > 750”. (Note the threshold value of 

750 is just a starting point). The resulting “Calculation” layer, a raster layer, shows 
the river courses. For accumulation zones that is a source area for two or more 
glaciers, confirm that a string of raster cells (flow line) is present for each individual 
glacier flowing from that accumulation zone. Using the Raster Calculator, adjust the 
number upward or downward as necessary. 

 
Create a Pour-Point point shapefile in the PARK_WATERSHED_YYYY Personal Geodatabase 

1. Name the pour-point point shapefile PARK_PourPointX: 
a. Where: X is the sequential numbering of pour point shapefiles if more than one pour 

point shape file is to be created, which is likely for a regional analysis. 
2. Be sure the shapefile’s coordinate system is the same as the DEM used in this analysis. 
3. Create a field in the attribute table of the PARK_PourPointX shapefile and name it 

BASIN (short integer, precision = 4). 
 

Identify pour points in the PARK_PourPointX shapefile 
1. Adjust the view of the data in ArcGIS: 
2. Put the PARK_PourPoint1 point shapefile on top of the map’s table of contents. 
3. Place the “Calculation” layer (created above that shows the flow lines) directly below the 

PARK_PourPoint1 shapefile. Adjust the transparency so you can see the layers below – 
start at 50%. 

4. Next, place the final glacier extent shapefile created in SOP #4 in the map’s table of 
contents. Adjust the transparency so you can see the layers below – start at 50%. 
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5. Next, place the topographic quadrangle in the map’s table of contents. 
6. The DEM and the color composite Landsat image should be the last two features in the 

map’s table of contents. 
 
It is suggested to begin this exercise in a particular area (say the northwest corner of the mapping 
area) and progress systematically across the entire mapping region of the glacier extent shapefile 
until all accumulation areas that produce two or more glaciers have been addressed as described 
below.  
 
With the “Calculation” layer in the background and the glacier extent shapefile and the 
topographic map layers as visual guides, zoom into an accumulation zone that is the source areas 
of two or more glaciers. Every glacier that flows from this accumulation zone should display a 
“flow line” from the “Calculation” layer. Zoom into a glacier terminus area and create a point in 
the PARK_PourPointX shapefile directly on a pixel that represents the flow line in the 
“Calculation” layer. This point should be located about 100 meters below the glacier terminus, 
but this may vary based on the situation, experimentation will be required. 
 
Many hydrologic basins that contain glaciers may have two or more flow lines because many 
glaciers are convex in shape and typically have a flow line on either side of the glacier. If this is 
the case, place a pour point on all flow lines that occur below the terminus of the glacier. 
As pour points are created, be sure to add BASIN values to the attribute table. Start with the 
number 1. Assign a basin number for each pour point created. All pour points associated with a 
single glacier (hydrologic basin) will be assigned the same basin number. For each hydrologic 
basin containing a glacier, assign a basin number to all pour points created. So, for the first 
hydrologic basin, assign BASIN number “1” to each pour point created, and incrementally 
increase the basin number as you move from basin to basin. 
 
Move systematically around the accumulation zone identifying pour points for each hydrologic 
basin being sure to sequentially attribute the BASIN field for each pour point in the attribute 
table. 
 
Progress through the glacier extent mapping region until all accumulation zones producing two 
or more glaciers have all their hydrologic basin pour points created and attributed. 
 
Note that BASIN values assigned to a hydrologic basin attribute table should be unique and not 
repeated.   
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Run “Watershed” Tool 

1. Input raster: PARK_FlowDir1 
2. Input Pour Point: PARK_PourPointX  

a. Note: Select BASIN as the Pour Point field. 
3. Output: PARK_WatershedX and place this raster file in the 

PARK_XXXX_DEM_YYYY folder. 
 

Note that only those watersheds that were defined by pour points (and unique BASIN attribute 
number) have values and each watershed basin has its own raster value. 
 
Create a polygon shapefile from the PARK_WatershedX raster file 

1. ArcGIS tool: Raster to Polygon. 
2. Output file: PARK_WatershedX, where X is sequential numbering beginning with the 

number 1.  Place the polygon shapefile in the PARK_WATERSHED_YYYY Feature 
Dataset created earlier. 

 
Create a polyline shapefile from the polygon shapefile 

1. ArcGIS tool: Feature to Polyline. 
2. Output file: PARK_WatershedX, where X is the next watershed file in the sequence. 

Place the polyline shapefile in the PARK_WATERSHED_YYYY Feature Dataset. 
 
Extracting Individual Glacier Boundaries 
The following steps describe the ArcGIS process utilized to identify individual glacier 
boundaries from accumulation zones that are source areas for two or more glaciers. All 
shapefiles created and modified are to be saved to the PARK_Glacier_YYYY Feature Dataset 
that resides in the base Personal Geodatabase that was created above. 
 
Necessary Files 
Place a copy of the final glacier extent shapefile created in SOP #4 into the 
PARK_Glacier_YYYY Feature Dataset created above.  Name this shapefile the next in the 
sequence: PARK_GlacierExtent_YYYYMMDD_FinalXX2, where: 

 
 PARK is the park acronym 
 GlacierExtent is self explanatory 
 YYYYMMDD is the year, month and day that the glacier extent mapping is based 
 Final is the version and 
 XX are the initials of the author and 
 2 is the version. 

 
Example: 
C:\LACL\PARK_XXXX_DEM_YYYY\PARK_WATERSHED_YYYY.mdb\PARK_Gl
acier_YYYY\ PARK_GlacierExtent_YYYYMMDD_FinalXX2 
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Place a copy of the latest PARK_WatershedX polyline shapefile into the PARK_Glacier_YYYY 
Feature Dataset created above, where X is the latest version of the watershed file in the sequence. 
 

Example:  
C:\LACL\LACL_20070828.mdb\PARK_Glacier_YYYY \ PARK_WatershedX 

 
ArcGIS/ArcCatalog 
Load the following shapefiles and raster files into ArcGIS: 
 

 Color composite Landsat image of region of study. 
 The PARK_GlacierExtent_YYYYMMDD_FinalXX2 that was just copied into the 

PARK_YYYY_Glaciers Feature Dataset. 
 PARK_WatershedX that was just copied into the PARK_Glacier_YYYY Feature 

Dataset. 
 Topography maps layers of the project area. 
 Best available DEM. 

 
Extracting Glacier Boundaries in ArcGIS 
At present, this is a tedious process whereby the ice divides that were created from the watershed 
analysis above are copied and pasted to each glacier emanating from an accumulation zone, one 
at a time. The process necessarily creates a shapefile for each glacier emanating from an 
accumulation zone. The final step in the process is to merge all the individual glacier shapefiles 
into one PARK_Glacier_YYYY shapefile. 
 
At this point in this protocol, the steps of this process will not be described in detail. It will 
suffice to identify the useful ArcGIS commands necessary to complete this task. 
 
ArcGIS commands that will be useful include: 
 

 Feature to Line 
 Feature to Polygon 
 Copying shapefiles and naming shapefiles 
 Merge 
 Editing Features including: 

o Create New Feature 
o Extend/Trim Feature 
o Modify Feature 
o Selecting a feature 
o Snapping Modes 

 
As mentioned above, for accumulation zones where from two or more glaciers are flowing. One 
shapefile will be created for each glacier. Care will need to be taken in the shapefile naming 
convention to keep thing straight as this process may take many days. 
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Individual glacier shapefiles will be created and edited in the PARK_Glacier_YYYY Feature 
Dataset that was created above. After all individual glacier boundaries have been extracted from 
the glacier extent shapefile, all individual glacier shapefiles will be merged into one shapefile. 
This file will contain all glacier ice represented by the Glacier Extent shapefile produced in SOP 
#4 with the only difference being that each individual glacier boundary is mapped. Continue to 
utilize the file naming convention for this file that was established above (e.g. 
PARK_GlacierExtent_YYYYMMDD_FinalXX2, where: 

 
 PARK is the park acronym 
 GlacierExtent is self explanatory 
 YYYYMMDD is the year, month and day that the glacier extent mapping is based 
 Final is the version and 
 XX are the initials of the author and 
 2 is the version. 

 
Example:  
C:\LACL\LACL_20070828.mdb\PARK_Glacier_YYYY\PARK_GlacierExtent_YYYY
MMDD_FinalXX2 

 
The next step is to define fields and populate fields in the latest glacier shapefile that was just 
created above (PARK_GlacierExtent_YYYYMMDD_FinalXX2 shapefile). This procedure will 
be described in SOP #6. 
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Standard Operating Procedure (SOP) #6 
Glaciological Characteristics – Attribute Table Population 
in ArcGIS 

Version 1.0 
Change History 

Version numbers will be incremented by a whole number (e.g. Version 1.3 to Version 2.0) when 
a change is made that significantly affects requirements or procedures. Version numbers will be 
incremented by decimals (e.g. Version 1.6 to Version 1.7) when there are minor modifications 
that do not affect requirements or procedures.  

The following revisions have occurred to this plan since January 2011. 

Version # Date Revised by Changes Justification 

     

     

     

     

     

     

     

 

This Standard Operating Procedure describes the process of populating the attribute table for the 
glacier extent shapefile. Fields in the attribute table are created and populated with glaciological 
parameters that quantify geometric characteristics of each individual glacier in the mapping area. 
This process is completed using ArcGIS and ArcCatalog. This SOP supports the Glacier 
Monitoring protocol for the Southwest Alaska Network. 
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Overview 

Every glacier is represented by a suite of glaciological characteristics that quantify the geometric 
characteristics that are unique to that glacier. In addition to assigning a unique identification 
number to each glacier, each glacier will have a suite of glaciological parameters that will 
quantify its geometric characteristics. The four shapefiles that are created are described in Table 
6-1. Each of the shapefile attributes as described in Tables 6-2 to 6-5. 

Shapefiles and Attributes 

There are four shapefiles that will be utilized in this SOP, three are newly created and one is 
copied from output generated in SOP #5. Tables 6-1 through 6-5 list the shapefiles and attributes 
for each shapefile: 

Table 6-1. List of shapefiles. 

Shapefile name Data Type Geometry 

PARK_glaciermappingregion_YYYYMMDD_XX#.shp  Polygon Outline of the mapping region 

PARK_glacier_id_YYYY_YYYYMMDD_XX#.shp  Point  Point location of glaciers 

PARK_glacier_segments_YYYY_YYYYMMDD_XX#.shp Polygon Glacier boundaries 

PARK_imageryfootprint_YYYY_YYYYMMDD_XX#.shp Polygon Polygon of image footprint 

 
Shapefile Descriptions 
 
PARK_glaciermappingregion_YYYYMMDD_XX#.shp  
A polygon shapefile outlining the glacier mapping region. 
 
PARK_glacier_id_YYYY_YYYYMMDD_XX#.shp  
A point shapefile with one unique point locator per glacier. This shapefile also contains 
glaciological characteristics of each glacier. 
 
PARK_glacier_segments_YYYY_YYYYMMDD_XX#.shp  
A polygon shapefile depicting all individual glacier boundaries on a park-wide basis. This file is 
a result of the automated classification techniques detailed in SOP #2 and #3 and the manual 
editing detailed in SOP #4, watershed delineation on SOP #5 and glaciological attribute 
population in SOP #6. 
 
PARK_imageryfootprint_YYYY_YYYYMMDD_XX#.shp  
A polygon shapefile depicting the footprint of the satellite imagery that was used in the glacier 
mapping effort. 
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File Naming - ArcGIS Files  
File names should follow the format: 
ParkCode_ShortDescription_YYYYMMDD_InitialsVersion, where:  
 

 ParkCode = Four-letter park or network code (e.g. ALAG, ANIA, KATM, KEFJ, LACL, 
SWAN). Can contain multiple four-letter park codes if necessary.  

 ShortDescription = A descriptive, but brief description of the data file. Concatenate with 
capital letters and no spaces.  

 YYYYMMDD = Date of most recent modification. Year (Y), Month (M), Day (D).  
 Initials = Two or three letter initials of person performing the edits and or final shapefile.  
 Version [1, 2, 3, …] = Should be a single whole number, 1, 2, 3,… that indicates 

subsequent versioning for a given set of initials.  
 

Example: PARK_glacierid_2007_YYYYMMDD_BG1.shp 
 
Shapefile Attributes 
 
Table 6-2. List of attributes for PARK_glaciermappingregion_YYYYMMDD_XX#.shp 

Attribute Value Data Type Comments 

Rc_id 4 Integer Regional center id: 4 = Alaska 

Analy_time to be determined Integer Time (in days) expended to complete the 
mapping (in days) 

Data_src i.e. Landsat 7 Text Name of satellite data source 

Anlst_surn Giffen Text Surname of analyst 

Anlst_givn Bruce Text Given name(s) of analyst 
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Table 6-3. List of attributes for PARK_glacier_id_YYYY_YYYYMMDD_XX#.shp 

Attributes Value 
Data 
Type 

Comments 

glac_id 
 

GxxxxxxEyyyyyN Text The GLIMS glacier ID based on geographic centre 
of glacier with 3dp. xxxxxx is longitude (000.000-
359.999); yyyyy is latitude (00.000-90.000) 
(Eg79.894W,77.146N=G259894E77146N) 

glac_name Glacier name Text Name of glacier (if one exists) 

width Width in meters Integer Representative width in meters 

length Length in meters Integer Representative length in meters 

area Area in km2 Integer Area of basin (i.e., glacier + rocks) in km2 

abarea Area in km2 Integer Size of ablation area 

snowln_elev Elevation in meters Integer Elevation of snowline in imagery (i.e., not 
equivalent to ELA) if available 

min_elev Elevation in meters Integer Elevation of the lowest part of the glacier, in 
meters above sea level. 

mean_elev Elevation in meters Integer Mean elevation of the glacier, in meters above sea 
level. 

max_elev Elevation in meters Integer Elevation of the highest part of the glacier, in 
meters above sea level. 

 
Table 6-4. List of attributes for PARK_glacier_segments_YYYY_YYYYMMDD_XX#.shp 

Attributes Value 
Data 
Type 

Comments 

line_type "glac_bound" (glacier boundary), "intrnl_rock" 
(internal rock outcrop, or nunatak), "snowline", 
"centerline" (center flowline of the glacier), 
debris_bound, intrnl_water. 

Text Description of the feature that the 
polygon encloses. Can be one of: 
glac_bound, centerline, snow_line, 
intrnl_rock, pro_lake, supra_lake, 
debris_cov 

glac_id GxxxxxxEyyyyyN Text The GLIMS glacier ID 

segment_type Measured – “m” or “a” Text "m" (measured) or "a" (arbitrary). 
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Table 6-5. List of attributes for PARK_imageryfootprint_YYYY_YYYYMMDD_XX#.shp 

Attributes Value 
Data 
Type 

Comments 

inst_id Landsat integer Instrument ID (valid IDs: ASTER=1, SPOT5=2, Landsat7=3, SPOT4=4, 
SPOT3=5, TM5=6, ERS-1 SAR=7, ERS-2 SAR=8, Ikonos1=9, 

inst_name Dependent  Text Instrument name (TM5, ETM+) 

orig_id Dependent Text Original ID of image (e.g. EROS Data Center granule ID) 

acq_time YYYYMMDD Text Time of image acquisition, in YYYYMMDD 

 

Creating Attribute Data 

This SOP presents an outline of the GIS procedures that are used to populate attributes 
describing characteristics of individual glaciers. There is currently much work being dedicated to 
this field of study and there is an effort underway to automate this procedure. When completed, 
these automated procedures will be adopted by this protocol. This will significantly reduce the 
required staff time necessary to complete the work requirement of this SOP. 

Necessary Files 
Create new shapefiles with the following file names: 

 PARK_glaciermappingregion_YYYYMMDD_XX#.shp 
 PARK_glacier_id_YYYY_YYYYMMDD_XX#.shp  
 PARK_imageryfootprint_YYYY_YYYYMMDD_XX#.shp 
  

Make a copy of the final shapefile created in SOP #5 
(PARK_GlacierExtent_YYYYMMDD_FinalXX2 shapefile) and name the copy 
PARK_glacier_segments_YYYY_YYYYMMDD_XX#.shp. 

Directory Structure 
Use ArcCatalog to create a Personal Geodatabase in the base PARK folder and name it: 
PARK_Glacier_YYYY, where: 
 

 PARK is the four letter acronym for the NPS park unit 
 Glacier is self explanatory 
 YYYY represents the year that the glacier mapping is based 

 
 Example: C:\LACL\PARK_Glacier_YYYY.mdb 
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In the PARK_Glacier_YYYY.mdb Personal Geodatabase, create a new Feature Dataset and 
name it: PARK_Glacier_YYYY, where: 
 

 PARK is the four letter acronym for the NPS park unit. 
 Glacier is self explanatory. 
 YYYY is the year of the Landsat imagery for which the glacier mapping is based. 

 
Example: C:\LACL\PARK_Glacier_YYYY.mdb\PARK_Glacier_YYYY 

 
Place a copy of copy of the final shapefile created in the preceding SOP 
(PARK_GlacierExtent_YYYYMMDD_FinalXX2 shapefile) into the PARK_Glacier_YYYY 
Feature Dataset and rename the shapefile: 
PARK_glacier_segments_YYYY_YYYYMMDD_XX#.shp. 

Create three new shapefiles in the PARK_Glacier_YYYY Feature Dataset. Be sure the new 
shapefiles are created in the same map datum and projection as the rest of the data (WGS-84 
UTM Zone 5 or 6). Refer to Table 6-1 which identifies the shapefiles as being point or polygon 
shapefiles. There should be five shapefiles in the PARK_Glacier_YYYY Feature Dataset: 

 PARK_glaciermappingregion_YYYYMMDD_XX#.shp,  
 PARK_glacier_id_YYYY_YYYYMMDD_XX#.shp,  
 PARK_imageryfootprint_YYYY_YYYYMMDD_XX#.shp 
 PARK_glacier_segments_YYYY_YYYYMMDD_XX#.shp 
 PARK_GlacierExtent_YYYYMMDD_FinalXX2.shp 

 
Attributing PARK_glaciermappingregion_YYYYMMDD_XX#.shp 
This is a polygon shapefile. Create the fields in the attribute table specified in Table 6-2 and 
begin the process of adding data to the attribute table. The attributes are: 

 Rc_id = 4 
 Analy_time = number of days expended to complete mapping 
 Data_src = Spacecraft name, i.e. Landsat TM5 
 Anlst_surn = Surname of analyst 
 Anlst_givn = Given name(s) of analyst 

 
Attributing PARK_glacier_id_YYYY_YYYYMMDD_XX#.shp 
This is a point shapefile. Load the following shapefiles and raster files into ArcGIS: 
 

 PARK_glacier_id_YYYY_YYYYMMDD_XX#.shp,  
 PARK_glacier_segments_YYYY_YYYYMMDD_XX#.shp, 
 Color composite Landsat image of region of study, 
 Best available DEM. 
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Attribute fields and descriptions follow: 
 
Attribute “glac_id” 
Place the PARK_glacier_id_YYYY_YYYYMMDD_XX#.shp at the top of the Table of 
Contents and start identifying central point locations for every glacier polygon represented in the 
PARK_glacier_segments_YYYY_YYYYMMDD_XX#.shp. The guidance for locating these 
point locations has been established by GLIMS (e.g. Raup and Khalsa 2010). The quickest way 
to locate a central point for all mapped glaciers is to use the “Feature to Point” tool in ArcGIS. It 
would be best to locate the ID point in the accumulation zone, on the approximate centerline. 
Review the results and edit the locations of the ID points as necessary.  
 
Once a satisfactory point shapefile has been produced that locates the ID points in an acceptable 
location, follow the following procedure to produce a GLIMS ID for each glacier polygon.  
Note: In order to conform to the GLIMS database guidelines make sure the projection of all open 
shapefiles (Glacier polygons and Point ID files) are projected to WGS-84 datum UTM Zone 5 or 
6) and location units are set to decimal degrees.  
 

 Create two new fields in the point file attribute table (e.g. LAT and LONG_) with data 
types float or double with 3 decimal places. Use the Calculate Geometry dialog box in 
these fields (right click on the field header to open this dialog box) to calculate y-location 
and x-location in decimal degrees from the latitude (LAT) and longitude (LONG_) 
respectively. 

 Create two new fields in the point file attribute table (e.g. GLIMS_E and GLIMS_N) with 
data type long integer.  

 Calculate GLIMS_E in the field calculator as: GLIMS_E = (360+([LONG_])) * 1000 
 Calculate GLIMS_N in the field calculator as: GLIMS_N= [Lat] * 1000 
 Create a new field in the point file attribute table (e.g. GLIMSID) with data type text, 

length 20. 
 Calculate glac_id in field calculator as: glac_id = "G" & [GLIMS_E] &"E" & 

[GLIMS_N] &"N" 
 
The preceding steps will populate the attribute glac_id for all individual glaciers mapped. 
 
After the glac_id has been calculated for each glacier polygon, clean up the attribute table by 
removing the following attributes: 
 

 LAT 
 LONG_ 
 GLIMS_E 
 GLIMS_N 

 
Attribute “glac_name” 
There are few glaciers that have formal names in the SWAN region, however, for those glaciers 
that have formal names, begin the process of adding glacier name data to the glac_name field in 
the attribute table. 
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Two fields remain to be calculated, abarea and snowln_elev. The snowln_elev attribute will 
require a combination of manual editing and automated classification of the parent satellite 
imagery to map the snowline boundary on the glaciers – the process of which is fully described 
in SOP #2, #3, and #4. The ability to accurately indentify this feature from late-season satellite 
imagery may vary from region to region and year to year. The imagery classification skills 
developed in SOP #2 can be utilized to help identify the snowline in an automated fashion. If the 
snowline can be identified, individual glaciers can then be divided into their respective ablation 
and accumulation zones and the snowln_elev can be determined. With the respective ablation 
and accumulation zones being identified, glaciological characteristics like the mean elevation for 
the accumulation and ablation zones, the ELA and AAR can be determined using the similar 
techniques as described above. 
 
This SOP will be updated as techniques for automatically deriving and populating attributes for 
these glaciological characteristics are developed and tested. 
 
Attributing PARK_glacier_segments_YYYY_YYYYMMDD_XX#.shp 
This is a polygon shapefile. Create attribute fields as specified in Table 4. 
 
Attribute fields and descriptions follow: 
 
Attribute “line_type” 
Attribute is a text string. Notice the attribute field titled ICE. It is populated with either a 1 
(designating ice) or a 0 (designating non ice feature). For the Line_type field populate the field 
as follows using the Field Calculator: 
 

 Open the Field Calculator for the line_type field 
 Select the advance box 
 In the Pre-Logic VBA Scrip Code box (Figure 6-4) type the following: 

 
If [ICE] =1 then 
x ="glac_bound" 
Else 
x = "internal_rock" 
End If 

 
And in the lower text box where it says “line_type =”, type: X 
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Standard Operating Procedure (SOP) #7 
Field Investigation 

Version 1.0 
Change History 

Version numbers will be incremented by a whole number (e.g. Version 1.3 to Version 2.0) when 
a change is made that significantly affects requirements or procedures. Version numbers will be 
incremented by decimals (e.g. Version 1.6 to Version 1.7) when there are minor modifications 
that do not affect requirements or procedures.  

The following revisions have occurred to this plan since January 2011 

Version # Date Revised by Changes Justification 

     

     

     

     

     

     

     

 

This Standard Operating Procedure describes how “local expert knowledge” of glaciers margins 
is acquired and/or enhanced in support of the Glacier Monitoring protocol for the Southwest 
Alaska Network (SWAN).  
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Overview 

This Standard Operating Procedure describes how “local expert knowledge” of glaciers margins 
is acquired and/or enhanced. It will be necessary to rely on or develop “local expert knowledge” 
in areas where the location of glacier margins is unclear from interpretation of Landsat imagery 
alone. Areas that will present challenges to the interpretation of Landsat imagery will be 
primarily those areas of debris covered ice, areas obscured by clouds, and areas of extreme 
topography resulting in shadowed ice. Acquisition of this aerial oblique photography will 
facilitate the interpretation of Landsat imagery in these challenging areas.  
 
After working through SOP #4, there should now a clear understanding of where developing 
“local expert knowledge” through the acquisition of oblique photography will facilitate the 
interpretation of Landsat imagery in areas where glacier margins are uncertain. Beyond 
identifying target areas, this SOP speaks to mission planning (flight routes, aircraft selection, 
time of year, weather requirements).  

Acquisition of aerial oblique photography in support of this SOP will necessarily require the 
acquisition of 100s if not 1000s of photographs. Organizing this amount of data is imperative. 
Refer to SOP #8, which explains the process for geotagging oblique aerial digital photographs 
and organizing large numbers of photographs in a Geographic Information System (GIS). 

 

Identification of Areas for Further Investigation 

The repeat cycle for this protocol is on a decadal scale with the next series of Landsat imagery to 
be acquired in 2010+. Presuming that good quality Landsat imagery (late-season, cloud-free) is 
available in the target year, interpretation of that imagery will occur during the following winter 
months. By the following spring, the interpretation will have identified those areas where the 
interpretation of the Landsat imagery is questionable. Areas that will be identified will include: 
 

 Debris cover glacier termini 
 Side moraine areas of large glaciers 
 Shadowed snow and ice 
 Clouds 

 
Prepare a map (1:250,000) with specific targets identified locating all features where aerial 
oblique photos should be acquired. Depending on the number of targets, it may be necessary to 
prioritize targets. 
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Developing a Flight Plan 

The map that identifies and prioritizes target areas will be used for navigation during a 
reconnaissance flight. Prioritized flight routes should be marked on the map. Note that weather 
conditions in the field will dictate actual flight paths.  
 
Aerial oblique photography will be acquired of each of these priority target areas. Flights routes 
to and from the priority areas will be planned in such a way as to pass by other glaciers and 
glacier features where by aerial oblique photographs can be acquired opportunistically of these 
features of interest. 
 

Preferred Aircraft and Flight Characteristics 

Aircraft 
The preferred aircraft is a Cesnsa 185/206 or equivalent. This aircraft has a reasonable cruising 
speed and is capable of carrying several passengers. The Department of Interior - National 
Business Center (NBC) Aviation Management assign aircraft of this type to National Parks to be 
used in support of park operations. If available, this aircraft should be used to fulfill this SOP. If 
a park aircraft is not available, this type of aircraft is readily available in the private rental market 
in Alaska. 
 
Scheduling 
The purpose of this SOP is to enhance the accuracy of Landsat imagery interpretation acquired in 
the previous year. There are two primary considerations affecting the scheduling of the mission: 
weather and the desire to acquire late-season photography. Mid- to late-August would be the 
preferred scheduling window to conduct these flight operations to maximize the loss of seasonal 
snow across the landscape but acquire the oblique photos prior to any new snowfall. 
 
Flight Conditions 
It is best to conduct the flight under clear, sunny, smoke-free conditions. Contrast between the 
debris covered glacier surface and surrounding moraine material will be more evident under 
these conditions.  
  
Flight Characteristics 
A safe flight operation is the priority. 
 
The preferred elevation above ground level is 2000 to 3000 feet. This flight elevation may vary 
depending on sun angle (morning, evening, mid-day), turbulence, and other factors at the time of 
the flight. 
 
The elevation of the targets identified may range from a few hundred feet up to 5,000 feet. 
Capturing photography at targets at an elevation of 5,000 feet will require different flight 
conditions than those at lower elevations. For example, flights at low elevations could be 
conducted under cloudy conditions as long as the ceiling is high enough for safe flight 
operations. 
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GPS tracking of Aircraft Flight Path 

All flights will be tracked by via the tracking feature on most hand-held GPS units. Refer to the 
NPS Alaska Region GIS website (http://inpakroms03web/rgr/akgis/index.cfm) for a quick guide 
to collecting positional information using a Global Positioning System (GPS) while taking digital 
photographs from a small aircraft. This will insure that the GPS tracks and digital photographs 
can be properly geotagged with GPS PhotoLink software. 
 

Digital Photography 

High resolution digital photography will be used to collect oblique aerial photographs of all 
glacierized areas. Digital photography will subsequently be linked to the GPS tracking feature. 
This will allow accurate geographic locations for each photograph. Refer to SOP #8 for detailed 
information on suggested camera types, focal lengths, and camera orientation. 
 



 

179 

Standard Operating Procedure (SOP) #8 
Geotagging and Organizing Oblique Aerial Digital 
Photographs in a GIS 

Version 1.0 
Change History 
Version numbers will be incremented by a whole number (e.g. Version 1.3 to Version 2.0) when 
a change is made that significantly affects requirements or procedures. Version numbers will be 
incremented by decimals (e.g. Version 1.6 to Version 1.7) when there are minor modifications 
that do not affect requirements or procedures.  

The following revisions have occurred to this plan since January 2011. 

Version # Date Revised by Changes Justification 

     

     

     

     

     

     

     

 

This Standard Operating Procedure explains the process for geotagging (adding geographic 
locations to media) oblique aerial digital photographs and organizing large numbers (100s-
1000s) of these photographs in a Geographic Information System (GIS) in support of the Glacier 
Monitoring protocol for the Southwest Alaska Network (SWAN).  
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Overview 

This Standard Operating Procedure explains the process for geotagging (adding geographic 
locations to media) oblique aerial digital photographs and organizing large numbers (100s-
1000s) of these photographs in a Geographic Information System (GIS). Detailed procedures 
describe how to: 1) collect positional information using a Global Positioning System (GPS) 
while taking digital photographs from a small aircraft; 2) store the positional information within 
a digital photograph’s metadata file (EXIF); 3) store, edit, and name photographs using SWAN 
digital photograph management strategy; 4) create a GIS shapefile with photograph locations and 
attributes; and 5) create a Google Earth file in Keyhole Markup Language (KML) with 
photograph locations and descriptions.  
 

Necessary Equipment and Software 

Acquiring, geotagging, and managing digital photographs in a GIS requires the following 
equipment and software. The detailed procedures that follow are specific to the recommended 
equipment and software that are listed. 
 
Digital Camera 
A digital single-lens reflex (DSLR) camera is recommended for use in oblique aerial 
photography because it is faster than a digital point-and-shoot camera, uses precise optical 
viewfinders, and is very battery-efficient. Resolution should be 5 megapixels or better. Memory 
cards should be capable of holding approximately 400 images at >5 megapixels (2GB cards work 
well). A relatively wide-angle lens is recommended (24-35 mm).  
 
Recommended Digital Camera: 
Cannon Digital Rebel XT (8.0 megapixel), 18-55 mm lens, and 2GB CompactFlash storage card. 
 
GPS Receiver 
A recreational-grade handheld GPS receiver is suitable for this work. The NPS Alaska Region 
GIS team recommends and supports Garmin handheld GPS receivers that allow waypoint 
averaging, external GPS antenna capability, and support with DNRGarmin software for 
downloading. Currently, these units include the GPSMap60 and GPSMap76 series. Although the 
GPS receiver can be placed on top of an aircraft instrument panel, use of an external antenna will 
improve accuracy.  
 
Recommended GPS Receiver: 
Garmin GPSMap60Csx with magnetic external antenna (this unit stores time to the second, 
which improves positional accuracy of photographs taken in rapid succession). 
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GPS Software 
Software is necessary to transfer data from the GPS receiver to a computer. The NPS Alaska 
Region GIS team recommends and supports both Garmin MapSource and DNRGarmin 
(Minnesota Dept. of Natural Resources). Garmin MapSource is necessary in order to download 
and archive GPS data. DNRGarmin is recommended to transfer GPS data into GIS. 
 
Recommended GPS Software: 
Garmin MapSource v6.15.3 and DNRGarmin v5.4.0 (free). 
 
File Renaming Software 
Software is necessary to rename large numbers of digital photographs. File naming software 
must be capable of batch file renaming without changing the EXIF date/time. Many file naming 
programs are commercially available. 
 
Recommended File Renaming Software: 
FineBytes Magic File Renamer (Professional Edition) v6.12 ($30). 
 
Photograph Viewing and Editing Software 
Software is necessary to view and edit large numbers of digital photographs. Photograph viewing 
software must be capable of lossless JPEG rotation (rotating and saving JPEG files without 
compressing image), batch photo resizing without changing EXIF date/time, and showing the 
EXIF information. Many photograph viewing and editing programs are commercially available.  
 
Recommended Photograph Viewing and Editing Software: 
IrfanView v4.23 with Graphic Viewer PlugIns (free). 
 
Geotagging Software 
Software is necessary to store positional information from a GPS in the digital photograph’s 
metadata file (EXIF). The software should be capable of geotagging using locations interpolated 
from a GPS track log, storing this information in the EXIF, and creating a GIS shapefile with 
photograph locations and attributes. 
 
Recommended Geotagging Software: 
GeoSpatial Experts GPS-Photo Link Ricoh Edition v4.2 ($329)  
 
GIS Software 
Software is necessary to organize and index large numbers (100s-1000s) of geotagged photos. 
Photograph locations can be plotted on maps or satellite imagery using a GIS. Information about 
each photograph (location, orientation, subject matter, caption, etc.) can be stored in a spatially 
referenced database. This allows oblique aerial photographs to be searched based on location or 
subject (or combination thereof)  
 
Recommended GIS Software: 
ESRI ArcGIS v9.3 (ArcInfo) 
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GIS to KML software extension 
A software extension is necessary to export GIS data in a format that can be viewed by non-GIS 
users in Google Earth. This extension must be capable of exporting point, polyline, or polygon 
datasets in any defined projection into Keyhole Markup Language (KML). The extension should 
be able to incorporate GIS symbology, labeling, and database attributes into KML.  
 
Recommended GIS to KML software extension: 
Export to KML v2.5.3 (free) 
 
File compression software 
A file compression utility is necessary in order to create a compressed KML archive, also known 
as a KMZ file for use in Google Earth. A number of open-source file compression utilities are 
freely available. 
 
Recommended file compression utility: 
7-Zip v4.65 (free) 
 
3D Geobrowser Software 
Software is necessary so that non-GIS users can explore large numbers of geotagged photos. 
Geotagged photographs can be located and viewed using geobrowser software. Indexes in KML 
format can include information about each photograph (location, orientation, subject matter, 
caption, etc). A number of 3D geobrowser software programs are available.  
 
Recommended 3D Geobrowser Software: 
Google Earth v5.0 (free) 
 

Pre-Flight Preparations 

The GPS and camera need to be prepared prior to flying and taking photographs. The pilot 
should be asked about cleaning aircraft windows or flying with side windows open. The 
photographer should verify that the GPS receiver is on, receiving adequate satellite information, 
and collecting an active tracklog before takeoff. 
 
Digital Camera 
Accurate camera date and time is critical because it is recorded in the EXIF and will be used for 
geotagging the photographs. The camera clock should be synchronized to an active GPS to 
within 1 or 2 seconds (use local time and pay attention to daylight saving time). Digital cameras 
name photos differently. Typically cameras will have several file naming options. The most 
useful setting is sequential numbering (00001-99999). In general, it is recommended that the 
sequential numbering be reset each day that photographs are taken. Most digital cameras can 
digitally imprint the date and time onto the photo image. In general, it is recommended that this 
feature not be used because this information will automatically be stored in each photograph’s 
metadata (EXIF) file. Any existing photographs should be deleted from the camera. Make sure 
the batteries are new or freshly charged. Image resolution should be set to the highest setting. 
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GPS Receiver 
Turn on the GPS outside and let it initialize for 20 minutes to collect current satellite almanac. 
Set GPS to local time zone (pay attention to daylight saving time). Clear all tracks and 
waypoints. Set up the track log to record at 1 second intervals and to stop recording when full. 
Make sure the batteries are new or freshly charged. GPS receiver or external antenna should be 
placed on top of the instrument panel close to the windshield. With pilot’s approval and 
direction, a magnetic external GPS antenna can be placed outside (and on top) of the aircraft. 
The wire may need to be taped in place to reduce vibration and prevent damage to the aircraft. 
Take a picture of the GPS screen showing local time before take off and collecting photographs. 
Hold the GPS at arm’s length from the GPS and tilt the screen slightly. Verify that the time is 
visible in the photograph. 
 
Aircraft 
Ask the pilot if the windows (inside and outside) can be washed. The photographer can volunteer 
to do this with the pilot’s approval and direction. If the windows are heavily scratched it may be 
possible to fly with the side window propped open (this will be very windy and cold).  
 
Camera Orientation 
The photographer should sit in the copilot’s seat and photograph out of the side windows. 
Photographs taken straight ahead through the front windshield will be blurred by the propeller 
and should be avoided. In general, it is recommended that the camera angle relative to aircraft 
heading remain constant (45-135 degrees to the left or right of aircraft heading works well). 
Focal length (zoom) should not vary while photographs are taken (24-35 mm) works well. If 
there are two photographers and cameras, each should photograph from opposite sides of the 
aircraft (one GPS receiver will suffice, although a second GPS may be used for backup). Try not 
to photograph the aircraft’s wings or wheels/floats/skis as much as possible.  
 

Post-Flight Tasks 

After the flight the GPS track log needs to be stopped (do not save the track log) and the GPS 
should be turned off. If possible, digital photographs and GPS data should be transferred to a 
computer as soon as possible (especially if multiple days of flying and photography will take 
place). 
 
GPS Track Log 
Stop the track log, but do not save it! A track log is made up of many points (one point stored 
each second). Saving a track log on a Garmin GPS receiver greatly simplifies the track log by 
deleting points. A saved track log will not work for geotagging oblique aerial photographs.  
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Transferring Photographs 

Refer to Attachment A for a detailed description of the file management structure necessary for 
geotagging and managing oblique aerial photographs in a GIS. Even if the files are first 
transferred to a field laptop or a computer that won’t be used for managing the photographs and 
GIS the same file management structure should be used.  
 
Transfer the photographs from the camera to a computer. Copy them to the folder: 
 
/Oblique_Aerial_Photos/Original_Photos/pppp_yyyymmdd_iii/ 
 
Do not rename or alter these photographs in any way. Then copy the photographs to the folder: 
 
/Oblique_Aerial_Photos/Working_Photos/pppp_yyyymmdd_iii/ 
 

Transferring GPS Data 

Use Garmin MapSource to transfer the GPS track log. Open Garmin MapSource and connect to 
the GPS receiver. Select Transfer then Receive from device then Tracks. Then save the track 
log using three different file types: Garmin GPS Database Version 3 (*.gdb), GPS eXchange 
Format (*.gpx), and Text (Tab delimited) (*.txt. These files should be named as shown below 
(see Attachment A) and stored in the folder: 
 
Oblique_Aerial_Photos/Original_GPS/pppp_yyyymmdd_iii/ 

pppp_yyyymmdd_iii.gdb 
pppp_yyyymmdd_iii.gpx 
pppp_yyyymmdd_iii.txt 

 

Creating Flight Line and Track Log Shapefiles 

Use DNRGarmin to create a line and point shapefile from the GPS data. Open DNRGarmin. 
Select File then Set Projection and make sure that the datum and projection listed are NAD83 
and Alaska Albers Equal Area Conic. Make sure that the PRJ Definition is loaded and matches 
the datum and projection listed above. Connect to the GPS receiver and select Track then 
Download. This will take some time. Editing may be necessary if the GPS receiver was turned 
off or if more than one flight was captured by the track log. The new_seg field displays True 
anytime the track log was restarted. Double-click on that cell to modify the value and change it 
to False if the track log should be continuous but isn’t. Convert the track log to a line shapefile 
that represents the flight line by saving the data as an ArcView Shapefile (Projected) (*.shp). 
Name the file as shown below (see Attachment A) and select Line when prompted to define the 
output shape. Then convert the track log to a point shapefile that represents the flight line by 
saving the data as an ArcView Shapefile (Projected) (*.shp). Name the file as shown below 
(see Attachment A) and select Point when prompted to define the output shape. These files 
should be stored in the folder labeled: 
 
/Oblique_Aerial_Photos/Working_GPS/pppp_yyyymmdd_iii 
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   /pppp_yyyymmdd_iii_Flightline.xxx (line) 
   /pppp_yyyymmdd_iii_Tracklog.xxx (point) 
 

Editing and Rotating Working Photographs 

Make sure that you are not making changes to the original photographs. Make changes only to 
the photographs stored in the folder: 
/Oblique_Aerial_Photos/Working_Photos/pppp_yyyymmdd_iii/ (here) 
 
Look through each of the working photographs and carefully delete any photographs that are 
poor quality (blurred or out of focus), duplicate, or not relevant (people photos).  
 
Use IrfanView to rotate photographs so that they are oriented correctly. This should be done so 
that when the file is overwritten the image quality and the file creation date/time stored in the 
EXIF are not changed. The Graphic Viewer PlugIns must be installed in IrfanView. Select 
Options then JPG Lossless Rotation…(Plugin). Under Transformation select the correct 
rotation angle so that the photograph will be oriented correctly. Make sure to select Apply 
original EXIF date/time to new file. This will overwrite the existing image file. 
 

Renaming Working Photographs 

Make sure that you are not making changes to the original photographs and that the renaming 
process does not change the file date/time stored in the EXIF (DateTimeOriginal) and that the 
sequential numbering in the file name (e.g. img_00135.jpg) is preserved. The sequential 
numbering in the working photograph’s file name can be used to reference the original 
photograph if necessary. Use Magic File Renamer to batch rename all the photographs. Browse 
to the working photographs stored in the folder labeled: 
 
/Oblique_Aerial_Photos/Working_Photos/pppp_yyyymmdd_iii/ (here) 
 
Select the #AddAll button (it looks like this: >>>) to change the photograph’s file names in that 
folder. The window at the bottom of the screen shows the original file name (Full File Name – 
black type) and the draft modified file name (Full File Name – red type). The file names aren’t 
actually changed until the #GO button (the round button with a lightening bolt symbol) is 
selected. Make changes to the file names using the Inserter and Replacer filters. When the 
modified photograph file names match the example shown below, select the #GO button (or 
Ctrl+G).  
 
Example: Rename Img_0234.jpg to pppp_yyyymmdd_iii_00234.jpg 
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Geotagging 

GPS-Photo Link is used for geotagging. The software matches interpolated positions from the 
GPS track log to the file date/time saved in the photograph EXIF. Identify the photographs to be 
used for geotagging. Select the Camera Folder option under Photo Source. The Camera 
Folder under Load Photographs from Camera Folder should match the working photograph 
folder: 
 
/Oblique_Aerial_Photos/Working_Photos/pppp_yyyymmdd_iii/ 
 
The Photo Root Folder under Save Output To should match the Geotagged Photographs 
folder: 
 
/Oblique_Aerial_Photos/Geotagged_Photos/ 
 
Name the new folder under New Folder to be created under Photo Root Folder: 
 
pppp_yyyymmdd_iii 
 
Select No action under the Original Photo Action option. 
 
Next, select the GPS data source. Select Use GPS data in file and select the GPS eXchange 
Format (*.gpx) file in the Original GPS data folder: 
Oblique_Aerial_Photos/Original_GPS/pppp_yyyymmdd_iii/ 
pppp_yyyymmdd_iii.gpx 
 
Select the (GMT-09:00) Alaska time zone and make sure that Auto adjust for daylight saving 
time, if needed is selected. Select Lat /Lon and WGS 84 for the Datum/Position Format. 
Select Next >. 
 
Next, select the method of time synchronization. Select Use photo of GPS receiver. Make sure 
that Use GPS position only if within 60 seconds is selected. Select Interpolate between closest 
GPS points under Matching.  
 
In the “Time Offset Entry” window scroll to view the photo of the GPS screen showing GPS 
time. Select Use this photo for time entry and enter the date and time shown on the GPS screen. 
If the pre-flight setup was carefully done the calculated offset should only be a few seconds. 
 
The photographs can be further edited and a title and comments can be added in the “Data Entry 
/ Photo Edit” window. Although useful in other applications, these options are not used in this 
protocol. Scroll to the photograph of the GPS unit and select Do not include photo in output.  
 
Next, the desired output formats are selected. Select Watermarked Photo, Text File (CSV), 
GPS Exchange (GPX), and ESRI Shape File (SHP) under Select output formats. Select the 
Watermarks tab. Make sure that Resize photo is not selected and that nothing is selected under 
the Items to Show and Placement options. Although useful in other applications, these options 
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are not used in this protocol. Select Best under JPEG Quality. Select the Heading / Distance 
tab. Select GPS Track under Heading (Picture Direction). Make sure that Calculate new 
position from heading and distance and Adjust Heading are not selected. (Note, this option is 
very useful if the camera orientation relative to aircraft heading was fixed). Select None under 
Distance to Object. Default settings under the Misc tab are acceptable because they only apply 
to the watermark and html settings, which are not used in this protocol. Batch geotagging and 
shapefile creation happens when Finish is selected. This process will take a while if a large 
number (100s) of photographs are being processed.  
 
GPS-Photo Link creates five different output file-types in the folder:  
 
/Oblique_Aerial_Photos/Geotagged_Photos/pppp_yyyymmdd_iii/ 
 
where: 

 
GPS-Photo Link.txt 

  is the configuration settings used by GPS-Photo Link 
pppp_yyyymmdd_iii_12345_small.jpg  

thumbnails of the photographs with Lat / Lon stored in EXIF 
pppp_yyyymmdd_iii_12345_tag.jpg  

somewhat compressed photographs with Lat / Lon stored in EXIF 
 picture.xxx 
  are shapefiles that will be used in the GIS 
 track.xxx 
  are shapefiles containing all track log points 
 

Creating GIS Photograph Index  

Copy the shapefile generated by GPS-Photo Link using ArcCatalog (ArcGIS) 
Copy the shapefile from: 
/Oblique_Aerial_Photos/Geotagged_Photos/pppp_yyyymmdd_iii/picture.shp 
 
to: 
/Oblique_Aerial_Photos/Working_GIS/pppp_yyyymmdd_iii/picture.shp  
 
Define the shapefile’s map projection using the Project tool in ArcToolbox (ArcGIS). Select: 
/Oblique_Aerial_Photos/Working_GIS/pppp_yyyymmdd_iii/picture.shp  
as the Input dataset. Define and rename the Output Dataset: 
/Oblique_Aerial_Photos/Working_GIS/pppp_yyyymmdd_iii/ 
pppp_yyyymmdd_iii_Origin 
Select the Alaska Albers Equal Area Conic projected coordinate system for the Output 
Coordinate System.  
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Copy the line shapefile generated by DNRGarmin using ArcCatalog (ArcGIS). Copy the 
shapefile from: 
/Oblique_Aerial_Photos/Working_GPS/pppp_yyyymmdd_iii/ 
pppp_yyyymmdd_iii_Flightline.xxx 
to: 
/Oblique_Aerial_Photos/Working_GIS/pppp_yyyymmdd_iii/ 
pppp_yyyymmdd_iii_Flightline.xxx 
 
Verify that the line shapefile is in the Alaska Albers Equal Area Conic projected coordinate 
system using ArcCatalog (ArcGIS).  
 
Open ArcMap (ArcGIS) and create a new map document. Name and save the map document: 
/Oblique_Aerial_Photos/Working_GIS/pppp_yyyymmdd_iii/ 
pppp_yyyymmdd_Map.mxd 
 
Load the corresponding digital raster graphic (DRG) mosaic of topographic maps at the 1:63,360 
scale and the working point and line shapefiles: 
/Oblique_Aerial_Photos/Working_GIS/pppp_yyyymmdd_iii/ 
pppp_yyyymmdd_iii_Origin.shp 
and 
/Oblique_Aerial_Photos/Working_GIS/pppp_yyyymmdd_iii/ 
pppp_yyyymmdd_iii_Flightline.shp 
 
Open the attribute field for the Origin feature class. Delete (or turn off) the following attribute 
fields:  

 East 
 North 
 Zone 
 Direction 
 Title 
 Comment 
 Internal 
 Timestamp 
 Webpage 
 Wptname 
 Track 
 DOP 
 FixType 
 GPSValid 
 Camera 
 FOCLEN 
 FNumber 
 Exposure 
 ISO 
 FOV 



 

189 

These attribute fields are either not populated by GPS-Photo Link, also preserved in the digital 
photographs EXIF, or not useful for this application.  
 
Add the following attribute fields to the Origin feature class using the field types and properties 
listed below: 
 

1. PARK_CODE 
a. Text, Width=4 

2. DATE_ 
a. Date, Width=8 

3. PHTO_DIR 
a. Short Integer, Precision=4 

4. PHTOGRAPHR 
a. Text, Width=25 

5. LOC_1 
a. Text, Width=25 

6. LOC_2 
a. Text, Width=25 

7. GLAC_NAME 
a. Text, Width=25 

8. DIST_RSTR 
a. Text, Width=10 

9. ARCHIV_LOC 
a. Text, Width=50 

10. COLL_NAME 
a. Text, Width=50 

11. PUBLISHER 
a. Text, Width=50 

12. GEOG_NAME 
a. Text, Width=50 

13. CAPTION 
a. Text, Width=200 

14. PICT_GE 
a. Text, Width=50 

15. KEYWORDS 
a. Text, Width=100 

 
Populate the following attribute fields for all features within the Origin feature class with the 
same values using the attributes dialog box. Start editing, select all features within the Origin 
feature class, activate the Attributes dialog box, select the feature class name (not individual 
features), select the Value for a field, and enter the new value. This will change the value for all 
selected features within the feature class.  
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photograph. Use the photograph file name from [Original] (use of “[xxxx]” describes an attribute 
field name) and open the file from: 
 /Oblique_Aerial_Photos/Working_Photos/pppp_yyyymmdd_iii/ 
 
Start editing the target layer: /pppp_yyyymmdd_iii_Origin and enter values for the following 
attribute fields: 
 
1. PHTO_DIR (Azimuth of photograph). This is the angle (from true north) from the location 

where the photograph was taken to the center of the field of view of the photograph. This 
should be determined by examining the feature location and the area represented by the 
corresponding digital photograph on the topographic map (1:63,360 DRG). Values for 
[PHTO_DIR] correspond to the angle in degrees for 16 compass directions: 23, 45, 68, 90, 
113, 135, 158, 180, 203, 225, 248, 270, 293, 315, 228, 360. The closest direction is entered.  
a. Attribute field properties will need to be changed. Select Field Properties for the entire 

attribute field. Select the “…” button under Display > Number Format, select Angle 
under Category, select Degrees under both options. 

b. The symbology can be changed to display camera azimuth if desired. To change the 
symbology for the Origin feature class, right-click the Origin feature class name in the 
Table of Contents and select Properties. Select the Symbology tab. Change the default 
symbol to Cutting Plane Arrow from the Dimension Symbols under More Symbols. 
Select symbology Properties and change the Angle to 180. Select Rotation under the 
Advanced pull-down menu. Select PHTO_DIR under Rotate Points by Angle in this 
field: and select Geographic for the Rotation Style:.  

 
2. LOC_1 (Primary Geographic Location). This is the name of the mountain range where the 

photograph was taken. Polygon shapefiles for each park identify values to be used for 
[LOC_1] and this attribute field can be populated by spatial relationship. Primary geographic 
locations are described in Attachment A. Note: values for [LOC_1] are the same primary 
geographic locations that are used in the modified photograph naming format for the SWAN 
Glacier Photo Index (e.g. pppp_yyyymmdd_xxxxxx_iii_12345.jpg where “xxxxxx” is the 
same as [LOC_1]. 

 
3. LOC_2 (Secondary Geographic Location). This is the name of closest water body (river, 

creek, lake) in the drainage from which the photograph was taken. If tributaries to the 
drainage are named, use the name for the corresponding lowest-order stream tributary (e.g. 
North Fork Tlikakila River in LACL). Sometimes it makes more sense to use a glacier name 
for [LOC_2] (this occurs when a large, named glacier melts into a relatively small, often 
unnamed drainage that’s close to the ocean. Examples include Fourpeaked Glacier in KATM, 
and Bear Glacier in KEFJ. 

 
4. GLAC_NAME (Glacier Name). This is the formal or local name of a glacier(s) visible in the 

digital photograph. The word “glacier” is omitted. 
 
5. GEOG_NAME (Named Geographic Features). This is the name of readily identified 

geographic features visible in the digital photograph. Use names published on USGS 
topographic maps (1:63,360 or smaller scale). Include glacier names (and the word 
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“glacier”). Don’t use any geographic name if it’s already used for that feature in [LOC_2]. 
The reason for these nuances is because attribute fields are later concatenated (combined) to 
automatically generate photograph captions and keywords. If named geographic features are 
not visible in the digital photograph enter Glaciated Landscape if glacier ice is present and 
Landscape if no glacier ice is present. 

 
6. PICT_GE (Google Earth KML file name). This is the file name of the photograph used to 

generate Google Earth KML files. Entry should be the same as [ORIGINAL], except no 
underscores are used (because they create errors in the KML). Use the Field Calculator to 
automatically populate this field for all features. 
a. Start editing. Select (highlight) [PICT_GE] and activate the Field Calculator. Under 

PICT_GE= type in: Replace([ORIGINAL],”_”,””) 
b. If the primary geographic location is used in the photograph naming format (as in the 

case of the SWAN Glacier Photo Index, e.g. pppp_yyyymmdd_xxxxxx_iii_12345.jpg 
where xxxxxx is the same as the primary geographic location, select (or highlight) 
[PICT_GE] and activate the Field Calculator. Under PICT_GE= type in 
REPLACE([PICT_GE],”xxxxxx”,””) where xxxxxx is the geographic location. 

 
7. CAPTION (Photograph caption). This is the caption that will be used for the digital 

photographs in documents, reports, websites, and Google Earth KML. Use the Field 
Calculator to automatically populate this field for all features (once all the other attribute 
fields have been populated).  
a. Start editing. Select (highlight) [CAPTION] and activate the Field Calculator. Under 

CAPTION= type in 
[GEOG_NAME]&”_from_”&[LOC_2]&”_Watershed”&”,_”&[LOC_1]&”,_”&”F
ull_Park_Name” where “_” is a space. 

 
8. KEYWORDS (Photograph keywords). These are keywords that will be used to search any 

database that contains the digital photographs. Use the Field Calculator to automatically 
populate this field for all features (once all other attribute fields have been populated).  
a. Start editing. Select (highlight) [KEYWORDS] and activate the Field Calculator. Under 

KEYWORDS= type in [LOC_1]&”,_”&[LOC_2]&”,_”&[GEOG_NAME] where “_” 
is a space. 

 
An example of completed attributes for a photograph from Lake Clark is shown in Figure 8-2.  
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Finalized GIS Photograph Index 

After all attribute fields have been populated and feature editing is complete, use ArcCatalog 
(ArcGIS) to copy the shapefiles to the Final_GIS folder.  
 
Copy the line feature class from: 
/Oblique_Aerial_Photos/Working_GIS/pppp_yyyymmdd_iii/ 
pppp_yyyymmdd_iii_Flightline.xxx 
to: 
/Oblique_Aerial_Photos/Final_GIS/Shapefiles/pppp_yyyymmdd_iii_Flightline.xxx 
 
Copy the point feature class from: 
/Oblique_Aerial_Photos/Working_GIS/pppp_yyyymmdd_iii/ 
pppp_yyyymmdd_iii_Origin.xxx 
to: 
/Oblique_Aerial_Photos/Final_GIS/Shapefiles/pppp_yyyymmdd_iii_Origin.xxx 
 
Create an ArcMap (ArcGIS) map document for each park with the following layers, symbology, 
and field-based hyperlinks: 
 
1. Layers Add layers for the point feature class “Origin”, the line feature class “Flightline”, the 

USGS 1:63,360 topographic map (DRG) and the true-color Landsat image mosaic. Layers 
should be ordered: Origin, Flightline, Topography, and Landsat Image with the Origin layer 
at the top of the Table of Contents.  

 
2. Select Layer Properties for the Topography layer. Select the Display tab. Enter 50 under 

Transparency. 
 
3. Symbology Use rotated symbology for the “Origin” feature class (as described above). 

Symbol colors for the point and line feature classes should match.  
 
4. Hyperlinks Create field-based hyperlinks for the Origin layer: 

a. Select Layer Properties for the Origin layer. Select the Display tab. Activate Support 
Hyperlinks using field: and select [PICTURE] in the pull-down menu. 

b. Identify the hyperlink base. Click on File and select Document Properties. Copy and 
paste the complete pathname for the folder containing the geotagged photographs: 
/Oblique_Aerial_Photos/Final_Photos/Geotagged/  

(i) This folder must contain digital photographs with file names which match 
the entries in the attribute field [PICTURE].  

 
An example data frame view from a map document created following this procedure is shown in 
Figure 8-3.  
 
Name and save the map document: 
/Oblique_Aerial_Photos/Final_GIS/Photo_Index/ 
pppp_Oblique_Aerial_Photos.mxd 
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/Oblique_Aerial_Photos/Google_Earth/pppp_yyyymmdd_iii/files 
Click Start Batch. Batch processing may take some time.  
 
If primary geographic locations ([LOC_1]) are included in the photograph naming format (e.g. 
SWAN Glacier Photo Index) use file renaming software to remove this text from the file name. 
Refer to the section titled Rename Working Photographs above and use Magic File Renamer. 
The Replacer filter is used to delete text in a file name by replacing selected text with nothing. 
 

Exporting GIS to KML 

Download and install the Export to KML extension for ArcGIS from the ESRI Support Center. 
Detailed instructions for installation are included in the download package.  
 
Open the final GIS map document. Make sure that the photograph directions ([PHTO_DIR]) in 
the attribute table are in numeric (not angle) format. Select View > Toolbars and activate the 
Export to KML toolbar. Click on the Export to KML button (it looks like the Google Earth 
program icon – a small blue globe with white stripes). 
 
Select the layer to export. Select the point feature class by using the pull-down menu to select 
pppp_yyyymmdd_iii_Origin. Don’t activate Group and color features using the layer’s 
symbology (it doesn’t recognize symbology based on field attributes like the rotated arrow 
used). Select <None> for both Select an attribute for labeling features and Select an attribute 
that represents the height. Browse to: 
/Oblique_Aerial_Photos/Google_Earth/pppp_yyyymmdd_iii/ 
and name the output KML: 
pppp_yyyymmdd_iii 
 
Click the Options button. Select the Export Options tab. Type a description like: Oblique 
aerial photographs taken in PARK on MONTH DAY, YEAR. under KML Layer 
Description.  
 
Click the Labeling and Description Options tab. Use the pull-down menu to select Original 
under Select an attribute for naming each feature:. Copy and paste the following HTML code 
under Feature description expression: 
 
<b>[ORIGINAL]</b><br> 
<img src="files/[PICT_GE]"><br><b>[CAPTION]</b><br><br>Date: [DATE_]<br>Taken 
from: Lat [LAT], Lon [LON], Alt [ALTITUDE] (ft)<br>Datum: [DATUM]<br>Photo 
Orientation: [PHTO_DIR] deg<br>Aircraft heading: [HEADING] deg<br>Aircraft speed: 
[SPEED] mph<br>Photographer: [PHTOGRAPHR]<br>Collection name: 
[COLL_NAME]<br>Publisher: [PUBLISHER]<br>Archive location: 
[ARCHIV_LOC]<br>Distribution restrictions: [DIST_RSTR]<br> 
 
Click OK twice to create the KML.  
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Now, export the line feature class. Click on the Export to KML button. Select the layer to 
export. Select the line feature class by using the pull-down menu to select 
pppp_yyyymmdd_iii_Flightline. Don’t activate Group and color features using the layer’s 
symbology. Select <None> for both Select an attribute for labeling features and Select an 
attribute that represents the height. Browse to: 
/Oblique_Aerial_Photos/Google_Earth/pppp_yyyymmdd_iii/ 
and name the output KML: 
pppp_yyyymmdd_Flightline 
 
Click the Options button. Select the Export Options tab. Type a description like: Flightline for 
oblique aerial photography in PARK on MONTH DAY, YEAR. under KML Layer 
Description.  
 
Click OK twice to create the KML.  
 
An example of the Google Earth output files is shown in Figure 4. 
 
The folder for Google Earth file must follow this file structure: 
 
/pppp_yyyymmdd_iii/ 
 /.kml 
 /.kml 
 /files 
 /resized, renamed photographs (400 x 350 pixel, no “_” in name) 
 
It may be useful to create a compressed KMZ archive that contains the point feature class and the 
resized, renamed photographs. Use a file compression utility (e.g. WinZip) to create a file 
archive containing: 
 
 /pppp_yyyymmdd_iii_Origin.kml 
 /files 
 
and rename the archive extension .kmz. Sometimes Google Earth doesn’t recognize .kmz 
archives created with WinZip. The open source file compression utility 7-Zip works well.  
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Attachment A. File Organization 

The following steps provide guidance on naming and organizing the large number of files that 
will be created during geotagging and managing oblique aerial photographs in a GIS. It is 
important to carefully organize these files and keep original, working, and final copies of the 
photographs, GPS data, and GIS data. 
 
Explanation 
/ = denotes directory, subfolder 
pppp = four letter park code (e.g. KEFJ) 
yyyymmdd = Year, Month, Day code  
iii = photographers initials (first, middle, last) 
xxx = various ArcGIS shapefile extensions 
12345 = sequential numbering assigned to photograph by camera 
example = KEFJ_20090212_CRL.shp (use underscore in file name) 
 
Photograph Naming Format 
pppp_yyyymmdd_iii_12345.jpg  
(example: KEFJ_20090212_CRL_0234.jpg) 
 
Note: The SWAN Glacier Photo Index uses a modified photograph naming format: 
pppp_yyyymmdd_[LOC_1]_iii_12345.jpg where [LOC_1] is the primary geographic location 
where the photograph was taken from. This value is the same as the field attribute [LOC_1] used 
in the GIS shapefile (pppp_yyyymmdd_iii_Orgin.xxx) and these values are described in 
Attachment B. This naming format is somewhat redundant and not necessary, but it was 
specifically requested. 
 
Example File Organization 
/Oblique_Aerial_Photos 
 /Geotagged_Photos 
  /pppp_yyyymmdd_iii 
 /Google_Earth 
  /pppp_yyyymmdd_iii 
   /files 
   /pppp_yyyymmdd_iii_Flightline.kml 
   /pppp_yyyymmdd_iii_Origin.kml 
   /pppp_yyyymmdd_iii.kmz     
 /Final_GIS 
  /Photo_Index 
   /pppp_Oblique_Aerial_Photos.mxd 
  /Shapefiles 
   /pppp_yyyymmdd_iii_Origin.xxx 
   /pppp_yyyymmdd_iii_Flightline.xxx 
 /Final_Photos 
  /Full_Size 
   /pppp_yyyymmdd_iii 
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  /Geotagged 
   /pppp_yyyymmdd_iii_tag 
  /Thumbnails 
   /pppp_yyyymmdd_iii_small 
 /Original_GPS 
  /pppp_yyyymmdd_iii 
   /pppp_yyyymmdd_iii.gdb 
   /pppp_yyyymmdd_iii.gpx 

/pppp_yyyymmdd_iii.txt 
 /Original_Photos 
  /pppp_yyyymmdd_iii 
 /Working_GIS 
  /pppp_yyyymmdd_iii 
   /pppp_yyyymmdd_iii_Flightline.xxx 

/pppp_yyyymmdd_iii_Origin.xxx 
   /pppp_yyyymmdd_iii_Working.mxd 
 /Working_GPS 
  /pppp_yyyymmdd_iii 
   /pppp_yyyymmdd_iii_Flightline.xxx 
   /pppp_yyyymmdd_iii_Tracklog.xxx   

/Working_Photos 
  /pppp_yyyymmdd_iii 
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Standard Operating Procedure (SOP) #9 
Data Management 

Version 1.0 
Change History 

Version numbers will be incremented by a whole number (e.g. Version 1.3 to Version 2.0) when 
a change is made that significantly affects requirements or procedures. Version numbers will be 
incremented by decimals (e.g. Version 1.6 to Version 1.7) when there are minor modifications 
that do not affect requirements or procedures.  

The following revisions have occurred to this plan since January 2011. 

Version # Date Revised by Changes Justification 

     

     

     

     

     

     

     

 

This Standard Operating Procedure describes the strategy for folder and file management 
(folder/file structure and naming convention) and backup procedures critical to the efficient data 
management in support of the Glacier Monitoring protocol for the Southwest Alaska Network 
(SWAN). 
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Background 

Mapping glacier extent as described in this protocol requires a significant effort and investment 
in personnel time spread out over a period of a couple months for each mapping effort. This 
being the case, significant attention to folder and file management (folder/file structure and 
naming convention) and backup procedures is critical to the efficient management of this glacier 
boundary mapping protocol. 

Landsat Data Acquisition 

Acceptable Landsat imagery is ordered and received from the EROS Data Center (See SOP #1 
for direction). This Landsat data is currently stored on the X drive (NPS Alaska Region GIS 
Data) maintained by the NPS, Alaska Regional Office – GIS group with the following directory 
structure and file naming convention. 

X:\Source_Data\Satellite_Imagery\ 
 

The Landsat image file naming convention on the X drive is: 
Example: TM5_7118_03Sep1995_Albers_NAD27  
Sensor: “TM5” means Landsat 5 Thematic Mapper 
PathRow identifier: Path 71, Row 18 
Date of Acquisition: 03Sep1995 
Projection: Albers 
Datum: NAD27 
 

Directory Structure and File Naming  

The following is the suggested folder and file naming convention. The SWAN Data Management 
Plan recommends that there be no periods (.) in the path or filename. Use the underscore (_) in 
file and folder names. This is particularly important for ArcGIS and ArcCatalog software 
operations. All the data processing is completed in the ArcGIS/ArcCatalog environment, thus all 
folders, files, Personal Geodatabases and Feature Datasets will all be created using ArcCatalog. 
Figure 9-1 shows the primary folder structure where data processing occurs. From past 
experience, it seems that ArcGIS/ArcCatalog performs best when the folder location is located as 
close to the root of the “C” drive as possible.  

The standard datum and projection for all geospatial data products will be that of the satellite 
imagery as provided by EROS Data Center. Landsat satellite imagery provided by EROS is 
WGS-84, UTM, Zone 5 or 6 for the SWAN parks. All data to be hosted by the Alaska Regional 
Office GIS Team (on the GIS Theme Manager) will be converted to NAD83, Alaska Albers 
projection. 
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“LACL_Glacier_2007” is a feature dataset within the “LACL_WATEWRSHED_1950” 
personal Geodatabase where individual glacier polygons are created from ice divides. 
 
 “Landsat_7017_YYYYMMDD” is a subordinate folder in the “PARK” folder that 
contains Landsat data of the mapping region.  
 
Where 7017 is the path and row identifier for the satellite image and YYYY, MM and 
DD is the year, month and day of the satellite imagery.  
 
“PARK_7017_YYYYMMDD.mdb” is a Personal Geodatabase created using 
ArcCatalog. Replace “PARK” with the appropriate park acronym.  
 
Where 7017 is the path and row identifier for the satellite image and YYYY, MM and 
DD is the year, month and day of the satellite imagery.  
 
“Editing_ArcGIS_1270” is a Feature Dataset where shapefiles are edited in 
ArcGIS/ArcCatalog. The 1270 represents a threshold value determined in SOP #2. In this 
case “1270” represents a threshold value of 1.270. 
 
“Editing_ArcGIS_1700” is a Feature Dataset where shapefiles are edited in 
ArcGIS/ArcCatalog. The 1700 represents a threshold value determined in SOP #2. In this 
case “1700” represents a threshold value of 1.700. 
 
“Editing_Union_1270_1700” is a Feature Dataset where shapefiles are edited in 
ArcGIS/ArcCatalog. The shapefiles here represent the “Union” of portions of shapefiles 
from: 

“Processing_1270” 
“Processing_1700” 

 
“Processing_1270” is a Feature Dataset where all the processing occurs. The 1270 
represents a threshold value determined in SOP #2. In this case “1270” represents a 
threshold value of 1.270. 
 
“Processing_1700” is a Feature Dataset where all the processing occurs. The 1700 
represents a threshold value determined in SOP #2. In this case “1750” represents a 
threshold value of 1.700. 
 
“Processing_Union_1270_1700” is a Feature Dataset where all the processing occurs for 
the union of the two classification efforts carried out in two Feature Datasets: 

“Processing_1270” 
“Processing_1700” 

 
“LACL_Glacier_2007” is a personal Geodatabase created using ArcCatalog where final 
geospatial glacier boundary data and supporting files created and stored. 
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Landsat_YYYY Folder Contents 
The “Landsat_YYYYMMDD” folder contains raster files (Figure 9-8). Rasters include Landsat 
bands and resultant raster files after various processing steps. The raster files seen in Figure 9-8 
have been fully described in SOP #3 and SOP #4, so only a few explanations are offered here to 
reduce redundancy. For example: 
 

 b2 is the original Landsat Band 2 
 b3 is the original Landsat Band 3 
 b4 is the original Landsat Band 4 
 b5 is the original Landsat Band 5 
 float_b3 is the resultant band after applying the “Float” command 
 float_b5 is the resultant band after applying the “Float” command 
 divide_b3_b5 is the resultant raster after the dividing band 3 by band 5 
 b5b4b2_Composite is the color composite Landsat image 
 b3b5_gt1270 is a resultant raster file representing pixel value greater than 1.270 from the 

“divide b3b5” raster. 
 b3b5_gt1700 is a resultant raster file representing pixel value greater than 1.700 from the 

“divide b3b5” raster. 
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Archival File Naming 

Many of the files created in this glacier mapping effort are temporary working files leading to 
interim and final products. Upon completion of the mapping effort, most of these temporary files 
will not be saved or archived. The following is a listing of the files that will be saved to the 
PARK_Glacier_YYYY feature dataset in the PARK_Glacier_YYYY.mdb (personal 
geodatabase). These files were created in SOP #6: 

Table 9-1. List of shapefiles. 

Shapefile name Data Type Geometry 

PARK_glaciermappingregion_YYYYMMDD_XX#.shp  Polygon Outline of the mapping region 

PARK_glacier_id_YYYY_YYYYMMDD_XX#.shp  Point  Point location of glaciers 

PARK_glacier_segments_YYYY_YYYYMMDD_XX#.shp Polygon Glacier boundaries 

PARK_imageryfootprint_YYYY_YYYYMMDD_XX#.shp Polygon Polygon of image footprint 

 
 PARK_glaciermappingregion_YYYYMMDD_XX#.shp is a polygon shapefile outlining 

the glacier mapping region. 
 
 PARK_glacier_id_YYYY_YYYYMMDD_XX#.shp is a point shapefile with one unique 

point locator per glacier. This file also contains glaciological characteristics of each 
glacier. 

 
 PARK_glacier_segments_YYYY_YYYYMMDD_XX#.shp is polygon shapefile 

depicting all individual glacier boundaries on a park-wide basis. This file is a result of the 
automated classification techniques detailed in SOP #2 and #3 and the manual editing 
detailed in SOP #4, watershed delineation on SOP #5 and glaciological attribute 
population in SOP #6. 

 
 PARK_imageryfootprint_YYYY_YYYYMMDD_XX#.shp is polygon shapefile 

depicting the footprint of the satellite imagery that was used in the glacier mapping effort. 
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File Naming - ArcGIS Files 
File naming should be based on the following format: 
ParkCode_ShortDescription_YYYYMMDD_InitialsVersion 

where: 

ParkCode = Four-letter park or network code (e.g. ALAG, ANIA, KATM, KEFJ, LACL, 
SWAN). Can contain multiple four-letter park codes if necessary.  

ShortDescription = Provide a descriptive, but brief description of the data file. 
Concatenate with capital letters and no spaces.  

YYYYMMDD = Date of most recent modification. Year (Y), Month (M), Day (D).  
Initials = Two or three letter initials of person performing the edits and or final shapefile.  
Version [1, 2, 3, …] = Should be a single whole number, 1, 2, 3,… that indicates 

subsequent versioning for a given set of initials.  
 
Example: PARK_glacierid_2007_YYYYMMDD_BG1.shp 

 
File Naming – Landsat Imagery Files  
All original Landsat data is archived on the ARO-GIS server and stored in a folder/file naming 
convention as follows: 

X:\Source_Data\Satellite_Imagery 
 
Each Landsat scene is stored in a separate folder in the above directory with the following 
naming convention: 
 
TM5_6918_12sep1986_Albers_NAD27 
 
where: 
 

 TM5 = Landsat satellite (TM5 = Thematic Mapper 5) 
 6918 = path and row number for the satellite image 
 12sep1986 = day, month and year of the imagery 
 Albers = projection 
 NAD27 = datum 

 

Metadata  

Metadata will be FGDC (Federal Geographic Data Committee) compliant. A complete metadata 
file will be prepared for each of the final data products produced (i.e. those listed in Table 9-1). 
An example of an acceptable metadata file is included as Appendix B. 
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Operational and Archiving File Management  

The data acquisition, processing and interpretation of Landsat data will be conducted on NPS 
desktop computers. This protocol has a repeat cycle of every ten years. Filenames will follow the 
conventions previously outlined. This naming convention will allow for easier transfer to the 
SWAN server. Upon final completion of imagery classification and generation of final 
shapefiles, the files will be transferred to the SWAN server and the GIS Permanent Dataset 
(PDS) maintained by the NPS Alaska Region GIS Team. 

Data processing steps will require the creation of temporary working files that will not be needed 
for long-term monitoring in the SWAN. These temporary files will remain on the desktop 
computer until the glacier extent mapping is complete for the subject Landsat image. Upon 
acceptance of the final glacier boundary geospatial data (Table 1, above) in to Alaska Regional 
Office - GIS Theme Manager, a thoughtful review of the preliminary files created throughout the 
glacier boundary mapping process should identify any files that should be saved. This could be a 
suite of imagery classification, DEMs and/or shapefiles. One shapefile that maybe of particular 
important would be the “SnoIce_1700_1270_gt81225_Union_gt_10acres_Original” shapefile 
created after over-classification polygons are completely removed but before glacier boundary 
modifications are made in the last step in SOP #4. This shapefile is representative of clean-ice 
glacier extent in the mapping region and this shapefile is the file located in the 
“Editing_Union_1270_1700” Feature Dataset. Differencing these shapefiles with the final 
glacier boundary shapefiles might be valuable in determining the amount of debris covered ice 
and also provides a measure of how much manual editing is required. Any other unimportant 
files should be deleted. 
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Standard Operating Procedure (SOP) #10 
Data Analysis and Reporting 

Version 1.0 
Change History 

Version numbers will be incremented by a whole number (e.g. Version 1.3 to Version 2.0) when 
a change is made that significantly affects requirements or procedures. Version numbers will be 
incremented by decimals (e.g. Version 1.6 to Version 1.7) when there are minor modifications 
that do not affect requirements or procedures.  

The following revisions have occurred to this plan since January 2011. 

Version # Date Revised by Changes Justification 

     

     

     

     

     

     

     

 

This Standard Operating Procedure describes the procedures for preparing reports and 
accompanying products in order to broadly share the results of glacier mapping efforts in support 
of the Glacier Monitoring protocol for the Southwest Alaska Network (SWAN). 
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Overview 

Glacier extent mapping efforts are repeated approximately every decade for each of the glaciated 
SWAN parks. Data analysis, reporting and updates will occur as glacier mapping efforts are 
initiated and completed. Reporting will be completed through annual SWAN reporting 
requirements, annual updates to the SWAN Technical Committee and through public 
presentations. 

The subject of glaciers and glacier change is currently very much in the public eye. It is the 
intent of the SWAN to share these data and information widely with other government agencies, 
universities and the general public by presenting formal talks/presentations, through casual 
communications and sharing of data with colleagues and the public. 

Generating Statistical Information and Decadal Comparisons 

Final GIS shapefiles are created delineating all individual glaciers (glacier extent in aggregate) 
occurring within each glacier-bearing SWAN park. Using GIS, these shapefiles will analyzed to 
determine where, how much and identify trends about how glacier extent is changing. 
Glaciological characteristics will be analyzed to determine what types of characteristics are more 
important (or less important) to the observed change in glaciers in response to climate. The 
amount of debris covered ice can be determined by differencing initial snow/ice classifications 
with the final glacier shapefiles – this may prove to be a valuable metric to track as glaciers 
respond to climate change.  

Glacier ice extent will be described by total-area (sq units) and change in total-area (sq units) 
from the previous temporal data points. Further analysis can be carried out on a watershed-by-
watershed basis, thus identifying specific areas within SWAN parks that are experiencing change 
beyond the park- and SWAN-wide averages. Areas of unusually rapid change will be identified 
as potential areas for site specific studies. 

Reports and Publications 

Reporting is relatively simple and can be achieved by presenting metrics in table form 
identifying SWAN- or Park-wide glacier extent (sq km), change and trends. As the glacier extent 
data is built up over several decades, rates of change and trends can be identified (refer to 
Appendices C, D, E, and F for examples of reporting).  

A measurement being captured, beyond that of SWAN- and Park-wide glacier extent, is change 
in glacier terminus position. A suite of representative glaciers has is selected in each of the 
SWAN parks and measurements documenting change in terminus position over time are 
determined. Glacier terminus change measurement techniques and tables presenting the data are 
presented in Appendix D. 

The results of this repeating decadal glacier extent mapping effort will be shared to broad 
audiences through publication of the data. Glacier extent boundary mapping results have been 
published through the “Eastern Snow Conference” (Appendix E) and in a book (currently in 
press) produced by the Global Land and Ice Measurements from Space program. 
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Presentations 

The scientific community, the public and park visitors are becoming more aware and concerned 
about how regional and global climate change will impact the natural resources of parks all 
across the nation. The results of this mapping effort will add to the scientific body of knowledge 
and provide interpretive information to park management, visitors, and the global community 
interested in the effects of climate change. 

Both formal and informal presentations will take the form of talks and poster sessions. Some 
example presentation products are included in Appendix F. 

Data Sharing 

Glacier extent shapefiles created as a result of this protocol will be shared with the GLIMS 
(Global Land Ice Measurements from Space) program, a project designed to monitor the world's 
glaciers primarily using data from optical satellite instruments. Being the recognized archival 
facility for worldwide glacier mapping data, the GLIMS program is much better positioned to 
share the SWAN glacier mapping data to the global community interested in the topic. Data will 
also be hosted on the NPS Alaska Regional Office GIS Team and thus will be available locally 
to NPS employees.  

The shapefiles that were produced following the methods outlined in SOP #6 (Table 10-1) meet 
the data requirements of the GLIMS program and will be provided to the GLIMS - Alaska 
Region. The SWAN and the GLIMS progams have slightly differing file naming conventions. 
To meet the GLIMS file naming convention, the names of the files have been changed, as shown 
in Table 10-1.   

Table 10-1. List of shapefiles. 

Shapefile name Data Type Geometry 

PARK_YYYY_session.shp  Polygon Outline of the mapping region 

PARK_YYYY_glaciers.shp  Point  Point location of glaciers 

PARK_YYYY_segments.shp  Polygon Line segments  

PARK_YYYY_images.shp  Polygon Polygon of image footprint 

 
The GLIMS Alaska Region contact is currently Dr. Anthony Arendt. 
 

Dr. Anthony Arendt, Research Professor 
University of Alaska Fairbanks  arendta@gi.alaska.edu 
401 E, Geophysical Institute 
903 Koyukuk Drive    Phone: 907- 474-7427 
PO Box 757320     Fax: 907-474-7290 
Fairbanks AK 99775-7320 
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Standard Operating Procedure (SOP) #11 
Changes to the Glacier Monitoring Protocol  

Version 1.0 
Change History 

Version numbers will be incremented by a whole number (e.g. Version 1.3 to Version 2.0) when 
a change is made that significantly affects requirements or procedures. Version numbers will be 
incremented by decimals (e.g. Version 1.6 to Version 1.7) when there are minor modifications 
that do not affect requirements or procedures.  

The following revisions have occurred to this plan since January 2011. 

Version # Date Revised by Changes Justification 

     

     

     

     

     

     

     

 

This Standard Operating Procedure outlines the documentation of changes to the protocol 
narrative and accompanying SOPs. These procedures are based on the recommendations of 
Oakely and others (2003). 
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Revision Procedures 

1. All edits will require review for clarity and technical soundness. Small changes or additions to 
existing methods will be reviewed by SWAN staff. However, if a complete change in methods 
becomes necessary, an outside review will be required. Regional and national staff of the 
National Park Service with expertise in remote sensing and data analysis, and/or external 
specialists, will be utilized as reviewers.  

2. Edits will be tracked in the Revision History Logs that accompany the protocol narrative and 
each SOP. Version numbers assigned to each edited draft should reflect the magnitude of 
changes therein. Major changes will be designated by whole number increases (e.g., Version 1.0 
to Version 2.0, etc.) and minor changes by tenths (e.g., Version 1.1 to Version 1.2, etc.). With 
each round of changes to the protocol narrative or SOPs, the following information should be 
recorded in the associated Revision History Log: the previous version number, new version 
number, date of revision, author of the revision, paragraph(s) and page(s) where changes appear, 
and the rationale for each change. 

3. Changes to the protocol narrative and SOPs that are recorded in the Revision History Log that 
accompanies both the protocol narrative and SOPs will also be documented in the master version 
table, which is part of this SOP (Table 11-1). The master version number is clearly documented 
on the cover of the combined protocol narrative and SOPs (e.g. Version 1.0). The master version 
will be incremented by a whole number (e.g. Version 1.3 to Version 2.0) when a change is made 
that significantly affects requirements or procedures. Version numbers will be incremented by 
decimals (e.g. Version 1.6 to 1.7) when there are minor modifications that do not affect 
requirements or procedures. Previous versions of the protocol narrative and SOPs will be 
archived. 

4. The Data Manager will be informed regarding changes to the protocol narrative or SOP so that 
the new version number can be incorporated in the metadata of the project database. The 
database may have to be edited by the Data Manager to accompany changes in the protocol 
narrative and SOPs. 

5. The Data Manager will post new versions of the protocol on the internet and forward copies to 
all individuals known to have a previous version. 
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Table 11-1. Master version table for the Glacier Monitoring protocol for the Southwest Alaska Network (protocol narrative and SOPs). 

Master 
version 
number 
(v. #) 

Date 
of change 
(mm/dd/yyyy) 

N
arrative (v. #

) 

S
O
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 # 1 (v. #) 

S
O

P
 # 2 (v. #) 

S
O
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 # 3 (v. #) 

S
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 # 4 (v. #) 

S
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 # 5 (v. #) 

S
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P
 # 6 (v. #) 

S
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 # 7 (v. #) 

S
O

P
 # 8 (v. #) 

S
O

P
 # 9 (v. #) 

S
O

P
 # 10 (v. #) 

S
O

P
 # 11 (v. #) 

1.0 01/18/2011 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
              
              
              
              
              
              
              
              
              
              
              
              
              
              
              
              
              
              
              
              
              
              
              
              
              
              
              
              
              



  

230 

Literature Cited 

Oakley, K.L., L.P. Thomas, and S.G. Fancy. 2003. Guidelines for long-term monitoring 
protocols. Wildlife Society Bulletin 31(4)1000-1003. 

 

 

 



 

231 

Appendix B: Metadata Example 

KEFJ_GLACIER_EXTENT_ALL_2000 

Metadata: 

 Identification_Information  
 Data_Quality_Information  
 Spatial_Data_Organization_Information  
 Spatial_Reference_Information  
 Entity_and_Attribute_Information  
 Distribution_Information  
 Metadata_Reference_Information  

 
Identification_Information:  

Citation:  
Citation_Information:  
Originator: National Park Service, Alaska Regional Office  
Publication_Date: 2008  
Title:  
KEFJ_GLACIER_EXTENT_ALL_2000  
Geospatial_Data_Presentation_Form: vector digital data  
Publication_Information:  
Publication_Place: Anchorage, Alaska  
Publisher: National Park Service, Alaska Regional Office  
Online_Linkage: http://science.nature.nps.gov/nrdata/  
Online_Linkage: 
\\165.83.60.63\GisData\Albers\parks\swan\base\physical\statewid\GlacExtKEFJ.gdb  
Description:  
Abstract:  
This dataset delineates glacial extents for Kenai Fjords National Park over a 30 year 
period. It contains polygon areas of Glacial and non-glacial areas (i.e. Nunataks) and 
Linear glacial terminus features for 3 time periods from the 1970s to 2000s. 
Purpose:  
The purpose of this effort was to map the glacier extent on a park-wide basis using 
Landsat imagery over a 30 year period, identifying changes in extent. This glacier extent 
data set was created through a joint effort between the NPS and NASA-Goddard Space 
Flight Center. This data set is the result of extensive manual editing of shapefiles created 
from supervised classification of the Landsat imagery. This mapping effort was repeated 
on a decadal scale to quantify trends and changes in glacial extent from the 1970s to 
2000. 
Time_Period_of_Content:  
Time_Period_Information:  
Single_Date/Time:  
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Calendar_Date: 2000  
Currentness_Reference:  
ground condition 
Status:  
Progress: Complete  
Maintenance_and_Update_Frequency: As needed  
Spatial_Domain:  
Bounding_Coordinates:  
West_Bounding_Coordinate: -151.137404  
East_Bounding_Coordinate: -149.464285  
North_Bounding_Coordinate: 60.308669  
South_Bounding_Coordinate: 59.340381  
Keywords:  
Theme:  
Theme_Keyword_Thesaurus: National Park Service Theme Category Thesaurus  
Theme_Keyword: Landform  
Theme_Keyword: Monitoring  
Theme:  
Theme_Keyword_Thesaurus: ISO 19115 Topic Category  
Theme_Keyword: geoscientificInformation  
Theme:  
Theme_Keyword: glacier  
Theme_Keyword: snow  
Place:  
Place_Keyword_Thesaurus: National Park System Unit Name Thesaurus  
Place_Keyword: Kenai Fjords National Park  
Place:  
Place_Keyword_Thesaurus: National Park System Unit Code Thesaurus  
Place_Keyword: KEFJ  
Place:  
Place_Keyword: Alaska  
Access_Constraints: none  
Use_Constraints:  
none 
Point_of_Contact:  
Contact_Information:  
Contact_Organization_Primary:  
Contact_Organization: National Park Service, Alaska Regional Office  
Contact_Person: GIS Team  
Contact_Position: GIS Specialist  
Contact_Address:  
Address_Type: mailing and physical address  
Address:  
240 W 5th Ave. 
City: ANCHORAGE  
State_or_Province: AK  
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Postal_Code: 99501  
Country: USA  
Contact_Voice_Telephone: Please contact us via email.  
Contact_Electronic_Mail_Address: AKRO_Internet_Contact@nps.gov  
Hours_of_Service: 8:00am- 5:00pm AST  
Native_Data_Set_Environment:  
Microsoft Windows XP Version 5.1 (Build 2600) Service Pack 3; ESRI ArcCatalog 
9.2.5.1450  

Back to Top  
 

Data_Quality_Information:  
Attribute_Accuracy:  
Attribute_Accuracy_Report:  
All attributes were verified by visually comparing the attributes in the digital coverage 
against the original source material, but no formal tests were performed. 
Logical_Consistency_Report:  
Topologically clean as verified by ArcGIS version 8.x/9x 
Completeness_Report:  
Data set complete 
Positional_Accuracy:  
Horizontal_Positional_Accuracy:  
Horizontal_Positional_Accuracy_Report:  
Horizontal positional accuracy for the digital data is tested by visual comparison of the 
source with hard copy plots at intended scale. 
Lineage:  
Process_Step:  
Process_Description:  
Landsat imagery was acquired that met the following standards:  
Cloud-free or minimal cloud cover;  
Late-season imagery (to maximize seasonal snow melt and minimize new seasonal snow 
(August and September).  
  
Landsat imagery was classified for glacier ice and snow using PCI image-processing 
software where training sites were defined and a "maximum likelihood" algorithm was 
used to classify the imagery. The classification was converted to GIS shapefiles and 
edited in ArcGIS. If available, higher-resolution aerial photography was used as a tool to 
help interpret the Landsat data. Very small glaciers, and areas that appeared to be 
snowfields (not glacier ice) were generally not captured.  
Complicating Issues  
Several factors influence the accuracy of the initial supervised classification of glacier 
extent:  
Debris-covered ice (moraine and/or volcanic ash) 
Shadows 
Seasonal snow cover and /or new snow cover 
Permanent snowfields outside of the accumulation area 
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Each of these factors influence the spectral reflectance of the terrain which in-turn affects 
the accuracy of the supervised classification. 
  
Manual Editing  
The supervised classification was converted to a GIS shapefile. Areas that were 
misclassified in the original classification were captured manually (debris-covered ice, 
shadowed ice) or removed (isolated small snowfields) during an edit session in ArcGIS. 
Editing of the shapefile is based on the judgment of the person doing the satellite image 
interpretation. The human eye can perceive textural differences in debris-covered ice that 
were typically missed in the original supervised classification. In addition, local 
knowledge and the use of high-resolution imagery can aid in the interpretation of Landsat 
data. Careful manual interpretation of these areas is required to optimize the accuracy of 
the mapping effort.  
  
SATELLITE IMAGERY INTERPRETATION ACCURACY  
The amount of change that can be detected in a Landsat image is dependent on the 
resolution of the imagery plus any registration error. The spatial accuracy of Terrain 
Corrected TM or ETM+ Landsat data is 30 meters between images (EROS Data Center, 
personal comm., 2006). If the registration between images is perfect, changes of terminus 
positions can be determined to within +- 42.4 meters when analyzing Landsat TM and 
ETM+ scenes; the accuracy decreases to +- 113 meters when analyzing data between 
Landsat MSS and TM or ETM+ scenes (Hall et al., 2003).  
  
Worker Bees: 
DOROTHY K. HALL, Cryospheric Sciences Branch, Code 614.1, NASA/Goddard 
Space Flight Center, Greenbelt, MD 20771 
USA, dorothy.k.hall@nasa.gov. 
  
JANET Y.L. CHIEN, SAIC and Cryospheric Sciences Branch, Code 614.1, 
NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA, 
janet.y.chien@gmail.com 
  
BRUCE A. GIFFEN, Alaska Regional Office, National Park Service, 240 West 5th Ave., 
Anchorage, Alaska 99501, 
USA, bruce_giffen@nps.gov. 
Source_Used_Citation_Abbreviation:  
Landsat scene 17-Aug-73 MSS LM1074018007322990  
Source_Used_Citation_Abbreviation:  
Landsat Scene 12-Sep-86 TM LT5069018008625510  
Source_Used_Citation_Abbreviation:  
Landsat Scene 9-Aug-00 ETM+ NZT070690180809200000  
Source_Produced_Citation_Abbreviation:  
Bruce Giffen  
Process_Contact:  
Contact_Information:  
Contact_Organization_Primary:  
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Contact_Organization: National Park Service, Alaska Regional Office  
Contact_Person: GIS Team  
Contact_Position: GIS Specialist  
Contact_Address:  
Address_Type: mailing and physical address  
Address:  
240 W 5th Ave. 
City: ANCHORAGE  
State_or_Province: AK  
Postal_Code: 99501  
Country: USA  
Contact_Voice_Telephone: Please contact us via email.  
Contact_Electronic_Mail_Address: AKRO_Internet_Contact@nps.gov  
Hours_of_Service: 8:00am- 5:00pm AST  

Back to Top  
 

Spatial_Data_Organization_Information:  
Direct_Spatial_Reference_Method: Vector  
Point_and_Vector_Object_Information:  
SDTS_Terms_Description:  
SDTS_Point_and_Vector_Object_Type: G-polygon  
Point_and_Vector_Object_Count: 350  

Back to Top  
 

Spatial_Reference_Information:  
Horizontal_Coordinate_System_Definition:  
Planar:  
Map_Projection:  
Map_Projection_Name: Albers Conical Equal Area  
Albers_Conical_Equal_Area:  
Standard_Parallel: 55.000000  
Standard_Parallel: 65.000000  
Longitude_of_Central_Meridian: -154.000000  
Latitude_of_Projection_Origin: 50.000000  
False_Easting: 0.000000  
False_Northing: 0.000000  
Planar_Coordinate_Information:  
Planar_Coordinate_Encoding_Method: coordinate pair  
Coordinate_Representation:  
Abscissa_Resolution: 0.000100  
Ordinate_Resolution: 0.000100  
Planar_Distance_Units: meters  
Geodetic_Model:  
Horizontal_Datum_Name: North American Datum of 1983  
Ellipsoid_Name: Geodetic Reference System 80  
Semi-major_Axis: 6378137.000000  
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Denominator_of_Flattening_Ratio: 298.257222  
Vertical_Coordinate_System_Definition:  
Altitude_System_Definition:  
Altitude_Resolution: 0.000003  
Altitude_Encoding_Method: Explicit elevation coordinate included with horizontal 
coordinates  

Back to Top  
 

Entity_and_Attribute_Information:  
Detailed_Description:  
Entity_Type:  
Entity_Type_Label: KEFJ_GLACIER_EXTENT_ALL_2000  
Attribute:  
Attribute_Label: OBJECTID  
Attribute_Definition:  
Internal feature number. 
Attribute_Definition_Source:  
ESRI 
Attribute_Domain_Values:  
Unrepresentable_Domain:  
Sequential unique whole numbers that are automatically generated.  
Attribute:  
Attribute_Label: Shape  
Attribute_Definition:  
Feature geometry. 
Attribute_Definition_Source:  
ESRI 
Attribute_Domain_Values:  
Unrepresentable_Domain:  
Coordinates defining the features.  
Attribute:  
Attribute_Label: ACRES  
Attribute:  
Attribute_Label: SQ_KILOMETERS  
Attribute:  
Attribute_Label: ICE  
Attribute_Definition:  
Contains Ice 
Attribute_Domain_Values:  
Enumerated_Domain:  
Enumerated_Domain_Value: 0  
Enumerated_Domain_Value_Definition:  
No Ice i.e. Nunataks 
Enumerated_Domain:  
Enumerated_Domain_Value: 1  
Enumerated_Domain_Value_Definition:  
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Ice - i.e. Glacier 
Attribute:  
Attribute_Label: Shape_Length  
Attribute_Definition:  
Length of feature in internal units. 
Attribute_Definition_Source:  
ESRI 
Attribute_Domain_Values:  
Unrepresentable_Domain:  
Positive real numbers that are automatically generated.  
Attribute:  
Attribute_Label: Shape_Area  
Attribute_Definition:  
Area of feature in internal units squared. 
Attribute_Definition_Source:  
ESRI 
Attribute_Domain_Values:  
Unrepresentable_Domain:  
Positive real numbers that are automatically generated.  

Back to Top  
 

Distribution_Information:  
Distributor:  
Contact_Information:  
Contact_Organization_Primary:  
Contact_Organization: National Park Service, Alaska Regional Office  
Contact_Person: GIS Team  
Contact_Position: GIS Specialist  
Contact_Address:  
Address_Type: mailing and physical address  
Address:  
240 W 5th Ave. 
City: ANCHORAGE  
State_or_Province: AK  
Postal_Code: 99501  
Country: USA  
Contact_Voice_Telephone: Please contact us via email.  
Contact_Electronic_Mail_Address: AKRO_Internet_Contact@nps.gov  
Hours_of_Service: 8:00am- 5:00pm AST  
Resource_Description: GlacExtKEFJ.gdb  
Distribution_Liability:  
The National Park Service shall not be held liable for improper or incorrect use of the 
data described and/or contained herein. These data and related graphics (i.e. GIF or JPG 
format files) are not legal documents and are not intended to be used as such. The 
information contained in these data is dynamic and may change over time. The data are 
not better than the original sources from which they were derived. It is the responsibility 
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of the data user to use the data appropriately and consistent within the limitations of 
geospatial data in general and these data in particular. The related graphics are intended 
to aid the data user in acquiring relevant data; it is not appropriate to use the related 
graphics as data. The National Park Service gives no warranty, expressed or implied, as 
to the accuracy, reliability, or completeness of these data. It is strongly recommended that 
these data are directly acquired from an NPS server and not indirectly through other 
sources which may have changed the data in some way. Although these data have been 
processed successfully on computer systems at the National Park Service , no warranty 
expressed or implied is made regarding the utility of the data on other systems for general 
or scientific purposes, nor shall the act of distribution constitute any such warranty. This 
disclaimer applies both to individual use of the data and aggregate use with other data. 
Standard_Order_Process:  
Fees: none  

Back to Top  
 

Metadata_Reference_Information:  
Metadata_Date: 20080512  
Metadata_Contact:  
Contact_Information:  
Contact_Organization_Primary:  
Contact_Organization: National Park Service, Alaska Regional Office  
Contact_Person: GIS Team  
Contact_Position: GIS Specialist  
Contact_Address:  
Address_Type: mailing and physical address  
Address:  
240 W 5th Ave. 
City: ANCHORAGE  
State_or_Province: AK  
Postal_Code: 99501  
Country: USA  
Contact_Voice_Telephone: Please contact us via email.  
Contact_Electronic_Mail_Address: AKRO_Internet_Contact@nps.gov  
Hours_of_Service: 8:00am- 5:00pm AST  
Metadata_Standard_Name: FGDC Content Standards for Digital Geospatial Metadata  
Metadata_Standard_Version: FGDC-STD-001-1998  
Metadata_Time_Convention: local time  
Metadata_Extensions:  
Online_Linkage: http://www.esri.com/metadata/esriprof80.html  
Profile_Name: ESRI Metadata Profile  

Back to Top 
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Appendix D: Reporting Example – Glacier Terminus 
Measurements 
 
Terminus Position Measurements 
 
Methodology  
The terminus “position” can be measured at various points along the terminus of the glacier. 
Changes in the terminus positions and rates of recession are approximate because they are highly 
dependent on the exact spot on the terminus that was selected to make the measurement. For this 
protocol, a standard method was developed to select a point on a glacier terminus for each 
terminus measurement. First, a down-valley vector parallel to the direction of glacier flow was 
determined for each glacier terminus to be measured. Then the farthest down-valley point on the 
terminus was identified and a line was projected from this point, and then a line projected normal 
to the down-valley flow vector was drawn. The result is a series of parallel lines intersecting the 
down-valley flow vector, see Figure D-1. The distance between these parallel lines is the 
distance assigned to the terminus movement. Change in terminus position was determined using 
ArcGIS software. 

This analysis shows rates and trends of glacier terminus movement, and also identifies which 
glaciers are most active. The 1951/1952 terminus positions were determined from the USGS 
1:63,360 quadrangle maps produced from high quality aerial photography (approximately 
1:40,000). Terminus positions were determined using Landsat imagery from 1986, 1987, 2000 
and 2006. A 2005 Ikonos image was used to map 2005 terminus positions (KEFJ only).  

Kenai Fjords National Park  

The terminus positions were mapped for 27 glaciers emanating from the Harding Icefield and the 
Grewingk-Yalik Glacier Complex (Figure D-2); 10 of these glaciers terminate within the KEFJ. 
Figure D-2 identifies these glaciers on a Landsat image (2000) by name (or alpha code) which 
corresponds with Table D-1.  
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Table D-1. Glacier Terminus Movement in KEFJ. 

 
 

Glacier Terminus Movement in KEFJ - Sample Table

Glacier Name
Lowell -741 -21 -1375 -28 -1505 -28 -634 -45 -764 -40 -130 -26
A -586 -17 -906 -18 -1055 -19 -320 -23 -469 -23 -149 -25
Skilak -2267 -65 -4053 -83 -4032 -73 -1786 -128 -1765 -88 21 4
Killey -798 -23 -1229 -25 -1589 -29 -431 -31 -791 -40 -360 -60
Indian -692 -20 -973 -20 -1257 -23 -281 -20 -565 -28 -284 -47
Tustumena -324 -9 -712 -15 -744 -14 -388 -28 -420 -21 -32 -5
Truuli -1065 -30 -971 -20 -1118 -20 94 7 -53 -3 -147 -25
Chernof -1366 -39 -1461 -30 -1914 -35 -95 -7 -548 -27 -453 -76
Dinglestadt (West) -2823 -81 -3052 -62 -3408 -62 -229 -16 -585 -29 -356 -59
Kachemak -801 -23 -989 -20 -1145 -21 -188 -13 -344 -17 -156 -26
Nuka -226 -6 -189 -4 -342 -6 37 3 -116 -6 -153 -26
B -728 -21 -997 -20 -1115 -20 -269 -19 -387 -19 -118 -20
Dixon -422 -12 -589 -12 -746 -14 -167 -12 -324 -16 -157 -26
Portlock -1188 -34 -1322 -27 -1563 -28 -134 -10 -375 -19 -241 -40
Grewingk -1350 -39 -2298 -47 -2502 -45 -948 -68 -1152 -58 -204 -34
Wosnesenski -1268 -36 -1436 -29 -1982 -36 -168 -12 -714 -36 -546 -91
Doroshin -751 -21 -1495 -31 -1644 -30 -744 -53 -893 -45 -149 -25
Petrof -1261 -36 -1576 -32 -1696 -31 -315 -23 -435 -22 -120 -20
Yalik -1057 -30 -1854 -38 -2160 -40 -797 -57 -1103 -58 -306 -61
Dinglestadt (East) -347 -10 -446 -9 -521 -10 -99 -7 -174 -9 -75 -15
McCarty -1599 -46 -1730 -35 -2248 -42 -131 -9 -649 -34 -518 -104
Northwestern -5198 -149 -6553 -134 -6367 -118 -1355 -97 -1169 -62 186 37
Holgate -245 -7 -349 -7 -359 -7 -104 -7 -114 -6 -10 -2
Pederson -706 -20 -860 -18 -1140 -21 -154 -11 -434 -23 -280 -56
Aialik 186 5 183 4 -105 -2 -3 0 -291 -15 -288 -58
Bear -158 -5 -1123 -23 -2968 -55 -965 -69 -2810 -148 -1845 -369
Exit -488 -14 -481 -10 -621 -12 7 1 -133 -7 -140 -28

Average Rate of 
Terminus Change (m/yr) -1047.0 -29.9 -1438.4 -29.4 -1698.0 -31.1 -391.4 -28.0 -651.0 -33.3 -259.6 -47.5

North and West flowing 
(Interior) -993.6 -28.4 -1362.7 -27.8 -1571.2 -28.6 -369.1 -26.4 -577.7 -29.0 -208.6 -35.3

South and East Flowing 
(Coastal) -1153.9 -33.0 -1589.8 -32.4 -1951.6 -36.1 -435.9 -31.1 -797.7 -41.9 -361.8 -71.9

Change (in m) 
from 1986 - 

2005(06); Second 
number is average 

annual rate of 
change (in m/yr)  

Change (in m) 
from 2000 - 

2005(06); Second 
number is average 

annual rate of 
change (in m/yr)  

Change (in m) from 
1950(51) - 1986; 
Second number is 

average annual rate of 
change (in m/yr)  

Change (in m) from 
1950(51) - 2000; 
Second number is 

average annual rate of 
change (in m/yr)  

Change (in m) from 
1950(51) - 2005(06); 

Second number is 
average annual rate 
of change (in m/yr)  

Change (in m) 
from 1986 - 2000; 
Second number is 

average annual 
rate of change (in 

m/yr)  



 

245 

Appendix E: Reporting Example – Report/Paper 
 
Note: The following is an abstract of a paper produce by Dr. Dorothy Hall ( et al. 2005). The report 
is available on-line at: http://www.easternsnow.org/proceedings/2005/hall.pdf 
 
 62nd EASTERN SNOW CONFERENCE 
Waterloo, ON, Canada 2005 

 
Changes in the Harding Icefield 
and the Grewingk-Yalik Glacier Complex 
 
DOROTHY K. HALL,1 BRUCE A. GIFFEN,2 AND JANET Y.L. CHIEN3 

 
ABSTRACT 
Glacier changes in the mountains of the Kenai Peninsula, Alaska, have been analyzed in the 
Harding Icefield and the Grewingk-Yalik Glacier Complex, many of which originate in Kenai 
Fjords National Park (KEFJ). The Harding Icefield spawns more than 38 glaciers of which some 
are tidewater and others are land-based, or wholly or partially terminate in lakes. We used Landsat 
Multispectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper Plus 
(ETM+) scenes to outline glacier areas and terminus positions on four scenes. Glacier outlines 
were done using vector segments to produce shape files for the Geographic Information System 
(GIS) analysis. Results show that most of the glaciers in the Harding Icefield have receded since 
1973, some dramatically. These results are generally consistent with results from extensive work 
done in the 1990s on the Harding Icefield by previous researchers. For this project, we derived 
GIS shape files, and from those we can calculate glacier area and terminus changes from 1973 to 
2002. We also did a classification of the 1986 and 2002 Landsat scenes to measure the areal extent 
of the two ice masses, and found that there was a reduction of 3.62%, or approximately 78 km2 

from 1986 to 2002, with most of the changes occurring in the Harding Icefield. Some issues that 
complicate the analysis include: fresh snow cover and spatial resolution differences between 
images. 
 



  

 



 

247 

AAppendixx F: Repoorting Exxample –P

 

Poster 

 



  

 



 

 

 

The Department of the Interior protects and manages the nation’s natural resources and cultural heritage; provides scientific and 
other information about those resources; and honors its special responsibilities to American Indians, Alaska Natives, and affiliated 
Island Communities. 
 
NPS 953/106490, January 2011 



 

 

 
National Park Service 
U.S. Department of the Interior 

 

 
Natural Resource Program Center 
1201 Oakridge Drive, Suite 150 
Fort Collins, CO 80525 
 
www.nature.nps.gov 

 
 

EXPERIENCE YOUR AMERICA TM 


