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1 STATISTICS AND THE PRACTICE OF ADAPTIVE MANAGEMENT

J. BRIAN NYBERG

Abstract

As adaptive management becomes more widely 
recognized as a foundation element of good land
stewardship, many resource professionals are attempt-
ing to extend its theories and principles into common
practice. They wish to conduct powerful management
experiments, to monitor the outcomes effectively and
efficiently, and to use the resulting data to make reli-
able inferences for future decisions. Most managers,
however, have little formal  training in the application
of experimental design and statistics to the problems
that they want to address through adaptive manage-
ment. This chapter sets the stage for the in-depth
discussions of key aspects of statistics in adaptive man-
agement that are presented in subsequent chapters. It
includes a working definition of adaptive manage-
ment, demonstrates the value of the application of
adaptive management to forestry issues, and explains
some of the differences between research studies and
adaptive management techniques.

1.1 Introduction

The concept of adaptive management (Holling [edi-

tor]1978) is steadily gaining wider acceptance in

forestry, especially in Canada and the United States

(e.g., Schmiegelow and Hannon 1993; Bormann et al.

1994; Nyberg and Taylor 1995; Covington and Wag-

ner [technical coordinators] 1996; MacDonald et al.

1997). As a hybrid of scientific research and resource

management, adaptive management blends methods

of investigation and discovery with deliberate manip-

ulations of managed systems. Through observation

and evaluation of the ways that human interventions

affect managed systems, new knowledge is gleaned

about system interactions and productive capacities.

This new knowledge is then applied to future deci-

sions in a cycle of continuous improvement of

policies and field practices.

Adaptive management has somewhat different

goals from research and presents challenges that dif-

fer both in scope and nature from those posed by

typical forest research studies. Consequently, design-

ing and analyzing adaptive management studies

involves more than simply transferring research tech-

niques to management problems. Scientists can play

an important role in adaptive management (Walters

1986), but it is local resource professionals who must

become the “adaptive managers” if the promise of

the concept is to be realized through its application

to a large proportion of forested lands. As part of

their everyday jobs, these managers (see above for

clarification of the term) must be able to implement

or even design studies that produce reliable informa-

tion about issues that concern or challenge them.

This suggests that resource managers might need

to use statistics in such studies. Few field-level 

managers, however, have experience in applying 

experimental designs and statistical methods, even in

The terms “manager” and “researcher” 
are used here in the following senses:

Managers (or resource managers) are responsible
for making or approving decisions about forest
resource use and conservation. Although there
are exceptions, resource managers in British Co-
lumbia usually have university or technical
institute training to the level of the undergradu-
ate degree or diploma, and are often registered
as professional foresters, agrologists, engineers,
geoscientists, or biologists. Resource managers
are usually employed by government agencies or
private forest companies. To understand the main
ideas in this report, and to be effective in imple-
menting adaptive management, managers should
have a basic academic background in statistics
and subsequent  field  experience in making or
contributing to complex resource decisions.

Researchers are applied scientists, usually from
government agencies or universities, who are re-
sponsible for conducting scientific studies of
forest ecology and management. Their goals in-
clude both furthering knowledge of forests and
explaining how human actions affect forests.  In
addition to their expertise in forestry or related
disciplines, researchers usually have post-graduate
training in statistical methods and experimental
design. To benefit fully from this report, however,
they should also have considerable experience in
conducting forest research.
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situations suited to the classical statistical techniques

taught in most universities and colleges. Further-

more, the characteristics of some adaptive manage-

ment studies make them unsuitable for many

familiar designs and methods, including analysis of

variance (ANOVA). Alternative approaches such as

Bayesian statistics and meta-analysis can be helpful in

some of these problematic cases, but most resource

managers are not familiar with these approaches.

To be informative and efficient, adaptive manage-

ment projects must be led by people who know what

options for study designs and analyses are available,

and the relative strengths and weaknesses of each.

This is a reasonable if ambitious objective for 

resource managers, whose role in adaptive manage-

ment usually includes articulating questions,

selecting among alternative courses of action, and

then implementing those actions. For the researchers

and biometricians who often advise managers on the

details of study designs, sampling, and analysis, a

more comprehensive understanding of the various

statistical techniques is required.

This report has been designed as a guide to statisti-

cal methods appropriate for adaptive management

studies, with material that should interest both man-

agers and researcher scientists. It should serve as an

introduction for some resource managers and a re-

fresher for others on statistical methods, their

strengths and weaknesses, and their suitability for

studies of different types of management problems.

For researchers and biometricians, it should provide

a refresher on classical (familiar) methods, an intro-

duction to less familiar methods, and a discussion of

the typical challenges that will be faced in applying

both to the unfamiliar situations of adaptive manage-

ment. Although all the methods discussed here have

been previously described in other texts and reports,

that material is widely scattered in the literature and

is thus not easily available to forestry practitioners.

This report brings them together under one cover

and deals directly with their application to adaptive

management of forests.

The design of studies and analysis of data—the

themes of this report—are only two components of

the much larger topic of adaptive management. The

following section explains the procedural framework

of adaptive management. For information on other

aspects, including conceptual  foundations and im-

plementation, refer to Holling (editor, 1978), Walters

(1986), Lee (1993), Gunderson et al. (1995), and Tay-

lor et al. (1997). In addition, Taylor et al. (1997)

include a comprehensive list of other references.

1.2 Towards a Working Definition

Increasing use of the term “adaptive management”

by different agencies in different settings (e.g., Lancia

et al. 1996; Namkoong 1997) has spawned various in-

terpretations and misinterpretations of its meaning.

Consequently it is for many little more than a fuzzy

concept. To bring the concept into sharper focus and

to encourage a shared understanding of adaptive

management among resource professionals in British

Columbia, Nyberg and Taylor (1995) proposed the

definition listed in the text above.

This definition suggests that adaptive management

must comprise an organized sequence of activities.

The sequence begins with a thorough analysis of the

problem being faced  and then proceeds to the cre-

ation of a management plan that is designed to speed

learning about the system. It is not complete until the

planned management actions have been implement-

ed, measured, and evaluated; and the resulting new

knowledge has been fed back into the decision-

making process to aid in future planning and man-

agement. This sequence of steps can be summarized

as a six-step process: (1) problem assessment, (2) pro-

ject design, (3) implementation, (4) monitoring, 

(5) evaluation, and (6) adjustment of future decisions.

Adaptive management is a systematic process
for continually improving management policies
and practices by learning from the outcomes of 
operational programs. Its most effective form—
“active” adaptive management—employs 
management programs that are designed to ex-
perimentally compare selected policies or
practices, by evaluating alternative hypotheses
about the system being managed. The key char-
acteristics of adaptive management include:
• acknowledgement of uncertainty about what

policy or practice is “best” for the particular
management issue;

• thoughtful selection of the policies or practices
to be applied;

• careful implementation of a plan of action de-
signed to reveal the critical knowledge;

• monitoring of key response indicators;
• analysis of the outcome in consideration of the

original objectives; and 
• incorporation of the results into future deci-

sions.
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The sequence may need to be repeated in a continu-

ing learning cycle if uncertainties remain unresolved

or new ones appear.

This report deals mainly with the second, fourth,

and fifth steps in the adaptive management process,

namely the design (thoughtful selection) of practices

to be studied, the measurement (monitoring) of re-

sponses, and the evaluation (analysis) of results.

1.3 Experiments in Adaptive Management

Adaptive management can take two different modes:

active and passive (Walters and Holling 1990). A crit-

ical feature of both modes is thorough exploration,

often through a modelling or “gaming” process, of

the potential effects of policies or practices that are

being considered for implementation. In passive ap-

plications only one policy or practice is explored,

whereas in active adaptive management multiple op-

tions are compared and contrasted. In both cases

subsequent management activities reveal, through

monitoring and evaluation of their results,  the accu-

racy or completeness of the earlier predictions. These

deliberately designed activities are “experiments” in

the broad sense of the term; that is, deliberate tests or

trials intended to provide information about the re-

sponse of the system of interest.

The notion of experimentation is central to 

adaptive management. As Lee (1993, p. 9) puts it,

“Adaptive management...embodies a simple impera-

tive: policies are experiments; learn from them.” In

fact, experimentation is the element that ultimately

distinguishes adaptive management and experimen-

tal research from other approaches to learning about

nature. These other approaches, including the retro-

spective and observational studies described in later

chapters of this report, can contribute helpful knowl-

edge to later adaptive management work, but they

are not themselves adaptive management because

they do not include deliberately planned experimen-

tal manipulations.

Experimentation is considered at some length in

this report, but it is defined here quite broadly com-

pared to many scientists’ concept of a scientific

experiment. For reasons of scale, expense,  and oth-

ers, adaptive management experiments will not

always include controls, replication, multiple treat-

ments, randomization, or other features commonly

expected of traditional scientific research. Neverthe-

less, those designing adaptive management

experiments should strive to balance practicality with

rigour so as to provide reliable information in a 

timely and cost-efficient manner. As part of the de-

sign process it is also critical to consider the statistical

methods that will be used to analyze the resulting

data. The following chapters describe methods that

can be used to enhance the value of data from studies

that pose some of the design problems listed above.

1.4 Need for Adaptive Management

Uncertainty drives adaptive management (Walters

1986). There would be little need to develop new

policies or methods if managers were dealing with

stable, predictable ecological and social systems. The

outcomes of management programs could be reliably

predicted, and standard practices could be taught to

each generation of young professionals. Adaptive

management and other approaches for dealing with

uncertainty would be of little value.

Resource managers, however, do not live in such a

world (Hilborn 1987). Uncertainties are pervasive in

their work. The major categories of uncertainty that

trouble managers when they consider the future are:

• natural environmental variability (e.g., weather,

fire, earthquakes, avalanches, volcanoes, stream

flows, genetic composition of species, animal

movements);

• human impacts on the environment through glo-

bal climate change, new technology, and the grow-

ing population;

• lack of knowledge about most aspects of the

ecosystems being managed; and

• variations in social and political goals expressed as

varying budgets, shifting policy directions, and

changing demands for commodities, services, and

aesthetic values from forests.

Given that resource managers and policy makers

are faced with such difficult challenges, what can they

do? Scientific research is one avenue for addressing

the problem of lack of knowledge, but research pro-

grams often take years to organize, carry out, and

report results. Meanwhile, resource management de-

cisions continue to be made and forests continue to

fall and regenerate under human hands. Money and

expertise for research  in forestry and other natural

resource disciplines continue to be constrained at

levels far below those needed to address many impor-

tant issues. Furthermore, scientific research is limited

in the types of questions it can answer because many

forestry practices have cumulative effects that are
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only apparent at scales of time, space, or both that

are not amenable to investigation through traditional

experimental research. For example, it is impossible

to use classical experimental methods employing

controls and replicated treatments to determine the

effects of forestry on wildlife that use huge areas,

such as caribou, or that are threatened with extinc-

tion or local extirpation, such as spotted owls.

When research, education, or personal experience

fail to provide information needed for difficult deci-

sions, managers typically turn to professional opin-

ion followed by unstructured trial-and-error

management. This approach to learning is often inef-

ficient and unreliable. Unless management alterna-

tives are carefully thought out and attention is paid

to potentially confounding factors such as biases,

random errors, and unmeasured influences of weath-

er, site, or other factors, it is often impossible to say

what really caused any observed response. This can

lead to “myths” being accepted widely due to the

strongly held opinions of one or a few people

—opinions that are later found to be wrong.

For example, poorly conceived and unsuccessful

field trials may have been the genesis of the formerly

strong bias among foresters in central British Colum-

bia against partial cutting in high-elevation stands of

spruce (Picea spp.) and subalpine fir (Abies

lasiocarpa). Until a few years ago, many believed that

partial cutting was unsuitable in any and all spruce-

fir stands. This belief was based largely on reports

that stands that had been partially cut before 1970

had all been subsequently windthrown or infested by

insects or disease. Recent partial cutting trials have

shown, however, that spruce-fir forests can be wind-

firm and healthy (for several years, so far) if the

harvest intensity and site and stand conditions are

appropriate.

In contrast to the basic trial-and-error approach,

adaptive management is a much more organized and

powerful approach to learning from experience. 

Its greatest contribution to learning may lie in the

notion of making explicit predictions of the expected

outcomes of management actions, then comparing

actual outcomes to the predictions before adjusting

subsequent actions and the models used to make the

initial predictions. By designing management actions

as experiments stronger inferences can be drawn

from their outcomes, reducing the chance of generat-

ing false notions about forest functions and impacts.

Other potential benefits of adaptive management in-

clude more reliable answers to questions about

effects of forestry over large geographic areas and

long time frames; insight into the causes and process-

es of system responses; shared understanding among

scientists, policy makers, and managers; systematic

resolution of conflicts over policies and practices;

and efficient use of staff and budgets to address clear

objectives (Holling [editor] 1978; Lancia et al. 1996;

Taylor et al. 1997). All of these benefits contribute to

accelerated learning and to the ultimate goal of im-

proved decisions and forest management in future.

As an example of a potential application of adap-

tive management, consider the problem that resource

managers face when they examine the question of

how to protect water quality and downstream fish

habitat in small headwater streams, while still allow-

ing some timber harvesting to take place nearby. This

situation creates a common and difficult problem in

areas of British Columbia where small streams are

numerous, slopes are steep, and timber values are

high. The weight of expert opinion and of evidence

from larger streams suggests that some streamside

vegetation must be retained to provide shade and leaf

litter, prevent sedimentation, and prevent degrada-

tion of bank and channel structure. If large trees are

left standing in a narrow (<30 m) riparian strip after

logging of areas near small streams, however,  they

are often blown down by wind, which may cause se-

rious soil disturbance and bank damage as their root

wads pull up. The loss of potential timber revenue in

the fallen trees is exacerbated by the risk of insects

(especially bark beetles) colonizing riparian blow-

down and infesting other stands. Therefore, simply

leaving narrow reserve zones of unlogged timber

along all headwater streams is often not economically

or ecologically appropriate.

Because past experience and scientific research

have not resulted in a reliable approach to managing

riparian areas adjacent to the smallest streams, what

can resource managers and scientists do? If the situa-

tion allowed, the easy answer might be to cease all

logging within, say, 50 m of such streams. But agency

direction and societal demands do not allow such  a

“hands off” approach. Resource managers could in-

stead postpone logging in all such areas while waiting

for more intensive research to be done; or they could

simply pick one or more methods and carry on log-

ging while hoping for the best. Neither of these

alternatives is a suitable response in times of restrict-

ed research funding and rising public expectations

for resource stewardship.

By designing management actions as experiments,
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as part of adaptive management, logging could pro-

ceed and at the same time yield important informa-

tion on key indicators of stream conditions, fish and

wildlife habitat, and responses of trees and other veg-

etation. Through modified logging operations man-

agers could apply several alternative treatments, such

as various widths of unharvested reserve zones or dif-

ferent  degrees of partial cutting of riparian zones, or

both. Among other benefits, such a program might

reveal the cumulative effects on watershed dynamics

and wildlife habitat of large and widespread treat-

ments—effects that could not be studied in a more

traditional, small-scale research experiment.

Because adaptive management has attributes com-

mon to scientific research and sometimes draws on

research techniques such as controlled experiments,

some may assume that an ambitious program of

adaptive management would obviate the need for re-

search. They would be wrong, for intensive research

is far more suited than adaptive management to 

answering some questions. Intensive research can

produce deeper knowledge of selected system

processes, such as mechanisms of physiological re-

sponse in seedlings exposed to varying temperature

and moisture regimes, than could adaptive manage-

ment. It may also be the only approach suitable for

sorting out the interacting effects of a number of fac-

tors on some dependent variable. This in-depth

knowledge may be crucial for building models used

to forecast how the overall system will respond to

management. 

Adaptive management is most suited to selecting

amongst alternative courses of action, such as differ-

ent partial cutting treatments that could be applied to

a particular site and stand type. It can also be helpful

for testing the modelled responses of managed sys-

tems against real-world results of management,

across a much wider range of conditions than could

any practical program of intensive research.

In fact, research and adaptive management com-

plement each other, so that the application of both

approaches to a problem will almost certainly lead to

better results than use of either alone. Adaptive man-

agement can reveal management “surprises”;

research can help to explain them.

Adaptive management may be valuable to anyone

facing substantial uncertainty about the best course

of management action, as long as that person has or

can obtain the authority to implement a program

that leads to learning. In cases where political or

other pressures have produced moratoriums or other

forms of management “gridlock,” such authority

may not be easily obtained.1 Where management in-

terventions are going to proceed (e.g., when delays

carry unacceptable social or ecological risks), then

much can be gained by treating them as opportuni-

ties to learn. In some cases the only way to discover

how an action will affect a system is to actually try it

(Walters 1986). This is especially true for complex,

large-scale systems and effects of cumulative actions.

Although the emphasis in this report and most

other literature is the application of adaptive man-

agement to natural resources, the approach is equally

valuable for other fields. Adaptive management

shares much of its theoretical basis with the concepts

of continuous improvement in business (Deming

1986; Walton 1986), adaptive control process theory

in engineering, and operations research and man-

agement (McLain and Lee 1996). Wherever an

organized, experimental approach to difficult man-

agement questions is needed, adaptive management

could be of help.

1.5 Role of Statistics

In forest management, data and mathematical analy-

ses are central to management decision-making, and

statistical methods play several important roles.

Modern forestry is based to a great extent on statisti-

cal descriptions of the characteristics of forests and

forest products, such as timber inventories; and on

inferences about the expected future conditions of

forests and habitat, including growth and yield rela-

tions. Statistics are also crucial in understanding how

forest resources respond to human and natural per-

turbations, because they allow us to distinguish

“treatment” effects from random and sampling 

errors.

In adaptive management, statistical methods also

play a critical role. Adaptive managers will often want

to measure the initial state of the systems they ad-

minister, and they will usually need to monitor

trends over time that show the system’s responses 

to management policies or practices. In evaluating

outcomes, they will want to draw inferences about

the causes of any changes that are detected in the 

1 It can be argued that adaptive management is the best way to resolve gridlock based on mistrust of resource managers by public groups or
other stakeholders. The same is true where the impasse arises from competing ideas and values, fear of consequences, or other concerns
rooted in lack of knowledge of the forest’s responses to management.
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system to decide how and when to adjust actions in

the future or at comparable sites. In all of these appli-

cations statistical techniques can provide important

insights into both qualitative and quantitative mea-

surements. Statistical analyses allow managers to

discern small but important differences in data sets,

and to distinguish patterns of correlation and inter-

action from background variation and sampling

errors.

Careful design of management experiments or op-

erational trials is often the first step towards gaining

data from which reliable inferences can be drawn.

Whenever possible, adaptive management studies

should include experimental controls, unbiased sam-

pling and allocation of treatments, and replication of

treatments. However, it is important to recognize

that the operational scale and setting of adaptive

management studies may constrain the level of statis-

tical rigour that can be achieved. It may be

impossible, for example, to find multiple areas that

are sufficiently homogeneous to serve as replicates of

operational-scale treatments. In other cases, it may

not be feasible to meet some of the critical assump-

tions of the classical methods of statistical analysis,

including random allocation of treatments, homo-

geneity of variance, and independence of sample

variances. Perhaps even more significant is the fact

that “frequentist” statistical methods such as

ANOVA and regression analysis are not designed to

answer common management questions such as

“What is the probability of a 50% increase in wind-

throw after partial cutting?”

As a result, classical methods will be useful in some

adaptive management studies but not in others.

When classical methods are not appropriate, a pro-

posed study may still be worthwhile if alternative

types of analyses can reveal important insights from

the data.

1.6 Structure of the Report

The next eight chapters provide an overview of prin-

ciples and methods for a wide range of approaches to

experimentation and data analysis in operational

forestry settings. Beginning with a review of basic

concepts of experimental design and classical meth-

ods of statistical analysis in Chapter 2, the report then

covers other common approaches to studying natural

systems (“Studies of Uncontrolled Events” and “Ret-

rospective Studies” in Chapters 3 and 4, respectively).

Chapter 5 (“Measurements and Estimates”) and

Chapter 6 (“Errors of Inference”) discuss common

mistakes in interpretation of data and statistical re-

sults, and suggest ways to avoid them. Chapters 7 and

8 give an overview of Bayesian statistics and decision

analysis, both of which are unfamiliar to many re-

source managers but which have great potential value

in adaptive management. Chapter 9 synthesizes the

methods discussed in this report and presents a sim-

plified user’s guide to the value of different types of

information in adaptive management.

Each of the next seven chapters explains what a

statistical method can do for a project leader, when it

should be used, and what its limitations are. The au-

thors have limited the use of formulas, mathematical

notation, and statistical jargon as much as possible,

without making the information superficial. Never-

theless, some of the concepts and methods discussed

will be unfamiliar and challenging, and some sections

may have to be read several times. Most of the tech-

nical terms are defined in the glossary at the back of

the report. Since this handbook is not comprehensive

we encourage readers wanting more detailed infor-

mation to consult the references listed at the end of

each chapter. Most importantly, project leaders

should consult throughout their projects with biome-

tricians or experienced researchers to ensure that

powerful and cost-efficient methods are used.

Finally, we recognize that there are approaches to

generating and analyzing data that this report does

not cover. For example, some readers will already be

familiar with the methods referred to as “combining

information” (Draper et al. 1992) and “meta-analy-

sis” (Fernandez-Duque and Valeggia 1994). Because

the focus is on forestry, there is little attention to the

quantitative methods for fish and wildlife population

analysis that are treated in many adaptive manage-

ment papers (e.g., Walters 1986). Readers should also

remember that this report addresses only one of the

many issues that need to be considered if adaptive

management is to succeed widely. Greater challenges

may lie in social and institutional aspects of imple-

menting adaptive management, such as the risk

aversion of some managers (Walters and Holling

1990), inadequate institutional structures and 

stakeholder participation (McLain and Lee 1996), in-

complete or ineffective implementation of the study

plan, (C.J. Walters, pers. comm., 1995) uncertain or

inadequate funding for monitoring and analyses

(McLain and Lee 1996), lack of commitment to 

reporting (Taylor et al. 1997), and institutional

“memory loss” about what has been learned 
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(Hilborn 1992). These problems too need careful

consideration, innovative thinking, and personal

commitment to shared learning.

With the stage now set, the remainder of this re-

port presents ideas and methods that should be

valuable to anyone who uses or needs to use quanti-

tative analyses in forestry. Throughout, the focus is

on designing more powerful and informative man-

agement experiments. There is meat, however, for

both statisticians and experienced researchers. We

hope that the ideas in the following chapters will con-

tribute to more effective, efficient learning in many

different situations.
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2 DESIGN OF EXPERIMENTS

AMANDA F. LINNELL NEMEC

Abstract

Experimentation is essential for making well-informed
decisions about the management of complex forest
ecosystems. Although experiments in forest manage-
ment are generally more complicated than the typical
research experiment, many issues, such as protection
against bias, repeatability of results, efficient use of 
resources, and quantification of uncertainty, are the
same. Therefore, managers, as well as researchers, can
benefit from a good understanding of the principles of
sound experimental design. This chapter reviews some
fundamental concepts of experimental design and the
assumptions that provide a basis for classical statistical
inference. The importance of clear objectives and the
need for replication, randomization, and blocking are
emphasized. Practical limitations of the classical ap-
proach, as it applies to the design of adaptive
management experiments, are discussed briefly.

2.1 Introduction

Successful management of our forests is a dynamic

process in which current programs are continually

monitored and adapted as new information becomes

available and policies change. Because the outcome

of decisions is always uncertain, managers often ex-

periment with new strategies to help determine the

best course of action. Although such tests do not 

necessarily conform to the standards of a strictly con-

trolled research experiment, many issues, such as

elimination of bias, repeatability of results, efficient

use of resources, and quantification of uncertainty,

are the same. For this reason, managers, as well as re-

searchers, can benefit from a good understanding of

the principles of sound experimental design. This

chapter reviews the theory of classical experimental

design and the assumptions that provide a basis for

statistical inference from experimental data. Applica-

tion of traditional theory to the design of adaptive

management experiments is considered.

The literature on the design of experiments is vast.

Classical books, such as The Design of Experiments by

Fisher (1935), The Design and Analysis of Experiments

by Kempthorne (1952), Experimental Designs by

Cochran and Cox (1957), and Planning of Experiments

by Cox (1958), remain valuable sources of guidance

and are recommended reading. Since the early work

of Fisher, the number of books and papers on experi-

mental design has exploded, as indicated by the list of

more than 200 references assembled over 10 years ago

by Steinberg and Hunter (1984). During the last 10

years, improvements in computer technology have

encouraged statisticians to improve and expand their

efforts even more (e.g., refer to Atkinson 1982, 1988,

1996; Bates et al. 1996), so the trend persists. Unfortu-

nately, much of the recent work is inaccessible to

managers because the language is overly technical

and difficult to understand—a concern expressed by

Pike (1984) and several others who discuss the review

by Steinberg and Hunter (1984). Moreover, there is

usually a long delay before new methods are accepted

and  incorporated into popular statistical software

packages. Therefore, readers seeking practical infor-

mation on the design and analysis of experiments are

advised to consult general textbooks (e.g., John 1971;

Box et al. 1978; Steel and Torrie 1980; Mead 1988;

Montgomery 1991; Milliken and Johnson 1989, 1992)

and papers written specifically for managers or ap-

plied scientists (e.g., Stafford 1985; Penner 1989). 

2.2 Definitions

An experiment is the manipulation of a population

or system (e.g., partial cutting of a forested area) as a

means of gathering information. The source of ex-

perimental material (e.g., trees, vegetation, wildlife)

is called the experimental population. In an ideal ex-

periment, the experimental population is the same as

the target population, or forest ecosystem, to which

the results are eventually to be applied. In practice,

the two populations necessarily differ in time and

perhaps space or scale as well.

In a typical research experiment, the experimental

population might consist of: the trees in a nursery; a

collection of relatively small plots of land, which are

distributed over one or more geographic areas; or

any other set of entities. Each tree, plot, or entity is

an experimental unit that receives one of several

treatments (e.g., levels of fertilizer, partial cutting or

no cutting). These units are generally too large to

measure in their entirety and are subdivided into a

set of smaller sampling units (e.g., branches or 

subplots) from which a suitable subset is selected for
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measurement. To monitor trends or other effects of

time, measurements are repeated at suitable intervals

over a period of months or years.

The results of research experiments are of limited

value for making inferences about the effects of treat-

ments or actions applied to management units. Man-

agement units (e.g., a forest stand or polygon, a

mapsheet, or a timber supply area) are areas of forest

that are convenient for administration or cost-

effective operations, and therefore are considerably

larger than research plots. The impact of disturb-

ances created by large-scale operations in these units

cannot, in general, be deduced from small research

plots, where effects such as fragmentation, soil ero-

sion, and changes in vegetation or water quality

might not be evident. Proponents of adaptive man-

agement (e.g., Walters 1986; Walters and Holling

1990; Taylor et al. 1997) argue that successful man-

agement of complex biological systems requires full-

scale testing. These experiments, which are known as

adaptive management experiments, are used to test

entire management plans, with the management unit

serving as the experimental unit as illustrated in Fig-

ure 2.1. In an adaptive management experiment, one

or more systems are monitored regularly over time

and decisions about treatments or other interven-

tions are made as the experiment progresses. Because

management units are large and complex, they must

be broken down into suitable sampling units for ob-

servation and evaluation. In this respect, adaptive

management experiments resemble research experi-

ments, although the number and type of sampling

units might differ.

2.3 Objectives

The first requirement in any experiment is a clear

statement of the goals. Paraphrasing Box et al. (1978,

p. 15), the purpose of an experiment must be clear

and agreed upon by all interested parties; there must

be agreement on what criteria will determine whether

the objectives have been accomplished; and, finally,

in the event that the objectives change during the

course of the experiment, an arrangement must be

made by which all interested parties are informed of

the change, and agreement on the revisions can be

reached. The importance of these points cannot be

overemphasized. Without clear objectives, the out-

come of an experiment is predictable: ambiguous

results and wasted time, money, and valuable (possi-

bly irreplaceable) resources. Unnecessary waste is

always unacceptable. However, when large manage-

ment units are involved, the costs can be devastating.

Defining the objectives of an experiment requires

careful consideration of the components that make

up the system under study, the forces that drive the

system, and the best means of extracting information

about both. In a small-scale research experiment, at-

tention might reasonably be restricted to relatively

simple questions—for instance, how does tree

growth differ under various controlled conditions?

The objectives of adaptive management experiments

typically concern more complicated issues—such as,

how is “biodiversity” affected by forest practices? 

In both cases, general scientific concepts (e.g., tree

growth and  biodiversity) must be stated in terms of

well-defined, measurable quantities (e.g., height or

diameter increment, number of species). These

quantities provide a concrete basis for planning  

experiments and for analyzing the results. 

The objectives of an experiment are often posed as

hypotheses to be tested or parameters to be estimat-

ed. Special care must be taken to ensure that the

hypotheses are sensible and that the parameters are

useful for making decisions. In classical hypothesis

testing, a so-called null hypothesis is retained unless

there is convincing evidence to the contrary. Based

on the outcome of the experiment, the null hypothe-

sis is either retained or rejected in favour of a specific

alternative hypothesis. (See Anderson, this volume,

Chap. 6, for a discussion of the associated errors of

inference.) The null and alternative hypotheses

should be defined so that both outcomes (i.e., accep-

tance or rejection of the null hypothesis) represent

reasonable and informative conclusions that would

 . Relationship between the study units in a
typical research experiment (left) and an
adaptive management experiment (right).

Forest ecosystem

Experimental unit

Management unit
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justify the cost of the experiment. Implausible null

hypotheses should be rejected at the outset and re-

placed with something more relevant. For instance,

no sensible person would ever accept the hypothesis

that partial cutting has no impact on forest ecosys-

tems; a more reasonable hypothesis is that partial

cutting does not reduce a key parameter (e.g., the

number of bird species) below some critical value.

The alternative hypothesis is equally, if not more, im-

portant than the null hypothesis. An experiment that

is designed to detect one type of departure from a

null hypothesis might be completely ineffective in de-

tecting other types of deviations. For example, an

experiment to evaluate short-term impacts of partial

cutting will generally provide little information about

long-term effects.

2.4 Principles of Experimental Design

An experimental design is a detailed plan describing

all aspects of an experiment (see Bergerud 1989b).

Most experimental designs include a sampling de-

sign, which describes the nature of the sampling

units, the number of sampling units, the method of

selection, and the variables to be measured. The ex-

perimental design depends on the purpose of the

experiment and thus “the entire reasoning process by

which the experimenter really hopes to link the facts

he wishes to learn from the experiment with those of

which he is already reasonably certain” (Mandel 1964,

p. 2). Experimental designs are characterized by three

main components: (1) the factors and factor levels to

be investigated, (2) the amount and type of replica-

tion, and (3) the method of randomization, including

any blocking. Each of these elements should be con-

sidered carefully to assure that all data pertaining to

the objectives are collected (and can be analyzed) and

that the data be collected in the most efficient way

(i.e., optimum results for a minimum cost).

2.4.1 Experimental factors

Experimental factor means any treatment1 or variable

(e.g., harvesting method, species composition, age)

that is controlled in an experiment, either by physi-

cally applying a treatment to an experimental unit or

by deliberately selecting a unit with a particular char-

acteristic. A covariate may be any other variable that

is measured but not influenced by the experiment.

Experiments are distinguished from observational

studies by the investigator’s ability to control the 

experimental conditions. (Refer to Eberhardt and

Thomas 1991, and Schwarz, this volume, Chap. 3, for

a discussion of the differences among experiments,

observational studies, and various other types of

study.) This control helps justify inferences about

cause and effect. For example, to determine the best

method of partial cutting to minimize the impact on

wildlife, various levels of volume removal might be

tested. This approach would probably be more infor-

mative than simply measuring volume in existing

partial cuts and observing a correlation with number

of animals. Correlation proves little about cause and

effect because both variables might be correlated with

a third variable (e.g., elevation). An interesting dis-

cussion of inferences about cause and effect can be

found in Holland (1986). 

Usually many types and levels of factors might be

investigated in an experiment. These must be selected

carefully to meet the study objectives. A simple ex-

periment might have only one relevant factor (e.g.,

method of logging), which has relatively few prede-

termined values or levels (e.g., clearcutting, partial

cutting, or no cutting). An experimental design that

involves only one such factor is called a one-way de-

sign with a fixed factor (effect). A design with two

such factors is called a two-way design, a design with

three factors is a three-way design, and so on. In

some applications, the factor levels are not known

ahead of time (although the number of levels is fixed)

but are randomly selected from a well-defined popu-

lation of levels. Such factors are known as random

factors (effects). For instance, a manager might want

to compare bird diversities in a random sample of 20

white pine stands from a particular site series. Here

stand is a random factor with 20 levels. Factors with a

continuum of possible values (e.g., age, diameter),

which commonly occur in regression designs, are

called continuous factors or simply variables.

Two or more factors can occur in various combi-

nations. If an experiment includes every level of one

factor in combination with every level of the other

factor(s) then the factors are crossed and the design is

called a factorial design. The advantages of factorial

designs over designs that vary one factor at a time are

twofold: efficient replication and estimates of interac-

tions. In some cases, the set of possible levels of one

factor depends on the level of another, in which case

the former is said to be nested in, rather than crossed

1 The term “treatment” will hereafter refer to a particular set of conditions, an action, or an entire management strategy.
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with, the latter. The (relative) moisture level of a

stand might, for example, be classified differently de-

pending on the subzone in which the stand is located.

Most well-designed experiments include a control or

standard by which the effectiveness or impact of

treatments can be judged. In a one-way design, the

control might be one level of the treatment (e.g.,

clearcut, partial cut, and an uncut control), while a

two-way factorial design might include a separate

control (e.g., clearcut with and without mechanical

site preparation, partial cutting with and without site

preparation, and an uncut control with no site prepa-

ration). Bergerud (1989a) describes the analysis of the

latter type of design.

The overall effect of a factor—that is, the average

effect for all levels of the other factors—is called its

main effect. If the effect of one factor depends on the

level of one or more other factors then there is an in-

teraction among the factors. A certain amount of

fertilizer might, for example, increase the height of

one species but have a smaller, or even opposite, ef-

fect on another species; in this case, there is an

interaction between species and fertilizer. Factorial

designs allow an investigator to study many interac-

tions in the same experiment. However, if some

combinations are omitted for any reason then certain

main effects or interactions may be inseparable from,

or confounded with, others. Thus the magnitude of

confounded effects cannot be estimated. In such cir-

cumstances, the experimenter must be sure that the

confounded effects are of little or no interest, or can

be assumed to be negligible.

2.4.2 Replication

Replication, a standard means of validating scientific

findings, is a cornerstone of the theory of experimen-

tal design as laid down by Fisher (1935). Experimental

conditions are replicated when the same combina-

tion of factors occurs in more than one experimental

unit. This replication provides an estimate of the ex-

perimental error, which is any variation that cannot

be explained by the experimental factors (e.g., sam-

pling or measurement error, and natural variation

among the experimental units). In the absence of

replication, there is no way, without appealing to

nonstatistical arguments, to assess the importance 

of observed differences between the experimental

units. 

The type of replication should be consistent with

the objectives. The experimental units should, there-

fore, be as similar as possible to the elements of the

target population. For instance, test sites should be

selected from the same geographic area as the target

population and treatment plots should be compara-

ble in type and size to management units. Experi-

mentation at a single site limits the applicability of

results to a small geographic region, while failure to

identify the appropriate unit of replication results in

pseudoreplication (Hurlbert 1984; Bergerud 1988,

1991) and possibly erroneous conclusions about the

nature of an effect.

In addition to selecting the size and type of repli-

cate, the optimum number of experimental units

(and sampling units) must be determined. Sample

sizes should be large enough that definitive conclu-

sions about the size of an effect or the validity of a

hypothesis can be made (i.e., parameter estimates

must be sufficiently precise and tests of hypotheses

must be decisive). Simple sample size calculations

provide an estimate of the minimum number of

replicates and sampling units needed to meet this

goal (see Nemec 1991; Bergerud 1992). If the required

sample size is unrealistic, because of the high cost of

treatment or sampling, then the objectives and design

of the experiment should be re-evaluated to deter-

mine whether an observational or retrospective study

(see Schwarz, this volume, Chap. 3, and Smith, this

volume, Chap. 4) might be more cost effective.

2.4.3 Randomization and blocking

Randomization occurs when treatments are random-

ly assigned to the experimental units. Like replica-

tion, randomization is an essential element of 

good design. It helps minimize the risk of bias by 

ensuring that all unmeasured factors (e.g., soil mois-

ture, nutrients, prevalence of root disease) are more

or less evenly distributed among the treatments, or

“randomized out” of the experiment. Thus each

treatment is expected to be assigned to an approxi-

mately equal number of wet and dry sites, nutrient-

rich and nutrient-poor sites, sites with low and high

levels of root disease, and so on. 

Random assignment of treatments can be 

accomplished in a variety of ways. In a completely

randomized design, treatments are assigned by 

picking units at random from the experimental pop-

ulation. For instance, if there were two treatments

and 20 experimental units (10 replicates per treat-

ment) then the units might be numbered from 1 to

20, with 10 numbers picked at random to determine

which units receive the first treatment and the 

remainder receiving the second. Sometimes 
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experimental units have a variety of origins (e.g., dif-

ferent geographic regions) and therefore exhibit

considerable inherent variability. In such situations, a

substantial reduction in the experimental error can

often be achieved by separating the units into homo-

geneous groups, or blocks, according to origin, or

some other factor. Treatments are then randomly as-

signed within each block. This is a form of restricted

randomization because each treatment is constrained

to occur a fixed number of times in each block. In a

completely randomized design, the randomization is

unrestricted, which might result in a very uneven dis-

tribution of origins or other attributes among the

treatment groups. Many other designs with some

form of restricted randomization exist, including

split-plot designs (which impose constraints on the

assignment of treatments to two types of experimen-

tal units: main plots and subplots), Latin squares,

and lattice designs. Refer to Cochran and Cox (1957)

and Anderson and McLean (1974) for more informa-

tion about these and other designs. 

Random sampling is another way of avoiding bias

when factors, such as species or age, cannot be as-

signed. Experimental units should be randomly

chosen from the experimental population and sam-

pling units should likewise be selected at random

from the experimental units. Random samples, un-

like haphazard samples or judgement samples

(samples judged to be “representative” by an expert

who makes the selection), have known statistical

properties. This allows the precision of a result to be

estimated from the sample—something that is not

possible with non-random sampling. For further dis-

cussion of the topic, see Deming (1960, pp. 30–33)

and Schwarz (this volume, Chap. 3).

Randomization and random sampling are closely

related ideas leading, in many cases, to the same

mathematical models and equivalent data analyses

(Feinberg and Tanur 1987; Smith and Sugden 1988).

For instance, randomization with blocking is analo-

gous to stratified random sampling, and split-plot

designs are comparable to cluster sampling. Despite

the parallels, randomization is traditionally discussed

in connection with experimental design, while issues

relating to sampling design (e.g., type and number of

sampling units, method of sampling) are reserved for

discussions of observational studies. For more infor-

mation on the latter subject refer to Schwarz (this

volume, Chap. 3).

Randomization is one of the simplest ideals to

achieve in both small- and large-scale experiments.

The process of randomly assigning treatments to

units is the same regardless of the size or nature of

the unit—tree, research plot, or stand. All that is re-

quired is a list of units and a random number

generator. Despite its importance in eliminating bias

and its ease of application, randomization is some-

times resisted on grounds that “environmental” or

“logistical” constraints prohibit its use, or that it is

“impractical.” Although it might be tempting to as-

sign certain treatments (or controls) to stands that

are most difficult to harvest, or to stands that are

most visible from neighbouring communities, such

practices are likely to influence the outcome and thus

invalidate any inferences about cause and effect (refer

to Section 2.5). If randomization of treatments is re-

ally not practical or possible then the whole purpose

of the experiment should be reconsidered.

Random selection of experimental units and sam-

pling units can be more difficult to achieve than

random assignment of treatments. For instance, how

can a random sample of 25 trees be selected from a

stand without compiling a complete list of trees and

their locations?  Likewise, how can a random sample

of needles be selected from a tree?  Various ingenious

solutions have been proposed, such as the use of ran-

dom bearings and random distances to locate sample

trees and randomized-branch sampling to sample in-

dividual trees (Gregoire et al. 1995). Thus both

randomization and random sampling (or a close ap-

proximation) are feasible in most experiments.

2.4.4 Other considerations

Replication, randomization, and blocking are usually

recognized as the most important principles of good

design. These have been expanded over the years (see

Atkinson 1982, 1988; Federer 1984; Steinberg and

Hunter 1984) to include such other features as or-

thogonality (which implies that all main effects and

interactions of the experimental factors can be esti-

mated), balance (equal sample sizes), efficiency

(minimum cost), and, in recent years, optimality

(minimum variance). Efficiency and optimality,

which help ensure maximum precision for a fixed

sample size, are likely to remain important as long as

money and resources are scarce. As technology con-

tinues to improve, the emphasis on orthogonality

and other computational issues is expected to dimin-

ish. Mead (1990) has, for example, suggested that the

need for orthogonality, which excludes a large class

of potentially useful designs, primarily because of nu-

merical complexity, should be re-evaluated in the
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light of present computing power. As the role of ex-

periments continues to evolve, new criteria and

principles will undoubtedly emerge (see Section 2.6). 

Successful experimentation depends on more than

the choice of factors and the use of appropriate ran-

domization, replication, and blocking. Many prac-

tical details must also be considered. All pertinent

measurements of the experimental (sampling) units

must be identified, appropriate field procedures and

data collection forms must be developed, and provi-

sion must be made for adequate supervision of the

data collection. In large-scale studies, coordination

and optimization of procedures are especially impor-

tant. For a checklist of these and other aspects of the

planning and execution of a study, refer to Sit (1993).

2.5 Statistical Inference for Experiments 

Statistical inference and experimental design are

closely linked. Design determines the kind of statisti-

cal inferences that are possible, while consideration

of the proposed method of analysis almost always in-

fluences design (e.g., sample-size calculations depend

on the hypothesis testing procedure or estimation

method that will be used). In fact, failure to contem-

plate how the data will be analyzed invariably results

in a poor design.

All statistical inferences are based on a set of as-

sumptions that links the data to the experimental

population via the design. Thus inferences are neces-

sarily confined to the experimental population.

Because the relationship between experimental and

target populations is unknown, extrapolation to the

latter is more or less conjecture and should be viewed

with caution, particularly when the gap between 

experimental and target populations is large. The 

validity of statistical inference in an experimental set-

ting is discussed more fully by Deming (1953, 1975),

Box et al. (1978, Chap. 1), and Hahn and Meeker

(1993).

Analysis of variance (ANOVA) methods are com-

monly applied to experimental data, so much so that

discussions of experimental design are often more

about ANOVA than fundamental issues of design.

Both are concerned with sources of variation and the

estimation of experimental error. The basic premise

of ANOVA is that the observed variability in experi-

mental data can be attributed to a finite number of

identifiable sources, including factors under the con-

trol of the investigator, uncontrolled experimental

errors, and various interactions. A simple, one-way,

fixed-effects design has a single experimental factor

(e.g., harvesting method) and a single source of 

experimental error (e.g., inherent variability in the

stands that are treated). A split-plot design has two

sources of experimental error: variation among main

plots and variation among subplots. Proper data

analysis is possible only when the identification and

classification of the factors by type (e.g., fixed or ran-

dom, nested or crossed) is consistent with the design.

Any restrictions on the randomization, which are im-

posed by design (e.g., blocking), must be duly noted

by the inclusion of appropriate error terms (a theme

emphasized by Anderson and McLean 1974).

The purpose of an ANOVA is to make inferences

about effects attributable to experimental factors

(refer to Sit 1995 for more information), while taking

into account uncertainty caused by errors. To do this

the data are assumed to be generated by a probability

model that includes all the relevant effects and has

three key assumptions: (1) selection of the experi-

mental units and assignment of treatments are

independent of the response variables of interest, 

(2) all random effects and experimental errors are

mutually independent, and (3) random effects and

experimental errors attributable to a common source

are identically distributed as (normal) random vari-

ables with a mean of zero. The first assumption is

often not stated explicitly but is crucial for making

causal inferences (refer to Holland 1986 for a mathe-

matical explanation of this fact). If the variables of

interest somehow influence, either directly or indi-

rectly, which experimental units receive a particular

treatment, then the potential for bias is clear (e.g., as-

signment of treatment on the basis on slope, aspect,

density of trees, or any other variable that might af-

fect tree height precludes inferences about the effect

of treatment on height). Randomization and random

sampling are the only effective means of eliminating

this source of bias.

Independence among errors and random effects is

another important assumption of ANOVA. There are

two common departures from this condition: tempo-

ral and spatial autocorrelation. In forestry studies,

correlation among repeated measurements of the

same experimental unit (temporal autocorrelation)

and correlation among units in close proximity (spa-

tial autocorrelation) are likely occurrences. The

possibility of autocorrelation can sometimes be

avoided by an appropriate choice of design (e.g., by

ensuring that the sampling units are far apart) or it

can be taken into account by adopting a suitable 
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spatial or time-series probability model (refer to

Nemec 1996)

Formal statistical inference based on ANOVA

methods (e.g., F-tests, computation of confidence in-

tervals) requires knowledge of the distributional

properties of the random effects and experimental er-

rors. The usual assumption is that all random effects

or experimental errors associated with a specific

source have the same distribution, which is generally

assumed to be normal with a mean of zero and a ho-

mogeneous variance. The impact of departures from

these assumptions varies depending on the type of

departure and on the sample size. Minor deviations

from normality have little impact on inferences

about fixed effects, especially when the sample sizes

are large. Tests for random effects tend to be more

seriously affected. Heterogeneous error variances can

distort P-values, although the degree of distortion

depends on the range of variances. Serious depar-

tures from normality or homogeneity can sometimes

be identified and corrected; some suggestions are

outlined by Snedecor and Cochran (1967, Chap. 11).

Alternatively, robust or nonparametric methods can

be used. Failure to adjust for lack of independence

(autocorrelation) tends to exaggerate effects when

the correlation is positive, or understate effects when

the correlation is negative. 

2.6 Advantages of Classical Experimental Design

The “controlled experiment is in common wisdom

the most decisive of tests” (Susser 1994, p. 831). By

controlling both the levels and combinations of fac-

tors applied to the experimental material, the

investigator can make much stronger inferences

about causal relationships and interactions than

would otherwise be possible. Replication, randomiza-

tion, and blocking serve three important purposes:

elimination of systematic error (i.e., bias), quantifica-

tion of uncertainty, and reduction of uncontrolled

experimental error. Because these three goals are rel-

evant to any scientific investigation, many parallels

can be found between experimental design and the

design of a survey or an observational study (see

Schwarz, this volume, Chap. 3). Two examples men-

tioned previously are randomization and random

sampling to eliminate bias, and blocking and stratifi-

cation to improve precision; refer to Feinberg and

Tanur (1987) and Smith and Sugden (1988) for 

a discussion of these and other similarities and 

differences.

Classical experimental design also provides a

framework for ANOVA, analysis of covariance, 

regression methods, and other types of statistical

analysis. This framework allows investigators to esti-

mate components of variation, and, beyond that, to

make formal statistical inferences about their signifi-

cance. Hypothesis testing has been emphasized in the

past but confidence intervals, which are often more

informative because they provide an estimate of the

size of an effect, are just as easily constructed. The

usefulness of ANOVA—both the underlying models

and the components-of-variation approach—cannot

be disputed. The models are very versatile. Simple

forms of temporal or spatial autocorrelation can, for

instance, be accommodated by repeated-measures or

split-plot models. However, the usual  ANOVA as-

sumptions (e.g., normality) are untenable in some

situations (e.g., if the data are discrete). This is a limi-

tation of the probability model, not of the classical

approach to design. Although ANOVA models and

experimental design are closely linked, the two

should not be equated. Other models (e.g., log-linear

models for categorial data, nonparametric models)

and methods of analysis (e.g., regression analysis)

might be applicable when ANOVA models are not.

In addition, new models and methods continue to be

developed, many of them for classical designs.

2.7 Experimental Design for Adaptive Management

An experiment is conducted to answer one or more

questions. In a research setting, the questions tend to

be relatively simple. Does a new method of storage

promote better short-term survival of seedlings than

an established method?  Is there any difference in the

growth of two species of seedlings, 5 years after 

planting?  Are planted trees more susceptible to root

disease than naturally regenerated trees?  The ques-

tions confronting managers are likely to be

considerably more challenging, involving such com-

plex issues as maximization of sustainable yield,

avoidance of unnecessary risk, economic efficiency,

and economic stability (see Walters 1986, Chap. 2).

To limit these problems, thereby making them more

amenable to solution by experimentation, a manager

must: (1) identify key factors for analysis: what are

the main factors that distinguish strategies?  which

factors can be controlled? (2) consider timing: over

what time period and how frequently should the sys-

tem be monitored? (3) consider spatial scale: what are

the management units? and (4) identify quantities of
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interest: how are quality of results, costs, and benefits

measured?  For practical advice on “bounding 

problems for analysis,” refer to Chapter 1 of 

Walters (1986).

After the objectives have been determined, the

next step is to define the target population and to

take an inventory of the management units available

for experimentation. If the target population is a

unique ecosystem managed as a single unit (e.g., a

particular area of old-growth forest) then replication

is inapplicable because there can be only one re-

sponse to a particular management strategy. On the

other hand, when groups of units are sufficiently

similar that they can be managed according to a

common strategy (e.g., stands with comparable ages

and species compositions), replication is desirable to

determine the range of possible responses to

that strategy. However, even when replica-

tion is theoretically possible, it might not be

practical because of the high costs of large-

scale experiments, time constraints, or

limited resources. 

Replication is a decisive issue. Its 

effect on the design and analysis of adaptive

management experiments is illustrated in

Figure 2.2.  If replication of a treatment or

management strategy is possible then classi-

cal methods (Sections 2.4 and 2.5) can be

useful. Moreover, even if treatment replica-

tion is impossible or impractical, adherence

to traditional principles can help ensure that

the sampling design is sound. Thus, ran-

domization, replication, and blocking

(random sampling and stratification) are ef-

fective means of avoiding bias and reducing

error in both replicated and non-replicated

experiments. 

Adaptive management requires a suitable

model for predicting transitions of a system

from one state to another, and a set of rules

for deciding the best action at any given

time. In the case of non-replicated experi-

ments (right side of Figure 2.2), various ana-

lytical methods have been developed (see

Walters 1986, Chap. 4–9 ). These methods

are based on the theory of stochastic

processes, Bayesian statistics (Bergerud and

Reed, this volume, Chap. 7), and decision

theory (Peterman and Peters, this volume,

Chap. 8). When data arise from replicated 

systems (left side of Figure 2.2), the problem

is considerably more complicated. Responses of indi-

vidual systems and the overall response of systems

managed under the same plan (i.e., replicates) must

be considered (see Walters 1986, Chap. 10). This

problem has no simple solution because the link be-

tween classical methods (e.g., ANOVA) for the analy-

sis of replicated designs and decision analysis for

nonreplicated management strategies is not well de-

veloped. Meta-analysis (see Mann 1990 for an inter-

esting and nontechnical discussion of meta-analysis)

or alternative methods for integrating the results

from several experiments might be useful in such sit-

uations, although  a piece-meal analysis of large,

complex, and dynamic systems has obvious draw-

backs.

Objectives

Target 
population

Experimental
population

Replication
possible?

ACTIONS
Treatment/

Management  Strategies

Experimental
unit (1)

Experimental units:
randomization

replication

Sampling units:
random sampling

Sampling units:
random sampling

Bayesian statistics
Decision analysis

Classical statistical
analysis 

(e.g. ANOVA) ?

Yes No

 . Design and analysis of an adaptive management experiment.
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2.8 Summary

Sound experimental design is essential for adaptive

management of valuable forest resources. Adherence

to the principles of randomization, replication, and

blocking helps to ensure that an experiment meets

the basic requirements for success (Cox 1958): ab-

sence of systematic error, precision, validity for an

appropriate range of conditions, simplicity, and an

estimate of uncertainty. Failure to consider these is-

sues leads to unnecessary waste and, in the worst

case, bad decisions resulting in serious damage to

sensitive forest ecosystems. Development and adop-

tion of adaptive methods for carrying out large-scale

experiments has been slow, due partly to the barriers

created by excessively technical language, a lack of

analytical tools, and a limited number of successful

applications to serve as models. Overcoming these

obstacles by continuing efforts to educate and to in-

form (e.g., Biometrics Information series published

by  Research Branch, B.C. Ministry of Forests) can

only help to improve matters in the future.
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3 STUDIES OF UNCONTROLLED EVENTS

CARL J. SCHWARZ

Abstract

The rationale for carefully planned experiments is well
documented. A well-designed experiment will have a
high probability of detecting important, biologically
meaningful differences among the experimental
groups. Causal relationships can be inferred because
the experimental factors have been manipulated and
randomly assigned.

In many cases, controlled experiments are impracti-
cal or too expensive, and surveys of existing ecological
populations are performed, even though the resulting
inferences will be weaker than those obtained through
controlled experimentation. Consequently, nonexperi-
mental studies, or passive adaptive management, is
primarily a tool for generating hypotheses to be tested
by careful experimentation.

Despite the weaker inferences from nonexperimen-
tal studies, the same attention must be paid to the
proper design of a survey so that the conclusions are
not tainted by inadvertent biases. This paper will re-
view several of the standard nonexperimental studies
by presenting an overview of the study protocol, the
conclusions that can be reached, and the potential
problems that can occur.

3.1 Introduction

The rationale for carefully planned experiments in

ecology is well documented (Hurlbert 1984). A well-

designed experiment will have a high probability of

detecting important, biologically meaningful differ-

ences among the experimental groups. Furthermore,

because the manager directly manipulated the experi-

mental factors and randomly assigned the

experimental units to the particular combination of

experimental factors, the manager can infer a causal

relationship between the experimental factors and

the response variable. The manager who takes a simi-

lar approach and practices active adaptive

management can make the strongest possible infer-

ences about the role of the experimental factors.

In many cases, controlled experiments are imprac-

tical or too expensive, and surveys of existing

ecological populations are performed, even though

the resulting inferences will be weaker than those 

obtainable through controlled experimentation.

Consequently, nonexperimental surveys,  or passive

adaptive management, leads to conclusions that  are

primarily a tool for generating hypotheses eventually

to be tested by careful and more efficient experimen-

tation.

For example, observation surveys of existing lakes

showed that the more acidic lakes tended to have

fewer fish. An alternative explanation that could “ex-

plain” this result states that some unknown factor

causes the lake to acidify and also kills fish (i.e., the

relationship between numbers of fish and acidifica-

tion is due to a common response to another factor).

However, experiments where lakes were deliberately

acidified refute this alternate explanation. No such

refutation is possible from surveys of existing popu-

lations. The primary message is that causation cannot

be inferred without active manipulation.

Despite the weaker inferences from nonexperi-

mental surveys, the same attention must be paid to

the proper design of a survey so that inadvertent bi-

ases do not taint the conclusions. The many different

types of nonexperimental surveys are outlined in 

Figure 3.1. To begin, consider the following series of

examples to illustrate the differences among these

types of surveys.

 . A classification of the methods considered in
this chapter.
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Non-experimental
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Descriptive
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3.1.1 Example A: descriptive survey 

A manager is interested in examining the natural re-

generation in a cutblock harvested by clearcutting.

The objective is to measure the amount of regenera-

tion. A suitable response measure will be the density

of newly grown trees. A series of sample plots is sys-

tematically located within a single cutblock and the

density is measured on each sample plot. The mean

density over all plots is computed along with a meas-

ure of precision, the standard error. The study has

only one response variable, the density on each plot,

and no explanatory variables. This is a descriptive sur-

vey as no comparisons will be made with other

cutblocks and the information pertains only to that

particular cutblock. No inferences about the density

in other cutblocks is possible.

3.1.2 Example B: observational survey

This same manager now notices that north-facing

slopes seem to have a lower insect infestation rates

than south-facing slopes. One cutblock from a north-

facing slope and one cutblock from a south-facing

slope are selected. Sample plots are located on each

cutblock, and the insect infestation is measured on

each sample plot. The response variable is the

amount of infestation in each plot. The orientation of

the slope is an explanatory variable. Estimates of the

mean infestation are obtained for each block. The

sample means for each block likely differ, but with

information on the variation within each block, it is

possible to determine if the population means also

differ (i.e., to determine if the true average infestation

in the two blocks differs). This is an observational sur-

vey as two convenient cutblocks were selected and

compared. However, the results are only applicable

to the two cutblocks sampled and can neither be ex-

trapolated to other cutblocks, nor to the effects of

north- and south-facing slopes. The reason for this

weak inference is that the observed differences be-

tween the cutblocks may be due to just natural

variation unrelated to the direction of the slope; no

information has been collected on the variability

among cutblocks with the same orientation.

3.1.3 Example C: analytical survey

The manager expands the above survey. Within the

forest management unit, blocks are randomly chosen

in pairs so that, within each pair, one cutblock is on a

north-facing slope and the other is on a south-facing

slope. Sample plots are randomly located on each

cutblock, and the insect infestation is measured on

each sample plot. The response variable is the

amount of infestation in each plot. The orientation is

an explanatory variable. Estimates of the mean infes-

tation are obtained for each type of slope along with

the measures of precision. The manager then com-

pares the two means using information on both the

within-cutblock variability and the variability among

blocks with the same orientation. It may appear that

plots on the south-facing slope have a higher infesta-

tion than plots on a north-facing slope. This is an

analytical survey, as a comparison was made over an

entire population of cutblocks in the forest manage-

ment unit. This survey differs from a controlled

experiment in that the orientation of the cutblocks

cannot be controlled by the manager. An alternative

explanation for this observed result is that some

other unknown factor caused the insect infestations

to be different on the two orientations.

3.1.4 Example D: designed experiment

The manager is interested in testing the effect of two

different types of fertilizer on regeneration growth.

Experimental plots in several homogeneous cut-

blocks are established. Within each cutblock, plots

are randomly assigned to one of the fertilizers. The

regeneration growth of the plots treated with the two

fertilizers is then compared. The response variable is

the amount of growth; the explanatory variable is the

fertilizer type. Because plots were randomly assigned

to the fertilizers, the effects of any other, uncontrol-

lable, lurking factor should, on average, be about

equal in the two treatment groups. Consequently,

any difference in the mean regeneration growth can

be attributed to the fertilizer. The primary differences

between this example and Example C are that the

manager controls the explanatory factor and can ran-

domly assign experimental units to treatments. These

two differences in the protocol allow stronger infer-

ences than in analytical surveys.

3.1.5 Example E: impact survey 

The manager wishes to examine if clearcutting is

changing the water quality on nearby streams. A con-

trol site with similar soil and topography as the

experimental site, is selected, in a provincial park.

Water quality readings are taken from both streams

several times before harvesting, and several times

after harvesting. The response variable is the water

quality; the explanatory variable is the presence or

absence of nearby clearcutting.

The changes in water quality in the control and 
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experimental sites are compared. If the objective is 

to examine if there is a difference in water quality 

between these two specific sites, then the survey will

answer the question. This is similar to the strength of

inference for observational surveys (Example B). If

the objective is to extrapolate from this pair of sites

to the effects of clearcutting in general, the inference

is much more limited. First, because the control or

impact sites are not replicated it is impossible to

know if the observed differences are within the range

of natural variation. This limitation could be partly

resolved by adding multiple control sites and 

assuming that the variability among control sites is

representative of that among impact sites. However,

the lack of randomization of the impact will still limit

the extent to which the results can be generalized.

But in the longer term, if there are several such pairs

of sites and all show the same type of impact, solid

grounds are established for assigning a causal rela-

tionship, even though randomization never took

place. This would be based on the idea of a super-

population consisting of all possible pairs of sites; it is

not likely that unobservable, latent factors would be

operating in the same direction in all experiments.

This last form is the closest to a designed experiment

for an impact survey.

These five examples differ in two important di-

mensions:

1. The amount of control over the explanatory factor.

Descriptive surveys have the least amount of con-

trol, while designed experiments have maximal

control.

2. The degree of extrapolation to other settings.

Again, in descriptive surveys, inference is limited

to those surveyed populations, while in designed

experiments on randomly selected experimental

units, inference can be made about future effects

of the explanatory factors.

In general, the more control or manipulation pre-

sent, the stronger the inferences that can be made

(Figure 3.2).

This chapter will present an overview of some of

the issues that arise in surveys lacking experimental

manipulations. It will start with an overview of the

descriptive surveys used to obtain basic information

about a population. Observational surveys will not be

explicitly addressed as their usefulness is limited and

their design and analysis are very close to analytical

surveys. Next, analytical surveys, where the goal is to

compare subsets of an existing population, will be

 . Relationship between degree of control, strength of inference, and type of study design.
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described. Impact Surveys, where one site affected by

some planned or unplanned event and a control site

where no such event occurs are compared, will then

be discussed. Finally, some general principles of non-

experimental studies will be reviewed.

3.2 Descriptive Surveys

The goal of a descriptive survey is to estimate a para-

meter of interest (e.g., an average, total, proportion,

or ratio) for a single population (e.g., Example A of

Section 3.1). No attempt is made to compare the pa-

rameters between two or more populations.

Many excellent references on descriptive survey

methods are available (Cochran 1977; Krebs, 1989;

Thompson 1992). Therefore, this section is limited to

a brief account of the main survey methods that

could be used in field research. Details on actual field

procedures are also available; for example, Myers and

Shelton (1980).

3.2.1 Survey methods

Simple random sampling

Simple random sampling is the basic method of se-

lecting survey units. Each unit in the population is

selected with equal probability and all possible sam-

ples are equally likely to be chosen. This selection is

commonly done by listing all the members in the

population and then sequentially choosing units

using a random number table. Units are usually cho-

sen without replacement (i.e., each unit in the

population can only be chosen once). In some cases,

particularly for multistage designs, there are advan-

tages to selecting units with replacement (i.e., a unit

in the population may potentially be selected more

than once).

The analysis of a simple random sample is

straightforward. The mean of the sample is an esti-

mate of the population mean. An estimate of the

population total is obtained by multiplying the sam-

ple mean by the number of units in the population.

The sampling fraction, the proportion of units cho-

sen from the entire population, is typically small. If it

exceeds 20%, an adjustment (the finite population

correction) will result in better estimates of precision

(a reduction in the standard error) to account for the

fact that a substantial fraction of the population was

surveyed. 

An example of a simple random sample would be a

vegetation survey in a large forest stand. The stand is

divided into 300 1-hectare plots, and a random sam-

ple of 20 plots was selected and analyzed using aerial

photos.

Pitfall: A simple random sample design is often “hid-

den” in the details of many other survey designs. For

example, many surveys of vegetation are conducted

using strip transects where the initial starting point of

the transect is randomly chosen, and then every plot

along the transect is measured. Here the strips are the

sampling unit, and are a simple random sample from

all possible strips. The individual plots are subsam-

ples from each strip and cannot be regarded as

independent samples. For example, suppose a rectan-

gular stand is surveyed using aerial overflights. In

many cases, random starting points along one edge

are selected, and the aircraft then surveys the entire

length of the stand starting at the chosen point. The

strips are typically analyzed section-by-section, but it

would be incorrect to treat the smaller parts as a sim-

ple random sample from the entire stand.

Solution: Note that a crucial element of simple ran-

dom samples is that every sampling unit is chosen

independently of every other sampling unit. For ex-

ample, in strip transects, plots along the same

transect are not chosen independently: when a par-

ticular transect is chosen, all plots along the transect

are sampled and so the selected plots are not a simple

random sample of all possible plots. Strip-transects

are actually examples of cluster-samples.

Systematic sampling

In some cases, it is logistically inconvenient to ran-

domly select sample units from the population. An

alternative is to take a systematic sample where every

kth unit is selected (after a random starting point); k

is chosen to give the required sample size. For exam-

ple, if a stream is 2 km long, and 20 samples are

required, then k=100 and samples are chosen every

100 m along the stream after a random starting point.

A common alternative when the population does not

naturally divide into discrete units is grid-sampling.

Here sampling points are located using a grid that is

randomly located in the area. All sampling points are

a fixed distance apart.

If a known trend is present in the sample, it can be

incorporated into the analysis (Cochran 1977, Chap. 8).

For example, suppose that the systematic sample fol-

lows an elevation gradient that is known to directly

influence the response variable. A regression-type

correction can be incorporated into the analysis.
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However, note that this trend must be known from

external sources—it cannot be deduced from the 

survey.

Pitfall: A systematic sample is typically analyzed in

the same fashion as a simple random sample. How-

ever, the true precision of an estimator from a

systematic sample can be either worse or better than

a simple random sample of the same size, depending

if units within the systematic sample are positively or

negatively correlated among themselves. For exam-

ple, if a systematic sample’s sampling interval

happens to match a cyclic pattern in the population,

values within the systematic sample are highly posi-

tively correlated (the sampled units may all hit the

“peaks” of the cyclic trend), and the true sampling

precision is worse than a simple random sample of

the same size. What is even more unfortunate is that,

because the units are positively correlated within the

sample, the sample variance will underestimate the

true variation in the population, and, if the estimated

precision is computed using the formula for a simple

random sample, a double dose of bias in the estimat-

ed precision occurs (Krebs 1989, p. 227). On the other

hand, if the systematic sample is arranged “perpen-

dicular” to a known trend to try to incorporate

additional variability in the sample, the units within a

sample are now negatively correlated, the true preci-

sion is now better than an simple random sample of

the same size, but the sample variance now overesti-

mates the population variance, and the formula for

precision from a simple random sample will over-

state the sampling error.

While logistically simpler, a systematic sample is

only “equivalent” to a simple random sample of the

same size if the population units are “in random

order” to begin with (Krebs 1989, p. 227). Even worse,

no information in the systematic sample allows the

manager to check for hidden trends and cycles.

Nevertheless, systematic samples offer the follow-

ing practical advantages over simple random

sampling if the bias in the estimated precision can be

corrected:

• make plot relocation for long-term monitoring

easier;

• allow mapping to be carried out concurrently with

the sampling effort because the ground is system-

atically traversed;

• avoid poorly distributed sampling units, which can

occur with a simple random sample (this problem

can also be avoided by judicious stratification).

Solution: Because a strong assumption of “random-

ness” in the original population is necessary,

systematic samples are discouraged and statistical ad-

vice should be sought before starting such a scheme.

If no other designs are feasible, a slight variation in

the systematic sample provides some protection from

the previous problems. Instead of taking a single sys-

tematic sample every kth unit, take two or three

independent systematic samples of every 2kth or 3kth

unit, each with a different starting point. For exam-

ple, rather than taking a single systematic sample

every 100 m along the stream, two independent sys-

tematic samples can be taken, each selecting units

every 200 m along the stream starting at two random

starting points. The total sample effort is still the

same, but now some measure of the large-scale spa-

tial structure can be estimated. This technique is

known as replicated subsampling (Kish 1965, p. 127). 

Cluster sampling

In some cases, units in a population occur naturally

in groups or clusters. For example, some animals

congregate in herds or family units. It is often conve-

nient to select a random sample of herds and then

measure every animal in the herd. This is not the

same as a simple random sample of animals because

individual animals are not randomly selected; the

herds were the sampling unit. The strip-transect ex-

ample in Section 3.2.1 is also a cluster sample; all plots

along a randomly selected transect are measured. The

strips are the sampling units, while plots within each

strip are subsampling units. Another example is cir-

cular plot sampling; all trees within a specified radius

of a randomly selected point are measured. The sam-

pling unit is the circular plot while trees within the

plot are subsamples.

The reason cluster samples are used is that costs

can be reduced compared to a simple random sample

giving the same precision. Because units within a

cluster are close together, travel costs among units

are reduced. Consequently, more clusters (and more

total units) can be surveyed for the same cost as a

comparable simple random sample. 

Pitfall: A cluster sample is often mistakenly analyzed

using methods for simple random surveys. Such

analysis is not valid because units within a cluster are

typically positively correlated. This erroneous analy-

sis produces an estimate that appears to be more

precise than it really is (i.e., the estimated standard 
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error is too small and does not fully reflect the actual

imprecision in the estimate). 

Solution: To be confident that the reported standard

error really reflects the uncertainty of the estimate,

the analytical methods must be appropriate for the

survey design. The proper analysis treats the clusters

as a random sample from the population of clusters.

The methods of simple random samples are applied

to the cluster summary statistics (Thompson 1992,

Chap. 12; Nemec 1993).

Multi-stage sampling

In many situations the population is naturally divid-

ed into several different sizes of units. For example, 

a forest management unit consists of several stands,

each stand has several cutblocks, and each cutblock

can be divided into plots. These natural divisions can

be easily accommodated in a survey through the use

of multistage methods. Units are selected in stages.

For example, several stands could be selected from a

management area; then several cutblocks are selected

in each of the chosen stands; then several plots are se-

lected in each of the chosen cutblocks. Note that in a

multistage design, units at any stage are selected at

random only from those larger units selected in pre-

vious stages.

The advantage of multistage designs are that costs

can be reduced compared to a simple random sample

of the same size, primarily through improved logis-

tics. The precision of the results is less than an

equivalent simple random sample, but because costs

are less, a larger multistage survey can often be com-

pleted for the same costs as a smaller simple random

sample. This approach often results in a more precise

design for the same cost. However, due to the misuse

of data from complex designs, simple designs are

often highly preferred and end up being more cost-

efficient when costs associated with incorrect deci-

sions are incorporated.

Pitfall: Although random selections are made at each

stage, a common error is to analyze these types of

surveys as if they arose from a simple random sam-

ple. The plots were not independently selected; if a

particular cutblock was not chosen, then none of the

plots within that cutblock can be chosen. As in clus-

ter samples, this erroneous analysis produces

estimated standard errors that are too small and do

not fully reflect the actual imprecision in the esti-

mates. A manager will be more confident in the

estimate than is justified by the survey.

Solution: Again, it is important that the analytical

methods are suitable for the sampling design. The

proper analysis of multistage designs considers that

random samples takes place at each stage (Thompson

1992, Chap. 13). In many cases, the precision of the

estimates is determined essentially by the number of

first-stage units selected. Little is gained by extensive

sampling at lower stages. 

Multiphase designs

In some surveys, multiple surveys of the same survey

units are performed. In the first phase, a sample of

units is selected (usually by a simple random sam-

ple). Every unit is measured on some variable. Then

in subsequent phases, samples are selected ONLY

from those units selected in the first phase, not from

the entire population. 

Multiphase designs are commonly used in two sit-

uations. In the first case, stratifying a population in

advance is sometimes difficult because the values of

the stratification variables are not known. The first

phase is used to measure the stratification variable on

a random sample of units. The selected units are then

stratified, and each stratum is further sampled as

needed to measure a second variable. This approach

avoids having to measure the second variable on

every unit when the strata differ in importance. For

example, in the first phase, plots are selected and

measured for the amount of insect damage. The plots

are then stratified by the amount of damage, and sec-

ond-phase allocation of units concentrates on plots

with low insect damage to measure total usable vol-

ume of wood. It would be wasteful to measure the

volume of wood on plots with heavy insect damage.

The second common occurrence for using a multi-

stage design is a surrogate variable (related to the real

variable of interest) on selected units is relatively easy

to measure, and then, in the second phase, the real

variable of interest is measured on a subset of the

units. The relationship between the surrogate and de-

sired variable in the smaller sample is used to adjust

the estimate based on the surrogate variable in the

larger sample. For example, managers need to esti-

mate the volume of wood removed from a harvesting

area. A large sample of logging trucks is weighed

(which is easy to do), and weight will serve as a sur-

rogate variable for volume. A smaller sample of

trucks (selected from those weighed) is scaled for vol-

ume and the relationship between volume and

weight from the second-phase sample is used to pre-

dict volume based on weight only for the first-phase
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sample. Another example is the count plot method of

estimating volume of timber in a stand. A selection of

plots is chosen and the basal area determined. Then a

sub-selection of plots is rechosen in the second

phase, and volumes are measured on the second-

phase plots. The relationship between volume and

area in the second phase is used to predict volume

from area measurements seen in the first phase.

Repeated sampling

One common objective of long-term surveys is to 

investigate changes over time of a particular popula-

tion. This investigation, which involves repeated sam-

pling from the population, has three common designs.

First, separate independent surveys can be con-

ducted at each time point. This is the simplest design

to analyze because all observations are independent

over time. For example, independent surveys can be

conducted at 5-year intervals to assess regeneration of

cutblocks. However, precision of the estimated

change may be poor because of the additional vari-

ability introduced by having new units sampled at

each time point.

At the other extreme, units are selected in the first

survey and the same units are remeasured over time.

For example, permanent plots that are remeasured

for regeneration over time can be established. The

advantage of permanent plots is that comparisons

over time are free of additional variability introduced

by new units being measured at every time point.

One possible problem is that survey units have be-

come “damaged” over time, and the sample size will

tend to decline over time. An analysis of these types

of designs is more complex because of the need to ac-

count for (1) the correlation over time of

measurements on the same sample plot and (2) pos-

sible missing values when units become “damaged”

and are dropped from the survey.

Intermediate to the previous two designs are par-

tial replacement designs where a portion of the survey

units is replaced with new units at each time point.

For example, 20% of the units could be replaced by

new units at each time point; units would normally

stay in the survey for a maximum of five time peri-

ods. These types of designs require complex analysis.

Pitfall: The most common error made in analyzing

repeated sampling designs is to treat observations as

being independent. This typically leads to estimated

precisions that appear too precise (i.e., the real preci-

sion is much poorer).

Solution: The analysis of repeated samples is quite

complex—it is important to consult with an expert 

in this field.

Designs for wildlife sampling

Two common survey designs for measuring wildlife

abundance are capture-recapture surveys and dis-

tance surveys.

In capture-recapture surveys (Otis et al. 1978; 

Pollock et al. 1990), animals are captured, tagged, and

released on each of a number of time points. The pat-

tern of recaptures of the observed animals is used to

estimate survival rates and abundance. Skalski and

Robson (1992) discuss the design of surveys using

capture-recapture methods.

In distance surveys (Buckland et al. 1993), an ob-

server follows a transect and notes the angle and dis-

tance of animals from the transect line. A detection

function is constructed that relates the probability of

spotting an animal as a function of the distance from

the transect line and this is used to estimate abundance.

This section is deliberately brief as many complex

planning problems are associated with using these

methods and expert assistance is strongly recom-

mended.

3.2.2 Refinements that affect precision

Sampling with unequal probability

All of the designs discussed in previous sections have

assumed that each sample unit was selected with

equal probability. In some cases, it is advantageous to

select units with unequal probabilities, particularly if

they differ in their contribution to the overall total.

This technique can be used with any of the sampling

designs discussed earlier. An unequal probability

sampling design can lead to smaller standard errors

(i.e., greater precision) for the same total effort com-

pared to an equal probability design. For example,

forest stands may be selected with probability pro-

portional to the area of the stand (i.e., a stand of 

200 ha will be selected with twice the probability than

a stand of 100 ha) because large stands contribute

more to the overall population and it would be

wasteful to spend much sampling effort on smaller

stands.

The variable used to assign the probabilities of se-

lection to individual survey units does not need to

have an exact relationship with an individual contri-

bution to the total. For example, in probability

proportional to prediction (3P) sampling, all trees in
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a small area are visited. A simple, cheap characteris-

tic, which is used to predict the value of the tree, is

measured. A subsample of the trees is then selected

with probability proportional to the predicted value,

remeasured using a more expensive measuring de-

vice. The relationship between the cheap and

expensive measurement in the second phase is used

with the simple measurement from the first phase to

obtain a more precise estimate for the entire area.

This example illustrates two-phase sampling with un-

equal probability of selection.

Stratification

All survey methods can potentially benefit from strat-

ification (also known as blocking in the experimental-

design literature). Stratification groups survey units

into homogeneous groups before conducting the sur-

vey, and then conducts independent surveys in each

stratum. At the end of the survey, the stratum results

are combined and weighted appropriately. For exam-

ple, a watershed might be stratified by elevation into

three strata, and separate surveys are conducted with-

in each elevation stratum. The separate results would

be weighted proportionally to the size of the eleva-

tion strata. Stratification will be beneficial whenever

variability among the sampling units can be antici-

pated and strata can be formed that are more

homogeneous than the original population.

A major question with stratified surveys is the 

allocation of sampling units among the strata. De-

pending upon the goals of the survey, an optimal

allocation of sampling units can be one that is equal

in all strata, that is proportional to the stratum size,

or that is related to the cost of sampling in each stra-

tum (Thompson 1992, Chap. 11). Equal allocation

(where all strata have the same sample size) is pre-

ferred when equally precise estimates are required for

each stratum as well as for the overall population.

Proportional allocation (where the sample size in

each stratum is proportional to the population size)

is preferred when more precise estimates are required

in larger strata. If the costs of sampling vary among

the strata, then an optimal allocation that accounts

for costs would try to obtain the best overall preci-

sion at the lowest cost by allocating units among the

strata accounting for the costs of sampling in each

stratum.

Stratification can be carried out prior to the survey

(pre-stratification) or after the survey  (post-stratifi-

cation). Pre-stratification is used if the stratum

variable is known in advance for every plot (e.g., ele-

vation of a plot). Post-stratification is used if the

stratum variable can only be ascertained after mea-

suring the plot (e.g., soil quality or soil pH). The

advantages of pre-stratification are that samples can

be allocated to the various strata in advance to opti-

mize the survey and the analysis is relatively

straightforward. With post-stratification, there is no

control over sample size in each of the strata, and the

analysis is more complicated (the samples sizes in

each stratum are now random). Post-stratification

can result in significant gains in precision but does

not allow for finer control of the sample sizes as

found in pre-stratification.

Auxiliary variables

An association between the measured variable of in-

terest and a second variable of interest can be

exploited to obtain more precise estimates. For ex-

ample, suppose that growth in a sample plot is

related to soil nitrogen content. A simple random

sample of plots is selected and the height of trees in

the sample plot is measured along with the soil nitro-

gen content in the plot. A regression model is fit

(Thompson 1992, Chap. 7 and 8) between the two

variables to account for some of the variation in tree

height as a function of soil nitrogen content. This ap-

proach can be used to make precise predictions of the

mean height in stands if the soil nitrogen content can

be easily measured. This method will be successful if

a direct relationship exists between the two variables.

The stronger the relationship, the more effective this

method will be. This technique is often called ratio-

estimation or regression-estimation.

Notice that multiphase designs often use an auxil-

iary variable but this second variable is only

measured on a subset of the sample units.

Unit size

A typical concern with any of the survey methods oc-

curs when the population does not have natural

discrete sampling units. For example, a large section

of land may be arbitrarily divided into 1 m2 plots, or

10 m2 plots. A natural question—is what is the “best

size” of unit?—has no simple answer and depends

upon several factors, which must be addressed for

each survey:

• Cost: All else being equal, sampling many small

plots may be more expensive than sampling fewer
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larger plots. The primary difference in cost is the

overhead in travel and setup to measure the unit.

• Size of unit: An intuitive feeling is that more small-

er plots are better than few large plots because the

sample size is larger. This will be true if the charac-

teristic of interest is “patchy,” but surprisingly,

makes no difference if the characteristic is ran-

domly scattered throughout the area (Krebs 1989,

p. 64). Indeed if the characteristic shows “avoid-

ance,” then larger plots are better. For example,

competition among trees implies they are spread

out more than expected if they were randomly lo-

cated. Logistical considerations often influence the

plot size. For example, if trampling the soil affects

the response, then sample plots must be small

enough to measure without trampling the soil.

• Edge effects: Because the population does not have

natural boundaries, decisions must often be made

about objects that lie on the edge of the sample

plot. In general, larger square or circular plots are

better because of smaller edge-to-area ratio. (A

long narrow rectangular plot can have more edge

than a similar-area square plot.)

• Size of object being measured: Clearly, a 1 m2 plot

is not appropriate when counting mature Douglas-

fir, but may be appropriate for a lichen survey.

A pilot survey should be carried out prior to a

large-scale survey to investigate factors that influence

the choice of sampling unit size.

Sample size determination

An important question in survey design is the choice

of sample size, which is the primary determinant of

the costs of the survey and of precision. The sample

size should be chosen so that the final estimates have

a precision that is adequate for the management

question. Paradoxically, to determine the proper

sample size, some estimate of the population values

needs to be known before the survey is conducted!

Historical data can sometimes be used. In some cases,

pilot surveys will be needed to obtain preliminary 

estimates of the population values to plan the main

survey. (Pilot surveys are also useful to test the proto-

col. Refer to Section 3.5). 

Unfortunately, sometimes even pilot surveys can-

not be done because of the difficulty in sampling or

because the phenomenon is a one-time event. If a

study has multiple objectives, reconciling the sample

size requirements for each objective may also be diffi-

cult. In these and many other cases, sample sizes are

determined solely by the budget for the survey.

3.3 Analytical Surveys

In descriptive surveys, the objective was to simply

obtain information about one large group. In 

observational surveys, two deliberately selected sub-

populations are chosen and surveyed, but the results

are not generalized to the whole population. In 

analytical surveys, subpopulations are selected and

sampled to generalize the observed differences

among the subpopulation to this and other similar

populations.

As such, analytical and observational surveys and

experimental design are similar. However, the prima-

ry difference is that, in experiments, the manager

controls the assignment of the explanatory variables

while measuring the response variables, whereas in

analytical and observational surveys, neither set of

variables is under the control of the manager. (Refer

to Section 3.1, Examples B, C, and D). The analysis of

complex surveys for analytical purposes can be very

difficult (Sedransk 1965a, 1965b, 1966; Rao 1973; Kish

1984, 1987).

The first step in analytical surveys is to identify po-

tential explanatory variables (similar to factors in

experiments). At this point, analytical surveys can be

usually further subdivided into three categories de-

pending on the type of stratification:

• the population is pre-stratified by the explanatory

variables and surveys are conducted in each stra-

tum to measure the outcome variables;

• the population is surveyed in its entirety, and post-

stratified by the explanatory variables; and

• the explanatory variables can be used as auxiliary

variables in ratio or regression methods.

In very complex surveys, all three types of stratifi-

cation may take place.

The choice between the categories is usually made

by the ease with which the population can be pre-

stratified and the strength of the relationship between

the response and explanatory variables. For example,

sample plots can be easily pre-stratified by elevation

or by exposure to the sun, but it would be difficult to

pre-stratify by soil pH. 

Pre-stratification has the advantage that the man-

ager controls the number of sample points collected

in each stratum. However, the numbers are not 
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controllable in post-stratification and may lead to

very small sample sizes in certain strata just because

the strata form only a small fraction of the popula-

tion.

For example, a manager may wish to investigate

the difference in regeneration (as measured by the

density of new growth) as a function of elevation.

Several cutblocks will be surveyed. In each cutblock,

the sample plots will be pre-stratified into three ele-

vation classes, and a simple random sample will be

taken in each elevation class. The allocation of effort

in each stratum (i.e., the number of sample plots)

will be equal. The density of new growth will be mea-

sured on each selected sample plot. On the other

hand, suppose that the regeneration is a function of

soil pH. This cannot be determined in advance, and

so the manager must take a simple random sample

over the entire stand, measure the density of new

growth and the soil pH at each sampling unit, and

then post-stratify the data based on measured pH.

The number of sampling units in each pH class is not

controllable—indeed it may turn out that certain pH

classes have no observations.

If explanatory variables are treated as a auxiliary

variables, then a strong relationship must exist be-

tween the response and explanatory variables and the

auxiliary variable must be able to be measured pre-

cisely for each unit. Then, methods like multiple

regression can also be used to investigate the rela-

tionship between the response and the explanatory

variable. For example, rather than classifying eleva-

tion into three broad elevation classes or soil pH into

broad pH classes, the actual elevation or soil pH must

be measured precisely to serve as an auxiliary variable

in a regression of regeneration density versus eleva-

tion or soil pH.

If the units have been selected using a simple ran-

dom sample, then the analysis of the analytical

surveys proceeds along similar lines as the analysis of

designed experiments (Kish 1987; Nemec, this vol-

ume, Chap. 2). In most analyses of analytical surveys,

the observed results are postulated to have been

taken from a hypothetical super-population of which

the current conditions are just one realization. In the

above example, cutblocks would be treated as a 

random blocking factor, elevation class as an ex-

planatory factor, and sample plots as samples within

each block and elevation class. Hypothesis testing

about the effect of elevation on mean density of re-

generation occurs as if this were a planned

experiment.

Pitfall: Any one of the sampling methods described

in Section 3.2 for descriptive surveys can be used for

analytical surveys. Many managers incorrectly use the

results from a complex survey as if the data were 

collected using a simple random sample. As Kish

(1987) and others have shown, this mistake can lead

to substantial underestimates of the true standard

error (i.e., the precision is thought to be far greater

than is justified based on the survey results). Conse-

quently, the manager may erroneously detect

differences more often than expected (i.e., make a

Type I error) and make decisions based on erroneous

conclusions.

Solution: As in experimental design, it is important

to match the analysis of the data with the survey de-

sign used to collect it. The major difficulties in

analyzing analytical surveys are:

1. Recognizing and incorporating the sampling

method used to collect the data in the analysis. The

survey design used to obtain the sampling units

must be taken into account in much the same way

as the analysis of the collected data is influenced by

actual experimental design. “Equivalencies” be-

tween terms in a sample survey and terms in

experimental design are provided in Table 3.1. No

quick and easy method is available for the analysis

of complex surveys (Kish 1987). The super-popula-

tion approach seems to work well if the selection

probabilities of each unit are known (these are

used to weight each observation appropriately)

and if random effects corresponding to the various

strata or stages are employed. The major difficulty

caused by complex survey designs is that the ob-

servations are not independent of each other. This

nonindependence, if properly incorporated into

the analysis, can improve precision. If not ac-

counted for, nonindependence will lead to

seriously biased estimates of precision.

2. Unbalanced designs (e.g., unequal numbers of

sample points in each combination of explanatory

factors). This difficulty typically occurs if post-

stratification is used to classify units by the explana-

tory variables but can also occur in pre-stratifica-

tion if the manager decides not to allocate equal

effort in each stratum. The analysis of unbalanced

data is described by Milliken and Johnson (1984).

3. Missing cells (i.e., certain combinations of ex-

planatory variables may not occur in the survey).

The analysis of such surveys is complex, but refer

to Milliken and Johnson (1984).
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4. If the range of the explanatory variable is naturally

limited in the population, then extrapolation 

outside of the observed range is not recommended.

More sophisticated techniques can also be used in

analytical surveys. For example, correspondence

analysis, ordination methods, factor analysis, multi-

dimensional scaling, and cluster analysis all search

for associations among measured variables that may

give rise to hypotheses for further investigation. Un-

fortunately, most of these methods assume that units

have been selected independently of each other using

a simple random sample; extensions where units

have been selected via a complex sampling design

have not yet developed. Simpler designs are often

highly preferred to avoid erroneous conclusions

based on inappropriate analysis of data from com-

plex designs.

Pitfall: While the analysis of analytical surveys and

designed experiments are similar, the strength of the

conclusions is not. In general, causation cannot be

inferred without manipulation. An observed rela-

tionship in an analytical survey may be the result of 

a common response to a third, unobserved variable.

For example, consider the two following experi-

ments. In the first experiment, the explanatory

variable is elevation (high or low). Ten stands are

randomly selected at each elevation. The amount of

growth is measured and it appears that stands at

higher elevations have less growth. In the second ex-

periment, the explanatory variable is the amount of

fertilizer applied. Ten stands are randomly assigned

to each of two doses of fertilizer. The amount of

growth is measured and it appears that stands that

receive a higher dose of fertilizer have greater growth.

In the first experiment, the manager cannot say

whether the differences in growth are due to differ-

ences in elevation or amount of sun exposure or soil

quality as all three may be highly related. In the sec-

ond experiment, all uncontrolled factors are present

in both groups and their effects will, on average, be

equal. Consequently, the assignment of cause to the

fertilizer dose is justified because it is the only factor

that differs (on average) among the groups.

As noted by Eberhardt and Thomas (1991), rigor-

ous application of the techniques for survey sampling

is needed when conducting analytical surveys, other-

wise these surveys are likely to be subject to biases.

Experience and judgement are very important in

evaluating the prospects for bias, and attempting to

find ways to control and account for these biases. The

most common source of bias is the selection of sur-

vey units; the most common pitfall is to select units

based on convenience rather than on a probabilistic

sampling design. The potential problems that this

can lead to are analogous to those that occur when it

is assumed that callers to a radio phone-in show are

representative of the entire population. 

 . Equivalencies between terms used in surveys and in experimental design

Survey term Experimental design term

Simple random sample Completely randomized design

Cluster sampling (a) Clusters are random effects; units within a cluster treated as subsamples; or 

(b) Clusters treated as main plots; units within a cluster treated as subplots in a
split-plot analysis

Multi-stage sampling (a) Nested designs with units at each stage nested in units in higher stages. Effects
of units at each stage treated as random effects; or

(b) Split-plot designs with factors operating at higher stages treated as main plot
factors and factors operating at lower stages treated as subplot factors

Stratification Fixed factor or random block depending on the reasons for stratification 

Sampling unit Experimental unit or treatment unit

Subsample Subsample
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3.4 Impact Surveys

Probably the most important and controversial use

of surveys is to investigate the effects of large-scale,

potentially unreplicated events. These impact surveys

investigate the impact of an event or process. In many

cases, this survey must be done without having the

ability or resources to conduct a planned experiment.

Consider three examples: the impact of a hydro-

electric dam on water quality of the dammed stream;

the impact of clearcuts on water quality of nearby

streams; and the effect of different riparian zone

widths along streams near clearcuts. First, random-

ization and replication are not possible in the first

example. Only one dam will be built on one stream.

In the other two examples, it is possible to randomize

and replicate the experiment and so the principles of

experimental design may be useful. Second, the im-

pact of the first two examples can be compared to a

control or non-treated site while in the last example

impacts are compared: the two different riparian

zone widths. 

Regardless of the control over randomization and

replication, the goal of impact surveys is typically to

measure ecological characteristics (usually over time)

to look for evidence of a difference (impact) between

the two sites. Presumably, this impact will be attrib-

uted to the event, but, as shown later, the lack of

replication and randomization may limit the general-

ization of the findings. Then, based on the findings,

remediation or changes in future events will be

planned. In all cases, the timing of the event must be

known in advance so that baseline information can

be collected. 

A unifying example for this section will be an in-

vestigation of the potential effects of clearcuts on

water quality of nearby streams. Several, successively

more complex impact designs will be considered.

3.4.1 Designs

Before-after contrasts at a single site

This is the simplest impact design. A single survey is

taken before and after a potential disturbance. This

design is widely used in response to obvious acciden-

tal incidences of potential impact (e.g., oil spills,

forest fires), where, fortuitously, some prior informa-

tion is available. From this survey, the manager

obtains a single measurement of water quality before

and after the event. If the second survey reveals a

change, this difference is attributed to the event.

Pitfalls: The observed event and the changes in the

response variable may not be related—the change

may be entirely coincidental. Even worse, no infor-

mation is collected on the natural variability of the

water quality over time and the observed differences

may simply be due to natural fluctuations over time.

Decisions based on this design are extremely hard to

justify. This design cannot be used if the event cannot

be planned and no prior data are available. In these

cases, little can be said about the impact of the event.

Repeated before-after sampling at a single site

An embellishment on the previous sampling scheme

is to perform multiple surveys of the stream at multi-

ple time points before and after the event. In this

design, information is collected on the mean water

quality before and after the impact. As well, informa-

tion is collected on the natural variability over time.

This design is better than the previous design in that

observed changes due solely to natural fluctuations

over time can be ruled out and consequently any ob-

served change in the mean level is presumably real.

The choice between regular intervals and random

intervals depends upon the objectives of the survey. 

If the objective is to detect changes in trend, regularly

spaced intervals are preferred because the analysis is

easier. On the other hand, if the objective is to assess

differences before and after impact, then samples at

random time points are advantageous, because no

cyclic differences unforeseen by the sampler will in-

fluence the size of the difference. For example,

surveys taken every summer for several years before

and after the clearcutting may show little difference

in water quality but potentially significant differences

in the winter may go undetected.

Pitfall: Despite repeated surveys, this design suffers

from the same flaw as the previous design. The re-

peated surveys are pseudoreplications in time rather

than real replicates (Hurlbert 1984). The observed

change may have occurred regardless of the clearcut

because of long-term trends over time. Again, deci-

sions based on this design are difficult to justify.

BACI: Before-after-control-impact surveys

As Green (1979) pointed out, an optimal impact sur-

vey has several features:

• the type of impact, time of impact, and place of 

occurrence should be known in advance;

• the impact should not have occurred yet; and

• control areas should be available.
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The first feature allows the surveys to be efficiently

planned to account for the probable change in the

environment. The second feature allows a baseline

survey to be established and to be extended as need-

ed. The last feature allows the surveyor to distinguish

between temporal effects unrelated to the impact and

changes related to the impact.

The simplest BACI design will have two times of

sampling (before and after impact) in areas (treat-

ment and a control) with biological and environmen-

tal variables being measured in all combinations of

time and area. In this example, two streams would 

be sampled. One stream would be adjacent to the

clearcut (the treatment stream); the second stream

would be adjacent to a control site that is not clearcut

and should have similar characteristics to the treat-

ment stream and be exposed to similar climate and

weather. Both streams are sampled at the same time

points before the clearcut occurs and at the same

time point after the clearcut takes place. Technically,

this is known as an area-by-time factorial design, and

evidence of an impact is found by comparing the 

before and after samples for the control site with the

before and after samples for the treatment sites. This

contrast is known as the area-by-time interaction

(see Figure 3.3).

This design allows for both natural stream-to-

stream variation and coincidental time effects. If the

clearcut has no effect, then change in water quality

between the two time points should be the same (i.e.,

parallel lines in Figures 3.3a and b). On the other

hand, if the clearcut has an impact, the time trends

will not be parallel (Figures 3.3c, d, and e). 

Pitfalls: Hurlbert (1984), Stewart-Oaten et al. (1986),

and Underwood (1991) discuss the simple BACI de-

sign and point out concerns with its application.

First, because impact to the sites was not randomly

assigned, any observed difference between control

and impact sites may be related solely to some other

factor that differs between the two sites. One could

argue that it is unfair to ascribe the effect to the im-

pact. However, as Stewart-Oaten et al. (1986) point

out, the survey is concerned about a particular impact

 . Simplified outcomes in a BACI design.
The change in a measured variable from two sampling occasions (dots at before and after the impact) in the
control (solid line) or impact (shaded line) sites. In (a) and (b) the lines are parallel and there is no evidence of
an impact. The difference in (b) between control and impact sites reflects area differences, but both sites
experience the same temporal trend. In (c), (d), and (e), the change over time differs between the control and
impact sites. This change is evidence of a time-treatment interaction, or that the impact has had an effect.
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in a particular place, not in the average of the impact

when replicated in many different locations. Conse-

quently, detecting a difference between these two

specific sites may be possible; however, without ran-

domization of replicate treatments at many different

sites, the findings from this survey cannot be general-

ized to other events on different streams.

This concern can be reduced by monitoring sever-

al control sites (Underwood 1991). However, two

assumptions must be made: (1) the variation in the

(After2Before) measurements of the multiple con-

trol sites is the same as the variation among potential

impact sites, and (2) the variability over time between

the control sites is not correlated. Then the plausabil-

ity of the difference observed in the impact site can

be estimated given the observed variability in the

changes in the control sites. In our example, several

control streams could be monitored at the same time

points as the single-impact stream. Then if the ob-

served difference in the impact stream is much

different than could be expected based on the multi-

ple-control streams, the event is said to have caused

an impact. When several control sites are monitored,

the lack of randomization is less of a concern because

the replicated control sites provide some information

about potential effects of other factors.

The second and more serious concern with the

simple BACI design with a single sampling point be-

fore and after the impact is that it fails to recognize

that natural fluctuations in the characteristic of inter-

est that are unrelated to any impact may occur

(Hurlbert 1984; Stewart-Oaten et al. 1986). For exam-

ple, consider Figure 3.4. If there were no natural

fluctuations over time, the single samples before and

after the impact would be sufficient to detect the 

effects of the impact. However, if the population also

 . Problems with the simple BACI design.
The change in a measured variable from two sampling occasions (dots at before and after the impact) in the
control (solid line) or impact (shaded line) sites. In (a), there is little natural variation in the response over time
and so the measured values indicate a change in the mean level. In (b) and (c), natural variation is present,
but, because only one point was sampled before and after impact, it is impossible to distinguish between no
impact (b) and impact (c) on the mean level.
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has natural fluctuations over and above the long-

term average, then distinguishing between cases

where there is no effect from those where there was

impact is impossible. In terms of our example, differ-

ences in the water quality may be artifacts of the

sampling dates and natural fluctuations may obscure

differences or lead to the conclusion that differences

are present when they are not. 

BACI-P: Before-after-control-impact 

paired designs

Stewart-Oaten et al. (1986) extended the simple BACI

design by pairing surveys at several selected time

points before and after the impact. Both sites are

measured at the same time points. An analysis of how

the difference between the control and impact sites

changes over time would reveal if an impact has oc-

curred (Figure 3.5). The rationale behind the design is

that repeated sampling before the development indi-

cates the pattern of differences over several periods of

potential change between the two sites. This survey

design provides information both on the mean differ-

ence in the water quality before and after impact, and

on the natural variability of the water quality mea-

surements. If the changes in the mean difference are

large relative to natural variability, the manager has

detected an effect.

The decision between random and regularly

spaced intervals has been discussed in an earlier 

section—the same considerations apply here.

Pitfall: As with all surveys, numerous assumptions

need to be made during the analysis (Stewart-Oaten

et al. 1992; Smith et al. 1993). The primary assump-

tion is that the responses over time are independent

of each other. A lack of independence over time

tends to produce false-positives (Type I errors) where

the manager may declare that an impact has occurred

when in fact, none has. In these cases formal time se-

ries methods may be necessary (Rasmussen et al.

1993). (The analysis of time series is easiest with regu-

larly spaced sampling points).

Two other assumptions are made: that the differ-

ence in mean level between control and impact sites

is constant over time in the absence of an impact ef-

fect and that the effect of the impact is to change the

arithmetic difference. In our example, the difference

in the mean water quality between the two sites

would be assumed to be constant over time. The

mean water quality measurements may fluctuate over

time, but both sites are assumed to fluctuate in lock-

step with each other maintaining the same average

arithmetic difference. One common way this as-

sumption is violated is if the response variable at the

control site is a constant multiple of the response

variable at the impact site. Then arithmetic differences

Before After
Time

Before After
Time

W
at

er
 q

ua
lit

y

W
at

er
 q

ua
lit

y

Control

Impact

Difference

Control

Impact

Difference

 . The BACI-P design.
The change in a measured variable from multiple randomly chosen sampling occasions (dots at before and
after the impact) in the control (solid line) or impact (shaded line) sites. In (a), there is no impact and the
mean level of the difference (bottommost line) is constant over time. In (b), there is an impact, and the mean
level of the difference (bottommost line) changes over time.
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will depend upon the actual levels. For example, sup-

pose that the readings of water quality at two sites at

the first time point were 200 versus 100, which has an

arithmetic difference of 100; at the second time point,

the readings were 20 versus 10, which has an arith-

metic difference of 10; but both pairs are in a 2:1 ratio

at both time points. The remedy is simple: a logarith-

mic transform of the raw data converts a multi-

plicative difference into a constant arithmetic

difference on the logarithmic scale. This problem is

commonly found when water quality measurements

are concentrations (e.g., pH).

Underwood (1991) also considered two variations

on the BACI-P design. First, it may not be possible to

sample both sites simultaneously for technical or lo-

gistical reasons. Underwood (1991) discussed a

modification where sampling is done at different

times in each site before and after impact (i.e., sam-

pling times are no longer paired), but notes that this

modification cannot detect changes in the two sites

that occurred before the impact. For example, differ-

ences in water quality may show a gradual change

over time in the paired design prior to impact. With-

out paired sampling, it would be difficult to detect

this change. Second, sampling only a single control

site still has the problems identified earlier of not

knowing if observed differences in the impact and

the control sites are site-specific. Again, Underwood

(1991) suggests that multiple control sites should be

monitored. In our example, more than one control

site would be measured at each time point. The vari-

ability in the difference between each control site and

the impact site provides information on generaliza-

tion to other sites.

Enhanced BACI-P: Designs to detect acute versus

chronic effects or to detect changes in variation as

well as changes in the mean

As Underwood (1991) pointed out, the previous de-

signs are suitable for detecting long-term (chronic)

effects in the mean level of some variable. In some

cases, the impact may have an acute effect (i.e., ef-

fects only last for a short while) or may change the

variability in response (e.g., seasonal changes become

more pronounced). Underwood’s solution is to

modify the sampling schedule so that it occurs on

two temporal scales (Figure 3.6). For example, groups

of surveys could be conducted every 6 months with

three surveys 1 week apart randomly located within

each group. The analysis of such a design is presented

in Underwood (1991). Again, several control sites

should be used to confound the argument about de-

tected differences being site-specific.

This design is also useful when there are different

objectives. For example, the objective for one variable

may be to detect a change in trend. The pairing of

sample points on the long time scale leads to efficient

detection of trend changes. The objectives for anoth-

er variable may be to detect differences in the mean

level. The short time scale surveys randomly located

 . The enhanced BACI-P design.
The change in a measured variable from multiple randomly chosen sampling occasions in two periods (dots at
before and after the impact) in the control (black line) or impact (shaded line) sites. The two temporal scales
(sampling periods vs sampling occasions) allows the detection of a change in mean and in a change in
variability after impact.
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in time and space are efficient for detecting differ-

ences in the mean level.

3.4.2 Issues in impact surveys

Time dependence

Many of the analyses proposed for the above surveys

(e.g., regression or ANOVA) have methodological

problems that need to be resolved before interpreting

the results. 

In regression of the characteristics versus time, the

estimated slope is often used as evidence of a long-

term change. However, data collected over time

violate the assumption of independence required for

ordinary regression. The estimate of the slope re-

mains unbiased, but typically the estimated standard

error of the slope is too small. The results appear to

be “statistically significant” when, in fact, there is no

evidence of a change (Neter et al. 1990, Chap. 13) and

a Type I error would have been made.

Comparing the means before and after impact

using ANOVA methods also suffers from the same

problem of correlation among the measurements.

Again, a typical result is that the estimated standard

error of the difference is too small, and results are de-

clared “statistically significant” when in fact they are

not, and a Type I error would have been made.

An alternative analysis is to use time-series meth-

ods that incorporate temporal correlation. The

analysis of time series is quite complex (Nelson 1973)

particularly if the time points are unequally spaced. If

the data points are taken before and after the impact,

the time series analysis can be extended using inter-

vention analysis to test if an impact changed the level

of the series (Rasmussen et al. 1993).

Temporary or permanent monitoring sites

A common question in monitoring surveys is the use

of temporary or permanent monitoring sites. For ex-

ample, should permanent water quality sampling

sites that are remeasured over time, or temporary

sampling sites that are re-randomized at each time be

used? Many of the concerns are similar to those for

repeated sampling designs discussed earlier. Perma-

nent plots give better estimates of change over time

because the extra plot-to-plot variability caused by

bringing in new plots each year is removed. However,

the costs of establishing permanent plots are higher

than for temporary sites, and the first randomization

may lead to a selection of plots that have some

strange characteristics. Of course, if the measurement

process alters the sampling unit, new plots will have

to be selected for each survey. A compromise solu-

tion is a rotating panel survey, where only a part of

the sample is changed at each time point. In large,

complex, long-term designs with multiple objectives,

permanent plots are often the preferred solution

since no survey design is optimal for all objectives

and the objectives change over time.

3.4.3 Impact surveys summary

As noted by Smith et al. (1993), the BACI-P design

and its extensions are one of the best models for im-

pact assessment. These designs can show that

observed differences in ecological variables between

the control and impact sites are neither artifacts of

sampling nor due to temporal trends unrelated to the

impact. The strength of the inference is directly relat-

ed to the design issues directly under the control of

the managers such as the frequency of sampling and

number of control sites. Because of the potentially

large amounts of data collected, quality assurance

methods need to be employed throughout the length

of the survey so that problems in data management,

data handling, or changes in personnel do not com-

promise the survey.

3.5 Conclusion

Green (1979) gave 10 principles applicable to any

sampling design; these principles have been para-

phrased, reordered, and extended below. Underwood

(1994) also gives some advice on areas of common

misunderstanding between environmental biologists

and statisticians.

1. Formulate a clear, concise hypothesis

The success or failure of a sampling program often

hinges on clear, explicit hypotheses. Woolly thinking

at this stage frequently leads to massive amounts of

data collected without enough planning as to how, to

what end, and at what cost the information can be

subsequently handled. Hypotheses should be stated

in terms of direct, measurable variables (e.g., action

X will cause a decrease in Y). The hypotheses to be

tested have implications for what and how data are to

be collected.

2. Ensure that controls will be present

Most surveys are concerned with changes over time,

typically before and after some impact. Effects of an
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impact cannot be demonstrated without the presence

of controls serving as a baseline so that changes over

time, unrelated to the impact, can be observed. With-

out controls, no empirical data are available to refute

the argument that observed changes might have oc-

curred regardless of impact.

3. Stratify in time and space to reduce hetero-

geneity

If the area to be sampled is large and heterogeneous

(highly variable), then sampling from the entire area,

ignoring the known heterogeneity, reduces the preci-

sion of the estimate. Extra variation may be

introduced to the measured variable solely by differ-

ences within the survey area unrelated to the

treatment. By stratifying the survey area in advance

(also known as blocking in the experimental design

literature), this extra variability can be accounted for.

The judicious choice of auxiliary variables can also be

used to increase precision of the estimates.

4. Take replicate samples within each combination

of time, space, or any other controlled variable

Differences among treatments can only be demon-

strated by comparing the observed differences among

treatments with differences within each treatment.

Lack of replication often restricts the interpretation

of many experiments and surveys to the sampled

units rather than to the entire population of interest.

It is imperative that the replicates be true replicates

and not pseudoreplicates (Hurlbert 1984), where the

same experimental unit is often measured many times.

5. Determine the size of a biologically meaningful,

substantive difference that is of interest

A sufficiently large survey (i.e., with large sample

sizes) can detect minute differences that may not be

of biological interest. It is important to quantify the

size of a difference that is biologically meaningful be-

fore a survey begins so that resources are not wasted

either by performing a survey with an excessive sam-

ple size or by performing a survey that has lower

power to detecting this important difference.

6. Estimate the required sample sizes to obtain ad-

equate power to detect substantive differences

or to ensure sufficient precision of the estimates

In this era of fiscal restraint, it is unwise to spend sig-

nificant sums of money on surveys or experiments

that have only a slight chance of detecting the effect

of interest or give estimates that are so imprecise as

to be useless. Such designs are a waste of time and

money.

If the goal of the survey is to detect a difference

among populations, the required sample sizes will

depend upon the magnitude of the suspected differ-

ence, and the amount of natural variation present.

Estimates of these qualities can often be obtained

from experience, literature reviews of similar surveys,

or pilot surveys. Simulation studies can play an im-

portant role in assessing the efficiency of a design.

If the goal is descriptive, then the required sample

sizes will depend only upon the natural variation pre-

sent. As mentioned, estimates of the variability can

be obtained from experience, literature reviews, or a

pilot survey.

As noted earlier, it may be infeasible to conduct a

pilot survey, historical data may not exist, or it may

be difficult to reconcile sample sizes required for dif-

ferent objectives. Some compromise will be needed

(Cochran 1977, pp. 81–82).

One common misconception is that sample size is

linked to the size of the population. To the contrary,

the sample sizes required to estimate a parameter in a

small population with a specified precision are the

same as in a large population. This non-intuitive re-

sult has a direct analogue in testing a pot of soup for

salt—the cook tastes only a spoonful regardless of

pot size.

7. Allocate replicate samples using probabilistic

methods in time and space

There is a tendency to allocate samples into “repre-

sentative” or “typical” locations. Even worse are

convenience samples where the data are collected at

sampling points that are easily accessible or close-at-

hand. The key to ensuring “representativeness” is

randomization. Randomization ensures that the ef-

fects of all other uncontrollable variables are equal,

on average, in the various treatment groups or that

they appear in the sample, on average, in the same

proportions as in the population. Unless the manager

is omniscient, it is difficult to ensure that “represen-

tative” or “typical” sites are not affected by other,

unforeseen, uncontrollable factors.

Notice that a large sample size does not imply rep-

resentativeness. Randomization controls

representativeness; sample size controls statistical

power. 

8. Pretest the sampling design and sampling 

methods

It is difficult to spend effort on a pilot survey 

knowing that the data collected may not contribute

to the final results and may be thrown away. Howev-
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er, this approach is the only way to check if serious

problems exist in the survey, if the size of the survey

unit is appropriate, if the data collection forms are

adequate, and if the actual level of variability is pre-

sent in the field, etc.

After a pilot survey has been conducted, its results

can be used to modify the proposed design and fine-

tune such aspects as the required sample size. In

many cases, a pilot survey shows that the objectives

of the proposed survey are unobtainable for the pro-

jected cost and effort and the survey must be

substantially modified or abandoned.

9. Maintain quality assurance throughout the 

survey

Despite best efforts, plans will deviate during the

course of the survey, particularly if the survey extends

over many years and personnel changes. Many of the

principles of statistical process control can be applied

here (Montgomery 1991). For example, ensure that

instruments are recalibrated at regular intervals, sam-

pling protocols are followed consistently among

different team members, and data are being keyed

correctly.

10. Check the assumptions of any statistical analysis

Any statistical procedure makes explicit and implicit

assumptions about the data collected. Match the

analysis with the survey design. In many cases, a “sta-

tistically significant” result can be obtained

erroneously if assumptions necessary for the analysis

were violated. 

11. Use the “Inter-Ocular Trauma Test”

Presentation of final results is just as important as de-

sign, execution, and analysis. A survey will be of

limited usefulness if it sits on a shelf because other

readers are unable to interpret the findings. Good

graphical methods (figures, plots, charts, etc.) or pre-

sentations will pass the Inter-Ocular Trauma Test

(i.e., the results will “hit you between the eyes!”)

Despite their limitations, uncontrolled events can

play a useful role in adaptive management. The study

of uncontrolled events and designed experiments dif-

fer in two important dimensions:

1. The amount of control. As the name implies, the

study of uncontrolled events does not give the

manager the ability to manipulate the explanatory

variables.

2. The degree of extrapolation to other settings. The

lack of randomization implies that the manager 

must be careful in extrapolating to new situations

because of the possible presence of latent, lurking

factors.

These differences imply that inferences are not as

strong as those made after carefully controlled exper-

iments, but the results often lead to new hypotheses

being tested in future research. Despite the weaker

inferences from studying uncontrolled events, the

same attention must be paid to the proper design of a

survey so that inadvertent biases do not taint the

conclusions.

References

Box, G.E.P. and G.C. Tiao. 1975. Intervention analy-

sis with applications to economic and

environmental problems. J. Am. Statist. Assoc.

70:70–9.

Buckland, S.T., D.R. Anderson, K.P. Burnham, and

J.L. Laake. 1993. Distance sampling: estimating

abundances of biological populations. Chap-

man and Hall, London, U.K.

The standard monograph on the statistical analy-

sis of distance sampling experiments.

Cochran, W.G. 1977. Sampling techniques. J. Wiley,

New York, N.Y.

One of the standard references for survey sam-

pling. Very technical.

Eberhardt, L.L. and J.M. Thomas 1991. Designing 

environmental field studies. Ecol. Monogr.

61:53–73. 

An overview of the eight different field situations

as shown in Figure 1.

Fletcher, D.J. and B.F.J. Manly (editors). 1994. Statis-

tics in ecology and environmental monitoring.

Univ. Otago Press, Dunedin, N.Z.

A collection of papers at a moderate to advanced

level on a wide range of topics.

Green, R.H. 1979. Sampling design and statistical

methods for environmental biologists. J. Wiley,

New York, N.Y.

One of the first comprehensive unified treatments

of sampling issues for environmental biologists.

Very readable.

______. 1993. Application of repeated measures de-

signs in environmental impact and monitoring

studies. Austr. J. Ecol. 18:81–98.



38

Hurlbert, S.H. 1984. Pseudoreplication and the design

of ecological field experiments. Ecol. Monogr.

52:187–211.

A critique of many common problems encoun-

tered in ecological field experiments.

Keith, L.H. (editor). 1988. Principles of environmen-

tal sampling. Am. Chem. Soc., New York, N.Y 

A series of papers on sampling mainly for envi-

ronmental contaminants in ground and surface

water, soils, and air. A detailed discussion on

sampling for pattern.

Kish, L. 1965. Survey sampling. J. Wiley, New York,

N.Y. 

An extensive discussion of descriptive surveys

mostly from a social science perspective.

______. 1984. On analytical statistics from complex

samples. Sur. Methodol. 10:1–7.

An overview of the problems in using complex

surveys.

______. 1987. Statistical designs for research. J. Wiley,

New York, N.Y. 

One of the more extensive discussions of the use of

complex surveys in analytical surveys. Very tech-

nical.

Krebs, C.J. 1989. Ecological methodology. Harper and

Row, New York, N.Y.

A methods books for common techniques used in

ecology.

Milliken, G.A. and D.E. Johnson 1984. The analysis of

messy data: Vol. 1: designed experiments. Van

Nostrand Reinhold, New York, N.Y.

A complete treatise on the analysis of unbalanced

data in designed experiments. Requires a back-

ground in the use of ANOVA methodology.

Montgomery, D.C. 1991. Introduction to statistical

quality control. J. Wiley, New York, N.Y.

A standard introduction to the principles of

process control.

Myers, W.L. and R.L. Shelton 1980. Survey methods

for ecosystem management. J. Wiley, New

York, N.Y.

Good primer on how to measure common ecolog-

ical data using direct survey methods, aerial

photography, etc. Includes a discussion of com-

mon survey designs for vegetation, hydrology,

soils, geology, and human influences.

Nelson, C.R. 1973. Applied time series analysis for

managerial forecasting. Holden-Day, San Fran-

cisco, Calif.

A primer on the basic time series analysis 

methods. 

Nemec, A.F.L. 1993. Standard error formulae for clus-

ter sampling (unequal cluster sizes). B.C. Min.

For., Res. Br., Victoria, Biometric Inf. Pamph.

No. 43.

______. [n.d.]. Design of experiments. This volume.

Neter, J.N., W. Wasserman, and M.H. Kutner. 1990.

Applied linear statistical models: regression,

analysis of variance, and experimental designs,

3rd ed. Irwin, Boston, Mass.

A standard treatment of regression and experi-

mental design suitable after a first course in

statistics.

Otis, D.L., K.P. Burnham,  G.C. White, and D.R. 

Anderson. 1978. Statistical inference from cap-

ture–data on closed animal populations. Wildl.

Monogr. 62.

The standard monograph on the statistical analy-

sis of mark-recapture experiments in closed

populations.

Pollock, K.H., J.D. Nichols, C. Brownie, and J.E.

Hines 1990. Statistical inference from

capture–recapture experiments. Wildl. Mono-

gr. 107.

The standard monograph on the statistical analy-

sis of mark-recapture experiments in open

populations.

Rao, J.N.K. 1973. On double sampling for stratifica-

tion and analytical surveys. Biometrika

60:125–33.

Rasmussen, P.W., D.M. Heisey, E.V. Nordheim, and

T.M. Frost 1993. Time series intervention analy-

sis: unreplicated large-scale experiments. In

Design and analysis of ecological experiments.

S.M. Scheiner and J. Gurevitch (editors). pp.

138–58. Chapman and Hall, New York, N.Y.

Scheiner, S.M. and J. Gurevitch 1993 (editors). Design

and analysis of ecological experiments. Chap-

man and Hall, New York, N.Y.

Sedransk, J. 1965a. A double sampling scheme for an-

alytical surveys. J. Am. Statist. Assoc.

60:985–1004.



39

______. 1965b. Analytical surveys with cluster sam-

pling. J. Royal Statist. Soc., B, 27:264–78.

______. 1966. An application of sequential sampling

to analytical surveys. Biometrika 53:85–97.

Skalski, J.R. and D.S. Robson 1992. Techniques for

wildlife investigations: design and analysis of

capture data. Academic Press, New York, N.Y.

Presents methods for conducting experimental in-

ference and mark-recapture statistical studies for

fish and wildlife investigations.

Smith, E.P., D.R. Oruos, and J. Cairns Jr. 1993. 

Impact assessment using the before-after-

control-impact (BACI) model: concerns and

comments. Can. J. Fisheries Aquatic Sci.

50:627–37

Stewart-Oaten, A., J.R. Bence, and C.W. Osenberg.

1992. Assessing effects of unreplicated perturba-

tions—no simple solutions. Ecology

73:1396–404.

Stewart-Oaten, A., W.M. Murdoch, and K. Parker.

1986. Environmental impact assessment:

“pseudoreplication” in time? Ecology

67:929–40. 

One of the first extensions of the BACI design dis-

cussed in Green (1979).

Thompson, S.K. 1992. Sampling. J. Wiley, New York,

N.Y.

A good companion to Cochran (1977). Has many

examples of using sampling for biological popula-

tions. Also has chapters on mark-recapture,

line-transect methods, spatial methods, and

adaptive sampling.

Underwood, A.J. 1991. Beyond BACI: experimental

designs for detecting human environmental

impacts on temporal variations in natural pop-

ulations. Austr. Marine and Freshwater Res.

42:569–87. 

A discussion of current BACI designs, and an en-

hanced BACI design to detect changes in

variability as well as in the mean response.

______. 1994. Things environmental scientists (and

statisticians) need to know to receive (and give)

better statistical advice. In Statistics in ecology

and environmental monitoring. D.J. Fletcher

and B.F. Manly (editors). Univ. Otago Press,

Dunedin, N.Z.





41

Abstract

Statistics are extremely important to resource manage-
ment. The rigour of gathering and analyzing data for
a proper statistical analysis often conflicts with the
need to obtain the required information within a short
time frame and within a limited budget. Retrospective
studies are one alternative to a fully controlled, or
prospective, study. These studies offer a compromise,
which uses existing data or circumstances. This ap-
proach greatly shortens the time between the incep-
tion of the study and the presentation of the results,
as well as reduces the cost. A considerable degree of
methodological correctness can be maintained by
careful design, analytical techniques, and presentation
of results.

As with any compromise, retrospective studies must
be used carefully. In retrospective analyses, often the
results are preliminary, and sometimes do not allow
for quantitative model building, hypothesis testing, or
point estimation. However, by carefully presenting re-
sults and designing the study, and being aware of the
pitfalls inherent in individual analyses, a great deal of
useful information can be obtained. Even if the results
are interim, such efforts can be beneficial to the gath-
ering of future information, and to decision-making
processes. Managers need all the tools available to
properly manage forest resources and adapt to chang-
ing conditions and priorities.

In this chapter, a definition and many examples are
presented to demonstrate the differences between
prospective and retrospective studies. Each example is
reviewed with an emphasis on contrasting retrospec-
tive and prospective studies, and pointing out the
strengths and weaknesses of the retrospective ap-
proach. Finally, some suggestions are given regarding
the design of retrospective studies and the analysis of
retrospective data.

4.1 Introduction

In any study involving data, two values help deter-

mine the methodology to apply. The first is

expedience—to complete the work as quickly and ef-

ficiently as possible to meet deadlines and minimize

cost. The second is rigour—to scrupulously apply sta-

tistical methods and experimental controls to ensure

that all comparisons and estimates are statistically

valid and free of bias and confounding factors.

The values of expedience and rigour usually con-

flict. However, both are important. In dynamic

natural systems such as forests, many effects of events

(such as particular logging practices or forest fires)

take many years to manifest themselves. Studies have

limited time and resources. In the real world, statis-

tics involves art as well as science. To provide valid

and accurate results, technical considerations such as

experimental or survey design, sample size and allo-

cation, and the desired accuracy or precision of the

results are necessary. However, with limited re-

sources, these requirements must be balanced with

constraints such as the ability to execute the field

procedures, weather, training and management of

participants and field personnel, financial resources,

and time available to gather and analyze the data.

This chapter discusses some compromises that 

attempt to satisfy both values. As with any compro-

mise, sometimes it provides excellent results, at other

times it is the best of a difficult situation, and occa-

sionally it is unworkable.

Nemec (this volume, Chap. 2) discusses designed

experiments, those where the experimenter assigns

treatments and can manipulate the experimental fac-

tors at will. Schwarz (this volume, Chap. 3) discusses

the study of uncontrolled events, those where the ex-

perimenter has a very limited ability to manipulate

the experimental factors, and methods for improving

the information that can be gained from them. How-

ever, what happens when the results of the studies

will not be available for a long time, or where it is un-

realistic or unacceptable to implement past practices

that have been condemned?  An example might be 

a study of the effect of large-scale clearcutting. How

can we use data that already exist and what are the

advantages and pitfalls?

4.2 Definitions

All studies that involve the gathering and synthesis of

data can be placed in one of two categories, depend-

ing on the nature of the design, the data, and the

analysis. The first category is called a prospective

study. This term, which has been used extensively in

biostatistical literature relating to medical science

4 RETROSPECTIVE STUDIES
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(Bailar and Mosteller 1986; Rosner 1986), indicates

that the data are collected and analyzed without ref-

erence to past data or circumstances.

A prospective study may be either designed as de-

scribed in Chap. 2 or uncontrolled (see Chap. 3). The

second category is called a retrospective study. In this

type of study, data that have already been collected

for other purposes, or that are of useful historical 

circumstances, are used directly.

To clarify this point, let us refer to the following

definitions from Rosner (1986, p. 326). Although

these definitions relate specifically to medical science,

the underlying ideas are directly applicable to

forestry.

Definition 10.4: A prospective study is a study in

which we identify a group of disease-free individ-

uals at one point in time and follow them over a

period of time until some of them develop the

disease. We then try to relate the development of

disease over time to other variables measured at

baseline.

Definition 10.5: A retrospective study is a study in

which we initially identify two groups of individ-

uals: (1) a group that has the disease under study

(the cases) and (2) a group that does not have the

disease under study (the controls). We then try to

relate their prior health habits to their current

disease status.

Although not from forestry, these definitions em-

phasize conceptual differences between the two

approaches for designing a study. In the prospective

case, all of the data collection and design of the study

are based on events that happen after the inception 

of the study. In the previous definitions, we start out

with similar subjects and then observe what happens.

Subjects will be divided into categories based on 

factors that are suspected to be related to the devel-

opment of the disease. The researcher will then try to

relate the development of the disease to various char-

acteristics and behaviours of the individuals.

In the retrospective case, data that are already

available, or are of circumstances or events that have

already happened before the study is initiated, are

used extensively. In the previous definitions, we start

out with two different groups of subjects—one with

the disease, the other without—and then work back-

wards to determine relationships between the

acquisition of the disease and the characteristics and

behaviours of individuals. The References section

contains many references to the statistical treatment

of data in particular instances. Most of the statistical

literature relates to the medical field (e.g., Bailar and

Mosteller 1986; Greenberg 1988; Hoogstraten and

Koele 1988; Koele and Hoogstraten 1988; Sikkel 1990;

Weinberg et al. 1993).

The distinction between prospective and retro-

spective is significant, as it represents a great differ-

ence in the measure of control over the study’s design

and execution. Note that this method of categorizing

studies does not refer to particular statistical or sur-

vey methodologies.

If all things were equal, the obvious choice would

be a prospective approach because it provides more

control over the design and implementation of the

study. A prospective study offers the option to deter-

mine exactly what data to obtain, to determine the

survey techniques or the design of the experiment,

and, in some cases, to exercise control over the types

of treatments and their assignment to sampling units.

However, all things are not equal. The use of prior

knowledge or taking advantage of existing results is

critical in forest management for many reasons. First,

enormous savings of time, labour, and financial re-

sources can be realized if data or results from prior

studies or surveys are used. Second, in some in-

stances it may be impossible to re-create the exact

circumstance that occurred at some previous time or

in another location. Third, social and political pres-

sures may prevent the execution of treatments that

would likely have significant negative impacts on an

ecosystem or community. Retrospective analysis is

especially useful in planning and designing future

studies. For example, prior studies can help in esti-

mating sample sizes, determining statistical power

(Anderson, this volume, Chap. 6) or estimating prior

probabilities in a Bayesian analysis (Bergerud and

Reed, this volume, Chap. 7). Also, prior data can be

used to develop or refine hypotheses or provide in-

formation on the required time span of a prospective

study.

Another important consideration in the design of 

a study is the fact that resource managers must make

decisions regularly. Because making decisions based

on some rather than no knowledge is better, retro-

spective analysis can be effectively used. A carefully

designed retrospective study can be accomplished

within a much shorter time frame than a prospective

one. The researcher may have less freedom to control

the design, but this shortcoming is offset by the 
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requirement for fewer resources and the availability

of other sources of knowledge and data. Thus, an-

swers can be obtained quickly from a retrospective

analysis, whereas a prospective study might not be

completed before a decision must be made.

4.3 Examples

To further illustrate the concepts mentioned in the

previous sections, let us consider the following 

examples.

4.3.1 Example A: effect of landslides on water 

quality

To assess the impact of major natural disturbances

such as landslides on water quality, it would be so-

cially unacceptable to create such events. An alterna-

tive is to consider areas where these events have

already occurred. Furthermore, significant time, ef-

fort, and money are saved by using data from previ-

ous natural disasters to compare or observe trends

rather than waiting for future events to occur. This

analysis would be termed retrospective since the data

collected will be gathered from events that have al-

ready transpired.

This application fits the definition for a retrospec-

tive study given in Section 4.2. Let us compare this

example with the definition point by point. In the ex-

ample, we identify two types of areas (corresponding

to groups of individuals in the medical definition): in

one area landslides have already occurred (cases), in

the other they have not (controls). We then relate the

water quality (prior habits) to the current status of

the area. The experimental design will not be as rig-

orous as for a prospective study because the sampling

will be opportunistic rather than being based on a sta-

tistically rigorous design. To compare the water

quality in slide and non-slide areas, it would be ideal

to compare areas that were identical in all respects

except for the fact that a slide occurred in one and

not the other. If this comparison were achievable,

then any difference in water quality would be due

solely to the slide. However, this comparison will

generally not be possible, and hence the analysis and

interpretation of the data will need to take this into

account.

4.3.2 Example B: forest bird populations

Retrospective analysis is extremely useful in the study

of long-term trends. Consider, for example, a study

of the long-term effects of clearcutting on forest bird

populations. A prospective approach would consist

of clearcutting several areas according to a specific

design in which natural factors, which affect the 

regeneration and stand development,  can be con-

trolled. The next step would involve collecting data

on these areas for the next, say 80 years. Since man-

agers would likely have to make a decision before the

results from this study are available, the disadvantage

is obvious. Retrospective analysis can help the man-

ager by providing timely information.

An alternative to the prospective approach is to

consider areas that have been clearcut in the past.

Bird populations can be assessed at various stages of

regeneration after clearcutting. This method is a ret-

rospective study because advantage is being taken of

circumstances that serve as proxies (alternatives) for

treatments (in this case, areas that have been clear-

cut previously). This approach greatly decreases the

duration of the study. As in the previous example, a

compromise must be made in the experimental de-

sign because the sampling will be opportunistic and

natural factors such as those previously mentioned

would not be controllable to the same degree as in a

prospective study.

4.3.3 Example C: economic effect of forest fires

Often starting a study from scratch is difficult. For

example, past studies have determined the extent to

which long-run timber supply and the flow of eco-

nomic benefits from a forest can be reduced by fire.

To assess the costs and benefits of a fire protection

program, the probability of destructive fires must be

estimated (Reed 1995)  in one of two ways. First, ret-

rospective analysis of historical fire data could be

undertaken. The second option, a prospective analy-

sis involving the selection of several areas based on a

suitable sampling plan, would involve,  according to

plan, setting fires in some of the areas, and leaving

others undisturbed. The resulting economic effects in

the burned areas could be compared to those in areas

that were not set ablaze. While this second option is

an interesting design, and from a purely statistical

point of view has many advantages, it is socially un-

acceptable. Furthermore, this study would clearly be

very long and highly impractical.

4.3.4 Example D: effect of herbicides

The provision of information to direct future studies

is an important contribution of retrospective analy-

sis. In 1991, a study investigated the impacts of

herbicides on grizzly bear forage production in the
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Coastal Western Hemlock zone (Hamilton et al.

1991). Retrospective analysis of past herbicides treat-

ments provided information on the relationship

between stand structure, density, and forage avail-

ability in glyphosate-treated stands. This information

was used to guide the range of treatments to use for

further investigation and testing.

4.3.5 Example E: preservation of biodiversity

The idea that green tree retention mimics the stand

structure remaining after natural disturbances such

as fires is an important assumption that currently

guides much of the management for biodiversity

(B.C. Ministry of Forests and B.C. Environment

1995). An example of this principle is found in Traut

(1995). He studied the preservation of biodiversity in

green tree retention—a logging practice where some

large trees are left uncut in each cutting unit—by ex-

amining areas that had been ravaged by fire. The

effects of fire were assumed to be analogous to the 

effect of green tree retention, because several trees

survive the fire as they would survive the logging. 

Although fire and logging using green tree retention

are different, if they have similar effects on biodiver-

sity, effects can be studied that would not be possible

otherwise, except by waiting several decades.

Acker et al. (1995) did a similar study in the

Willamette National Forest, as did Zenner (1995) on

Douglas-fir and western hemlock in the Western

Central Oregon Cascades. Peck and McClune (1995)

did a similar study in western Oregon, but targeted

canopy lichen communities.

4.3.6 Example F1: site index versus tree density

Goudie (1996) presented a paper discussing the rela-

tionship between the site index and the tree density

in lodgepole pine stands. He postulates that increas-

ing density represses growth, and that to measure the

site index on dense stands underestimates the index.

It is often assumed that these two factors—density

and growth—are independent, thus challenging the

usefulness of thinning as a measure to promote

growth. The investigation of this phenomenon with 

a prospective study would require a design in which

stands of various densities would be subjected to a

variety of thinning regimes, and the effect on the site

indices observed.

Goudie extensively used stands that had been

thinned in the past, sometimes by natural causes

such as fire. He takes great effort to ensure that

stands representing various tree densities are similar

in all respects except for site density so that a differ-

ence in site index can be directly attributable to the

density. He correctly points out the potential biases

in the selection of plots, and although the design has

some shortcomings, he finds compelling evidence to

suggest a density-dependent repression on site index.

The dependence was most noticeable in very dense

stands and hardly noticeable in stands of lower densi-

ty. Thus growth and yield models that do not take

repression into account would not be applicable to

very dense stands

Here is an example where existing data have been

used considerably. The results were presented along

with a discussion of the potential flaws and biases,

and a great deal of information and knowledge was

gained. Researchers would have had to wait years for

the results from a prospective study.

4.3.7 Example F2: site index versus tree density

Thrower (1992) also conducted a study at Larson’s

Bench, east of Chilliwack, B.C., on the relationship

between density and height-and-diameter growth in

coastal Douglas-fir stands. This study, too, tried to

mimic an experimental design by comparing a natur-

al (unspaced) and a previously logged (spaced) area,

each with several similar ecological units. This study

used an existing thinning, which was not designed for

a research study. Some matching of units was possi-

ble. However, since the two areas did not have the

same conditions at the time of thinning, it was ac-

knowledged that the comparison of the growth rates

in the two areas may be a combination of growth rate

and initial conditions.

4.4 Contrasting Data Collected from Prospective

and Retrospective Studies

Data collected from a prospective study can be used

and analyzed directly, and the interpretation can be

based on sound statistical design and analysis. By

contrast, data from a retrospective study have fewer

statistical controls, and often some components can-

not be combined with other components of the data

unless additional assumptions are made about their

comparability.

Consider Example B (forest bird populations) in

the previous section. For a prospective study, the same

treatments would be used throughout 80 years of the

study. The analysis of trends for various species is rel-

atively straightforward. In the retrospective study

there may be a variety of stands where clearcutting
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was done at various times in the past. The choice of

stands will be limited and comparisons may have to

be made among stands that differ not only in the

time since being clearcut, but also in other variables

such as weather, initial stand structure, slope, aspect,

and elevation (which cannot be controlled).

In a retrospective analysis, stands must be matched

as closely as possible (i.e., choose stands for compari-

son that are as similar as possible in all ways except

for the time since the clearcut). If we can achieve this,

then the difference in the populations will be due to

clearcutting and not to other factors. Lack of match-

ing requires making additional assumptions about

the comparability of the stands included in the analy-

sis. For example, you might assume that for different

areas, the weather conditions since the clearcutting

will have affected all the clearcuts in the same way.

Before making this assumption, a study of each area

would be advisable to assess the assumption’s plausi-

bility. Thus the lower cost and shorter time of the

study are somewhat offset by a design with fewer

controls. Because of the greater use of untested as-

sumptions, the interpretation of the results will

demand greater caution than in a prospective study.

For example, in many instances, results cannot be

generalized, nor hypotheses tested. However, hy-

potheses can usually be generated for future studies.

Retrospective analysis offers other benefits over

long-term experiments. In Example B (forest bird

populations), a prospective experiment has the risk

that some of the treatment areas may eventually be

used for purposes other than forests (e.g., become

agricultural land or urban areas) during the course of

the experiment. Hence the treatment areas are lost to

the final analysis. This risk is present even in studies

that last for considerably shorter periods of time.

4.5 Comparing the Development of a Retrospective

and Prospective Study

A comparison of the development of prospective and

retrospective studies, especially where they differ, will

help us to appreciate how to use retrospective analy-

sis effectively. Figure 4.1 outlines the basic steps in-

volved in the development of the two types of studies.

The left side of Figure 4.1 follows the steps in a ret-

rospective study, while the right side displays the

steps in a prospective study. In a retrospective study,

several steps replace the experimental design stage in

a prospective study. Comparable data sources must

be found that replace rigorous statistical and field

procedures. Any difficulty in finding truly compara-

ble data sources inhibits a rigorous statistical design.

The lack of control in the retrospective study means

that additional assumptions will be required to 

perform the analysis, implying that more care is

needed in the interpretation of the results. For exam-

ple, if in Example B (forest bird populations) we

were unable to match clearcut and natural stands, we

may find it necessary to compare a clearcut stand

with a natural one that has a different aspect and tree

species mix. We would assume that these factors in

the two stands do not make a difference to the

species present.

In Example F2 (site index versus tree density) the

comparability of thinned and unthinned stands was

somewhat compromised because of differences in the

conditions of the stands at the time of clearcutting.

Consequently, the results may be less widely applica-

ble. The advantages, however, are the potential to

greatly shorten the study’s time frame, and to reduce

the effort and resources required.

The previous comments do not imply that retro-

spective analyses are inadequate, but do indicate the

importance of additional diligence during their de-

sign, interpretation, and analysis. Furthermore, the

study of alternative data sources greatly enhances the

ability to design an efficient study using knowledge

already gained about the subject under investigation.

This study may lead to rejecting some scenarios or

considering others that might not otherwise be 

obvious. Also, retrospective data provide advance

warnings of difficulties one might expect, which

could lead to the failure of an experimental design. A

retrospective study can often be used as a pilot study

to obtain qualitative information.

4.6. Studies with Significant Retrospective and

Prospective Components

Sometimes it is not clear whether to classify a study

as prospective or retrospective. The study may ap-

pear to be a prospective study, but after scrutiny may

be found to be more like a retrospective one. Think-

ing about which category the study belongs to will

help us understand how the assumptions might affect

the interpretation of results. The following examples

illustrate this point.

4.6.1 Example G: change in the measuring instru-

ment

Consider the case where a questionnaire survey of
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hunters has been done for many years, yielding infor-

mation about hunter activity, number of animals or

birds killed, etc. With advancing technology and

more knowledge of the resource, the survey is 

redesigned, new computer technology is used, the

questions are clearer, and perhaps one or two are

added or deleted. The same series of statistics is gen-

erated before and after the redesign.

Now suppose that later a trend analysis of the

number of days hunted and the number of birds of

various species killed is required over a time period

that spans both the old and the new methodology.

Because the same series of statistics has been generat-

ed throughout the period covered by the study, the

researcher might infer that it would be valid simply

to use the data without further consideration. How-

ever, changes in the way a question is asked or in the

way the questions are edited may influence a person’s

response and therefore an apparent trend may be due

to the question rather than the activity. Any analysis

would require assumptions about the comparability

of the data. The interpretation of the results would

need to acknowledge these assumptions and examine

their potential implication. Cooch et al. (1978) de-

scribe some of the effects of survey changes on results

in the Canadian Wildlife Service’s National Water-

fowl Hunter Surveys.

4.6.2 Example H: changing statistical methodology

Consider the following simplified example. Suppose

that for a number of years the ratio of immature to

adult Ancient Murrelets (Synthliboramphus antiqu-

us), called the I/A ratio, has been collected for a

specific population consisting of five colonies. This

ratio is of interest because the higher it is, the greater

the number of young per nest. This is one measure of

the health of the population. These birds are colonial

(i.e., nest close together in small areas or colonies).

Each year a sample of approximately 20 nests is ob-

served from each of five colonies under study, and

the number of adults and young are counted. The

overall I/A ratio was computed by simply averaging

the ratios from the five colonies (Table 4.1).

In 1996, the size (i.e., the total number of nests) of

each colony, in addition to the number of immatures

and adults in the observed nests, is recorded. The 

results are given in Table 4.2.

As in previous years the comparable I/A ratio can

be computed as the simple average of the I/A ratios

for the five colonies. Its value is 1.07.

 . I/A ratio by colony 1990–1995

I/A ratio by colony Average

Year A B C D E I/A ratio

1990 0.83 1.10 0.90 1.12 1.35 1.06
1991 0.90 1.02 0.84 1.25 1.41 1.08
1992 0.95 0.97 0.88 1.12 1.22 1.03
1993 0.92 1.03 0.81 1.17 1.27 1.04
1994 0.85 0.93 0.78 1.08 1.19 0.97
1995 0.96 1.05 0.91 1.20 1.36 1.10

 . I/A ratios for 1996

Colony A B C D E Total

Nests observed 20 20 18 17 20 95
Immatures 29 39 34 39 63 148
Adults 40 40 36 34 40 190
I/A ratio 0.73 0.98 0.94 1.15 1.58
Colony size 58 75 105 178 285 701
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In 1996, with the information about colony size

being added, the I/A ratio can be weighted by the size

of the colony. The I/A ratio calculated in this way will

be 1.24. In this estimation procedure, the counts are

weighted within each colony, which tends to reduce

the bias. Furthermore, the I/A ratios are examined as

a function of colony size (Figure 4.2).

Subject to confirmation by a statistical test, 

Figure 4.2 seems to indicate that larger colonies are

more productive. The difference between the two es-

timates of the overall I/A ratio arises because the

larger colonies tend to have higher I/A ratios and, in

the second estimate, the colonies influence the esti-

mate in proportion to their size.

For management purposes, the “health” of the

population in the five colonies is needed. Should the

lower figure (I/A=1.07) be presented because it pro-

vides the best comparison with information from

previous years? Or should the higher figure (I/A=1.24),

which will be less biased and a better estimate, be used?

Alternatively, the analysis from previous years

could be redone by weighting the results prior to

1996 by the 1996 colony sizes. If colony sizes do not

vary a great deal from one year to the next, this

method may be a good way to compare as well as up-

date the results from previous years. The downside to

this procedure is that if colony sizes fluctuate consid-

erably over time, poorer estimates may result.

Furthermore, the agency may present an image of in-

competence by not presenting a coherent

methodology.

Several solutions may be “correct.” The choice will

depend on the priorities of the agency and the pro-

posed use of the information obtained. If the data are

used as input to a mathematical model, using the best

information available would be the highest priority;

it may be essential to adjust previous years’ informa-

tion if there is reason to believe this is better. On the

other hand, if trends over time are desired, then 

consistency is important, even at the expense of a sys-

tematic bias in each year’s results.

The previous two examples represent cases in a

continuing study. The researcher has introduced the

change in the circumstance through a change in

methodology. Often, these cases might not be con-

sidered retrospective but simply studies with

statistical bias. However, the same factors that exist

in Examples A through F, exist here. We are using

previously collected data that are not entirely com-

patible with data we currently collect. The same

caveats exist here as in the previous examples. In this

sense, Example H is similar to a retrospective study.

The following example demonstrates that a study

designed as a prospective one often has elements of a

retrospective nature. The existence of such elements

should not necessarily result in a study being classi-

fied as retrospective. Many studies, of necessity, con-

tain some retrospective and some prospective

elements. This happens because we often have limit-

ed control over the data we collect. Hence many

studies are hybrids and it is an oversimplification to

classify every study as either purely prospective or

purely retrospective. Consider the following example

from wildlife conservation.

4.6.3 Example I: Pacific Brant

Each year, Pacific Brant (Branta bernicla) migrate

north in the spring and early summer and south in

the autumn. During the northward migration, one of

the major stopping areas is the Parksville-Qualicum

area on the eastern shore of Vancouver Island. The

birds stay there for anywhere from several hours to

over 10 days before moving on. Proper conservation

and management of the Pacific Brant requires

knowledge of how many brant use this area, and for

how long.

A solution is to count the number of brant in the

area, which seems easy because the vast majority feed

on the beaches along the seashore. For counts, where,

how often, and what data to collect must be deter-

mined.

If counts are done at any regular intervals (e.g.,

daily) then those birds that stay several days may be

counted more than once. Furthermore, brant that

stay for a shorter time than this interval may be

missed altogether. Certainly both situations cannot

be accommodated unless other data are used. 

Multiple counts can be accounted for through the

observation of banded birds since the unique band
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number provides a method for identifying individual

birds. This method can work quite well, but simplify-

ing assumptions are necessary. First, assumptions

would be required for any prospective banding study,

such as the randomness of the banded birds among

the population as a whole, and the likelihood of see-

ing a banded bird (e.g., the band may be hidden if the

bird is swimming, or its identification number may

not be readable by the observer).

Banding will be expensive unless brant that have

already been banded in previous studies can be used.

The incorporation of bands from elsewhere intro-

duces a retrospective component into the study and

the requirement for additional assumptions. We

must consider where the brant were banded. Were

brant from some wintering areas subjected to more

intensive banding efforts than those from others?

Even if we can answer this question, we need to know

how many brant from various wintering areas pass

through Parksville-Qualicum. Some components of

the population may have a high proportion of band-

ed birds, and others may have none. It may be neces-

sary to make some simplifying assumptions about

this source of data as well as an assessment of its 

validity.

The decisions relating to these issues will result in

a compromise between optimum statistical methods,

which may be impossible to implement, and allowing

less desirable retrospective components. The addi-

tional assumptions under which the analysis was

done should be stated clearly. More information

about the Pacific Brant is given in Campbell et al.

(1990a), and estimation procedures in Routledge et

al. (1998).

4.7 Guidelines for Designing Retrospective Studies

Several examples of retrospective studies, along with

some weaknesses and strengths, have been discussed.

As practitioners and decision-makers, we need guid-

ance concerning the factors that distinguish a good

retrospective study from a mediocre one. Although

retrospective and prospective designs and analyses

have basic differences, we should endeavour to apply

sound statistical principles to both. The main differ-

ence is the rigour with which these principles can be

applied to each, and to what extent compromises

must be made. The following list provides some prin-

ciples for good design. Although not exhaustive, this

list focuses on several points where retrospective and

prospective studies tend to differ.

• Probability sampling

• Awareness and clear statement of assumptions

• Design considerations—controlling variation

• Use of direct measurements rather than proxies for

the measurements

Let us look at these four principles and consider

how we might adhere to these in both retrospective

and prospective analyses.

4.7.1 Probability sampling

Probability sampling introduces an element of ran-

domness into the process of selecting the sampling

units. As pointed out by Schwarz (this volume, 

Chap. 3) randomness is essential to virtually all statis-

tical methods. It serves to remove many inadvertent

biases and is central to the strict application of statis-

tical theory to experimental design (Nemec, this

volume, Chap. 2) and to the proper assessment of in-

ference (Anderson, this volume, Chap. 6).

Probability sampling is often difficult in a 

prospective study, and is even more arduous in a ret-

rospective one. Consider Example A (effect of

landslides on water quality). If we use past data, we

have limited choices for our sampling units. For ex-

ample, to estimate the water quality (chemical

composition and concentration of various impurities

in the water) 10 years after a landslide, we are limited

to the areas where slides have actually occurred and

are of the appropriate age. These may not necessarily

be representative of the region in which we are inter-

ested. For example, if most of the slides were at lower

elevations, or in a particular valley, then the data

from individual slides may have to be weighted to

compensate for their geographical distribution, or a

non-random sample be chosen that will have a more

representative geographic distribution. This last pro-

cedure violates the concept of probability sampling

but may represent its best approximation using limit-

ed past data.

4.7.2 Awareness and clear statement of assump-

tions

Often assumptions must be made that are clearly not

true, but the consequences of which are hopefully

minimal. Consider Example I (Pacific Brant). A ret-

rospective component to this study is the use of

bands that were affixed to birds elsewhere.

To simplify the discussion, assume that the brant

came from two wintering areas, area X in which a

large proportion of brant had been banded, and area
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Y in which only a few had been banded. The average

length of stay of the brant in Parksville-Qualicum

(the first step for estimating the total population

passing through the area) can be obtained from re-

peated band sightings. However, if brant from

wintering area X tend to spend more time in the area,

our estimate of length of stay will be too high since a

disproportionate number of birds seen with bands

are from area X. Unless we have detailed banding in-

formation and know the proportion of birds from

each wintering area, we can do little about this source

of error except to assume that the length of stay for

the X and Y birds is the same, acknowledge the po-

tential bias, and assess its possible effects on the

estimates.

4.7.3 Design considerations—controlling variation

In any study, it is essential to reduce unwanted varia-

tion as much as possible. The more we succeed in

doing this, the better we can succeed in establishing

relationships among variables, testing hypotheses, or

obtaining precise point estimates.

In Example F1 (site index versus tree density),

Goudie (1996) recognized that stands on which site

index were compared must be as similar as possible,

leaving tree density as the only variable. His success

in determining a valid relationship between site index

and tree density depended upon his success in find-

ing nearly identical sites except for the density.

Because he did a retrospective study, the job is more

difficult—there are fewer stands to choose from. In 

a prospective study he would have a much larger

choice of sampling units—a comprehensive sampling

universe from which to sample.

4.7.4 Use of direct measurements rather than prox-

ies for the measurements

Sometimes there are insufficient sampling units with

the properties we want to study. In Example E

(preservation of biodiversity), this was the case. An

assumption was made that a burnt stand with trees

left after a fire is equivalent to a logged stand with

green tree retention. This assumption allowed a

greater choice of stands and thus the potential for

better control in the design. However, in doing this,

the burnt areas are a proxy for green tree retention.

The cost of greater control is the assumption of simi-

larity between burnt and green tree retention stands.

4.8 Roles of Retrospective Analysis in Adaptive

Management

Adaptive management is a systematic approach to

improving managerial techniques through learning

from the outcomes of interventions by those in-

volved with the administration of the resource. This

definition implies designing interventions and moni-

toring programs to provide reliable feedback

concerning the outcomes and their causes. Managers

need all the tools available to properly manage forest

resources, and must be flexible and able to adapt to

quickly changing conditions and priorities.

Retrospective analysis can be used to provide input

in five important ways:

1. Assessing long-term management actions with-

out waiting until the effect of the action is

realized. In Example B (forest bird populations),

assessing long-term trends in bird populations

after clearcutting would require many years. Ob-

serving the effect on already clearcut stands can

provide useful and expedient information.

2. Assessing impacts of natural phenomena that

cannot be created for the purpose of a study.

Consider Example A (effects of landslides). Land-

slides are rarely produced on purpose. In cases

such as in road construction in mountainous ter-

rain where some slides may be created through

blasting, landslides would likely not provide useful

information for a study of water quality. A more

representative sample could be obtained from nat-

ural slides.

3. Studying historical patterns of events such as dis-

turbance by fire, fluctuations in weather, or

outbreaks of parasites such as the gypsy moth.

The study in Example C (economic effect of forest

fires) looks at previous patterns of fire and uses

these data to assess the economic impacts of the

fires. This study also would fit in category 2, above,

since fires would not be set simply for estimating

impacts, economic or otherwise. Controlled burns

for preventing larger fires in the future would not

suffice for this type of analysis because they would

not furnish a suitable sample for assessing the im-

pacts of large devastating fires.

4. Collecting background information to aid in the

design of a related study. Example D (effect of

herbicides) demonstrates a retrospective study that
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was performed to take advantage of existing data

to aid in the planning of a more suitable study that

will have more focused objectives.

5. Providing interim information for making deci-

sions when results from long-term studies will

not be available until after the intended deadline

has passed. The studies in Example E (preserva-

tion of biodiversity) yield considerable informa-

tion on the relationship between biodiversity and

certain logging practices. This information would

take many years to collect and would be difficult to

implement as a prospective study. Example F1 (site

index versus tree density) falls into this category

too. A prospective study would take years to com-

plete as the database would build very slowly.

In discussing the role of retrospective studies in

adaptive management, their relationship to prospec-

tive studies must be considered. In the following

discussion, the two methods will be compared and

contrasted.

Each of the five ways of using retrospective analysis

listed previously can be broken into two compo-

nents:

1. Feedback for management. The opportunity to

obtain information for improving current man-

agement practices often exists. Regular feedback

should not be restricted to retrospective studies. 

As prospective studies progress, they offer greater

potential for feedback, but results typically take a

longer time. Wherever possible, prospective 

studies should report interim results. If this infor-

mation is prepared with the proper interpretation,

the manager will be aware of current ideas, and re-

alize that they are subject to change as more

information becomes available.  We should not be

reluctant to assess the most current knowledge and

use it to modify management practices.

2. Feedback for understanding. This is just as im-

portant as feedback for management. In addition to

knowing that a particular course of action works,

we need to understand why it works. What are the

underlying natural processes and relationships that

cause the results we observe?  It is only when we

answer these types of questions that we can gener-

alize our ideas and progress. This type of feedback

will be assimilated into the knowledge base for the

resource, and while it may not be useful for cur-

rent decisions, it will become useful in the future

when combined with other information.

Feedback for understanding has two components.

The first is direct input to the knowledge base.

Prospective studies are the best way to achieve this as

they are carefully controlled, and statistical accuracy

is more important than short execution time. The

second component is the provision of direction for

future studies. This can often be accomplished by a

retrospective study since only general directions are

required, and time need not be spent obtaining rigor-

ous results.

4.9 Conclusions

Retrospective analysis is an essential tool for research

and management. It allows the researcher to augment

and design studies by relying on previous data or cir-

cumstances. Its advantages include great savings of

time and resources since much work has already been

done. In most instances, forest managers cannot af-

ford to wait a long time for results from ideal studies,

and often cannot afford to do ideal studies at all. The

strength of retrospective analysis lies in its ability to

provide an alternative to a purely prospective ap-

proach by combining historical data with current

information for the production of interim results.

Retrospective analysis is an important predictor

for the future. Even though quantitative probabilities

(P-values) cannot always be attached to hypotheses, a

qualitative understanding of processes or estimation

of parameters can be obtained. This knowledge can

provide valuable background information and will, 

at the very least, provide information for future re-

search.

Finally, we should not depend entirely on retro-

spective studies. Because of their inherent

weaknesses, their long-term importance lies in pro-

viding information concerning future management

and research directions, and pointing out where

more detailed prospective studies are necessary. At

some point we need a quantitative verification of hy-

potheses with statistically sound results. Where

possible, we must ultimately supplement retrospec-

tive studies with prospective ones.

Difficult management decisions of today based on

sparse information should become routine decisions

tomorrow based on solid information. This transi-

tion is ongoing, because with each puzzle we solve, a

new one seems to be waiting. Retrospective analysis

can be applied to timely but tentative results, fol-

lowed by primarily prospective studies, and then to

thorough investigation of a phenomenon. Our activi-
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ties must be divided between “fighting fires” and

planning for the future in areas not yet under threat.
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Abstract

Measurements and estimates are never perfect. The
potential for error is always present, especially in field
studies on large ecosystems such as British Columbia’s
forests. In the past, inattention to measurement errors
has led to serious management failures, most notably
in the related field of fisheries management. This
chapter describes fundamental measurement con-
cepts, ways to assess and reduce the potential size of
measurement errors, and ways to adjust subsequent
analyses and associated management actions to ac-
count for these errors.

5.1 Introduction

Do any of these statements describe your views?

It is a waste of time to worry about measurement

errors. I have enough practice in my field to have

reduced measurement errors to a negligible size.

If I know that my measurements are not perfect,

then I should take several, and average them,

maybe throwing out the odd one that is far from

the others.

I have the resources only to make a subjective guess

at the abundance of some minor species. Surely this

will be adequate. After all, I am only looking for

trends. If the measurement errors are large, and are

consistently present, can’t we ignore them when we

are looking for trends?

I don’t have to worry about measurement errors. I

always take repeated observations and use standard

statistical techniques to deal with them. If my mea-

surements do contain large errors, then can’t I just

take repeated measurements, do a routine statistical

analysis, and quote a P-value to silence the pesky

biometricians?

I have an important job to do. I don’t have the time

or luxury of worrying about statistical niceties like

academics and scientists. I need to get on with

managing for forest production.

If you agree with any of these opinions, then you

may find this chapter unsettling.

Adaptive management is a methodology for pro-

ducing information on the consequences of different

management practices. These consequences must

eventually be measured, and hence measurement is a

key part of any adaptive management project. In gen-

eral forest management, measurements are taken to

evaluate outcomes of management actions, assess

trends, and evaluate current states of forest ecosys-

tems. This chapter focuses on measurements of

natural resources, such as timber volumes, fish 

population parameters, or species diversity of com-

munities affected by forest management. The types of

measurements that are considered range from count-

ing, to direct physical measurements, to educated

guesses. 

Careful attention to measurement errors is an es-

sential component of a successful forest management

project. In field work, we often deal with quantities

that are difficult to measure, and the errors in these

measurements are often large. It is tempting to ig-

nore these errors, and manage as though the

estimates reflect the true state of the resource. This

temptation must be resisted as it could lead to eco-

logical, social, and economic disasters. The collapse

of our Atlantic cod (Gadus morhua) stocks can be at-

tributed in part to unwarranted confidence in official

abundance estimates. Here in British Columbia, in-

adequate attention to measurement and estimation

errors put the Adams River sockeye (Oncorhynchus

nerka) at risk in 1994. 

Even when measurement errors are small, as is

often the case in the physical sciences such as astron-

omy, we eventually push our measurement systems

to their limit when we address increasingly difficult

questions. If we are not vigilant, management expec-

tations can increase beyond the capacity of the

measurement system. 

Key components of major projects are often mea-

sured by subjective guesses or “eyeball” estimates.

Although this approach is often the only feasible way

to proceed, such estimates are notoriously vulnerable

to large errors that violate the basic requirements of

statistical analysis. Without realizing it, we may grad-

ually grow to rely on these “measurements” for more

than they can deliver. Furthermore, statistical analy-

ses typically require specific assumptions about

measurement errors that are often not satisfied by 

5 MEASUREMENTS AND ESTIMATES

RICHARD D. ROUTLEDGE
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visual estimates. Close attention to these assumptions

will ensure that reliable information necessary for

making management decisions is extracted from the

data.

It is also easy to be fooled into a false sense of the

reliability of one’s own measurements. Subtle biases

can infiltrate the best measurement protocols. Any

measurement processes that provide data for key

management decisions need to be checked on an on-

going basis through proper quality control

procedures.

This chapter will discuss two types of measure-

ment errors—random and systematic—and how

they can be identified and addressed. The assump-

tions about errors required for standard statistical

analyses and the consequences of violating these as-

sumptions will be examined. Specific issues

associated with special types of measurements will

also be discussed. This chapter focuses on measure-

ment errors themselves. Sampling, the procedure

that defines how, when, and where measurements are

taken, is discussed in Schwarz (this volume, Chap. 3).

5.2. Measurement Errors

5.2.1 Types of errors

Almost all measurements contain errors. The exis-

tence of errors does not imply that the worker has

made a mistake. Although careful attention to equip-

ment and protocol may reduce their average size,

errors can never be eliminated entirely. Errors come

in two types: random and systematic.

For example, repeat measurements of the length of

a sawlog will typically differ by small amounts. The

differences will be caused by a myriad of small fac-

tors, such as placement of the ends of the measuring

tape, displacement of the middle of the tape by irreg-

ularities in the log, or minor errors in reading the

scale. These are random (or chance) errors. If the

tape were nylon and had been stretched substantially

by extended use, then all the measurements would

underestimate the true length of the log. This system-

atic error or bias often goes undetected.

The following example illustrates the distinction

between chance and systematic errors. It also illus-

trates the need for care even in simple measures such

as counting.

Aerial surveys have become a popular way of as-

sessing the size of populations of big game animals. 

It can be tempting to believe that, from an aircraft,

every individual can be seen and counted. Goddard

(1967) conducted one of the early assessments of this

belief. From extensive field work, he ascertained that

69 black rhinoceros (Diceros bicornis) occupied Oldu-

vai Gorge in Tanzania. However, in each of 18

overflights, he never spotted more than 50% of this

population, even under ideal conditions. Under

poorer conditions, he spotted as few as 35% of the

animals. Caughley (1974) reported sighting rates for

other African populations ranging from 23% for

some African mammals to 89% for cattle. Subse-

quent studies have confirmed these early findings for

a variety of species and habitats.

Goddard’s survey results  were unpredictable. 

That is, they were subject to chance errors, attribut-

able to many factors, including type of aircraft,

altitude, speed, visibility conditions, observer alert-

ness, and happenstance. For example, if a rhinoceros

happened to move just as the observer was scanning

that location, it would be more likely to be detected. 

Goddard’s results also consistently underestimated

the true population size. That is, they were subject to

systematic errors. In each survey, some animals were

not seen. Some animals will always go undetected.

They may be hidden under trees, tucked behind

cliffs, camouflaged by underbrush, or simply missed

because the observer was concentrating on another

location, or was fatigued.

The presence of chance errors is relatively easy to

detect—repeat the measurement process several

times under similar conditions. Different results,

with no apparent pattern to the variation, show

chance errors at work. In contrast, systematic errors

cannot be detected by repeat measurements of an un-

known value. Had Goddard just taken repeat counts

of a population of unknown size, he could not have

detected the bias. Repeated measurements of a

known quantity are needed to assess the bias. 

5.2.2 Gauging the size of the systematic and chance

errors

The bias, or systematic error, in a measurement

process is the difference between the mean of an in-

definitely long list of measurements and the true

value of the quantity being measured. It can be 

estimated by taking the average of repeated measure-

ments of a known quantity. 

Once the bias has been determined, then as long 

as it does not change, it will be predictable and can

therefore be eliminated from the results. In contrast,

chance errors are never predictable. At best, we can

make some statement about their distribution by 
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inspecting a list of measurements of the same quanti-

ty. Deviations from the average of this list will

estimate the chance errors. The average size of these

deviations (calculated formally through a root mean

square) is called the standard deviation.

For a list of measurements,  x1,x2,x3,…xn, the aver-

age or mean is given by

x
–

= 
x1 + x2 +x3 +…+xn = 

∑
n

i =1—

xi

—n     
, 

n

and the standard deviation by

SD(x) = ¶
1

––
n –1

∑
n

i =1

(xi – x
–

)
2
.

The standard deviation, SD(x), gauges the average

size of the chance errors (i.e., the average amount by

which an observation deviates from the average.)

The standard deviation tells us absolutely nothing

about the bias. In repeated measurements of a known

quantity, 

x
–

– (the known quantity being measured)

gauges the bias.

5.2.3 The average of repeated measurements and its

standard error

By taking repeated measurements the size of the

chance errors can be assessed.  Averaging these 

repeated measurements also allows the researcher/

observer to reduce their impact. By the very nature of

chance errors, some measurements will be positive,

and others negative. In the averaging process, some

of the positive and negative errors will cancel each

other. The remaining chance error in the average will

tend to be somewhat smaller than the errors in indi-

vidual measurements. The standard deviation of an

average of n independent measurements taken under

similar conditions will be decreased through averag-

ing  by the factor  ¶n . Formally,

SD(X
–

) = 
SD(X)
——–

¶n     
,

where  X
–

represents the average of n independent-

ly generated values of a variable labelled X.

The standard deviation of an average is often re-

ferred to as a standard error. The standard error of a

sample average gauges the average size of the mean’s

fluctuations from sample to sample. The sample 

standard deviation (Section 5.2.2) gauges the average

size of the fluctuations of the values within a sample.

In many applications, the sample standard deviation

is used solely to estimate the standard error in the

sample average. 

These two quantities—standard deviation and

standard error—provide markedly different informa-

tion. For example, an adaptive management

experiment of the effects of logging on invertebrate

stream fauna, might investigate the  effects on the

abundance of mayfly larvae. The stream bottom will

likely have been sampled. The standard deviation of

the numbers of mayfly larvae per sampling unit de-

scribes the inherent variation in mayfly abundance.

Although any effects of forest management practices

on this inherent variation may be important, the pri-

mary concern is usually about changes in the mean

or overall abundance. To this end, the sample average

is calculated and its standard error is used to gauge

the average size of the chance errors in this estimate. 

Does it always make sense to average all the repeat-

ed measurements? No. The positive and negative

chance errors will tend to cancel each other out un-

less a single, very large error dominates all the others.

Such observations should be singled out for special

attention as described in the following section.

5.2.4 Discarding aberrant measurements

From time to time, a data set will contain one or

more measurements that look aberrant. They stand

apart from the others, and appear as if some gross

error was made in taking them. (Statisticians call

such values outliers in that they lie outside the range

of the rest of the values.) It can be very tempting to

discard these measurements. Not only do they seem

unreasonable, but they also draw attention to possi-

ble deficiencies in the measurement process. 

Resist the temptation to discard outliers. Instead,

take a thorough look at how they were generated.

Here are the most likely possibilities.

1. They might just result from an obvious error, such

as a misplaced decimal point or inadvertently in-

cluding counts of other animal species in with the

rhinoceroses in the previous example. Such errors

should be corrected.

2. Outliers might point to a fascinating and impor-

tant discovery (e.g., that an anomalously large

count of a resident bird population is attributable

to a previously unnoticed transient population).

Such novel insight will usually be worth exploiting.
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3. They might be due to an inherent part of the nat-

ural variability that should not be ignored. 

If aberrant values are routinely thrown out, the 

resulting data set will give a false impression of the

structure of the system being measured. For example,

in a wildlife habitat study, denning habitat might be

predicted in an area based on the distribution of the

diameter at breast height for a stand. For a stand

dominated by small trees, the diameter measure-

ments associated with the few mature trees could be

considered as outliers. Discarding these outliers

could lead to the conclusion that the stand contains

only small-diameter trees incapable of providing

valuable denning sites. Management errors could

then arise from this erroneous impression. 

Furthermore, opportunities for identifying and

controlling large sources of error can be lost, and

clues to new discoveries may go undetected. For ex-

ample, a few extraordinarily large-diameter trees in a

replanted stand may lead to valuable genetic insight;

a pocket of unusually small ones may betray the ar-

rival of a new insect pest.

Outliers must be treated carefully for another rea-

son: they can invalidate standard statistical inference

procedures (see section 5.3.1, last paragraph).

5.2.5 Accuracy and precision

A measurement process is said to have high accuracy

if all errors are typically small. This requires that both

the bias and chance errors be small. A measurement

process is said to have high precision if the chance er-

rors are typically small. Measurements that are

precise, but severely biased, are still inaccurate. 

Figure 5.1 provides a graphical illustration.

Figure 5.1a depicts a high accuracy situation, with

small bias and small chance errors. This situation is

clearly desirable. 

The poor precision in Figure 5.1b can often be im-

proved through careful attention to the sources of

chance errors. Goddard’s aerial counts, for example,

were conducted on a low budget. He essentially

hitched a ride on an aircraft flying over the area every

chance that came along. At greater cost, he could

have arranged for all flights to be conducted with the

same aircraft, over a standard flight path, at a con-

stant speed, and under similar visibility conditions.

Similar improvements can be achieved in an experi-

mental design context through blocking (see Nemec,

this volume, Chap. 2), and in sampling through strat-

ification (see Schwarz, this volume, Chap. 3).

The situation depicted in Figure 5.1c is insidious.

The high precision creates a false sense of reliability if

the practitioner is unaware of the high bias. Standard

statistical analysis techniques do not confront this

difficulty. They are designed to deal with chance er-

rors only, not bias. For further technical discussion on

accuracy and precision, see Cochran (1977, pp. 15–16).

Another measurement problem arises from mod-

ern technology. Digital displays are featured in many

 . Examples of (a) high accuracy (both small bias and small chance errors), (b) low accuracy caused by poor
precision (small bias but large chance errors), and (c) low accuracy but high precision (large bias but small
chance errors).

(a) (b) (c)
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measurement instruments. It is remarkably easy to

forget the inevitable inaccuracy of a measurement, and

to accept on faith the accuracy of every digit in an elec-

tronic display. When much of the measurement process

has been automated, we lose reminders of potential in-

accuracy. We must treat a digital readout with as much

skepticism as a manual reading of an old-fashioned

vernier scale.

5.3 Standard Statistical Techniques and Measure-

ment Errors

5.3.1 The standard model for measurement errors

In applying standard statistical analyses, measure-

ment errors are assumed to:

1. contain no systematic component;

2. be independent;

3. have a constant standard deviation; and

4. feature a distribution that follows a normal curve.

If any of these model assumptions is violated, then

standard statistical analyses may not work properly.

Furthermore, as discussed in the next section, a stan-

dard regression analysis requires that no appreciable

measurement errors be made in the x-variable.

Assumption 1 is critical. Consider, for example, a

confidence interval designed to capture the true vol-

ume of timber in an experimentally managed stand

19 times out of 20. By adding and subtracting roughly

two standard errors for the estimate, the formula

compensates for chance errors but not for any sys-

tematic component. A large systematic error (e.g.,

generated from a faulty formula for converting diam-

eter and height measurements to volume estimates)

would invalidate the confidence interval. 

Systematic errors can be insidious. They can grow

imperceptibly as equipment ages or observers mak-

ing subjective judgements change their perspectives.

To deal thoroughly with systematic errors, we need

to directly assess the bias. If the bias has been deter-

mined to a high degree of accuracy, then its value can

be subtracted from the measurements. But if the bias

estimate is subject to substantial uncertainty, then

this factor must be explicitly taken  into account in

any subsequent analyses. It may be possible to put

reasonable bounds on the bias and then manage the

resource conservatively. 

Bayesian statistics are also becoming popular 

(Taylor et al. 1997; Bergerud and Reed, this volume,

Chap. 7). One might be able to incorporate subjective

assessments of the size of the systematic error into a

formal Bayesian analysis. Nonetheless, the credibility

of this approach will hinge critically on the knowl-

edge base supporting these subjective assessments.

Assumption 2 on independence is also extremely

important. This assumption means that in a se-

quence of independent errors, the value of the next

error does not depend on the previous ones. In prac-

tice, the error in the next measurement can often be

related to the previous one. If, for example, a 

measurement of nitrate concentration in soil samples

were to depend noticeably on the kit purchased to

make the measurement, and the next measurement

were to be taken with the same kit as the previous

one, then the errors would be dependent. If the error

in the previous measurement were to be positive,

then the next one would likely be positive as well.

In this example, a set of measurements all taken

with this same kit would show less variability than a

set of measurements each taken with a different kit.

Hence, dependent errors can often lead to a false

sense of precision. They can often be reduced

through randomization (e.g., randomly selecting the

measurement kit for each measurement). However,

such complete randomization is rarely practical.

When other, less complete randomization proce-

dures are followed, the resulting dependent errors

can be handled through more advanced analysis

techniques such as  time-series analysis and analysis

of variance for nested or hierarchical designs.

Assumption 3, although often not as critical as the

others, can play a crucial role in prediction intervals

from regression studies. Prediction intervals in a re-

gion of unusually small variability will be wider than

necessary, while those in a region of unusually large

variability will fail to contain the predicted value with

the stated probability.

For example, tree height measurements typically

have a nonconstant standard deviation. The standard

deviation increases with height. Furthermore, height

itself will tend to increase with diameter. In a regres-

sion of tree height against diameter, prediction

intervals for height would be too wide for small-

diameter trees and too narrow for large-diameter

trees. (Huang et al. 1992 discuss a common solution

to this problem in the context of height-diameter 

relationships.)

Assumption 4, that the errors have an approxi-

mately normal distribution, is not too critical with

one important exception—outliers. Mild departures

from the normal curve may not seriously alter the be-

haviour of standard inference procedures, especially
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if many measurements are being averaged. But watch

out for extreme outliers; they can invalidate even the

most basic confidence interval or t-test. This is an-

other important reason to investigate thoroughly any

aberrant-looking measurements (see Section 5.2.4).

5.3.2 Measurement errors in regression analysis

The standard model for regression analysis assumes

errors only in the y-variable. Errors in the x-variable

will tend to disperse the scatterplot in the horizontal

direction. Consequently, not only does the scatter

away from the line increase, but the slope of the re-

gression line also decreases (Figure 5.2). For example,

in the management of mixed-species stands such as

lodgepole pine and white spruce, a researcher might

be interested in establishing a relationship between

the site index of white spruce and the site index of

lodgepole pine. Site index is an estimated value based

on height and age, and is therefore subject to error.

The error could be large enough to substantially 

affect the apparent strength of the regression 

relationship. Nigh (1995) proposes using the geomet-

ric mean regression line in this context. However,

this technique, promoted by Ricker (1973) in fisheries

analysis, is highly controversial and may itself 

provide inaccurate slope estimates. The most appro-

priate technique will depend upon the specific

application and on the relative sizes of the variation

in the x- and y-directions. See Fuller (1987) for a

thorough discussion of the handling of estimation 

errors in the x-variable.

Outliers are also particularly troublesome in re-

gression analyses. Points that are far from the

regression line have considerable influence. Rumours

abound of practitioners routinely discarding such

points. See Section 5.2.4 on discarding aberrant mea-

surements.

5.4 Types of Measurements and Associated Issues

Following is a discussion of different types of mea-

surements and typical problems associated with each. 

 . Errors in the x-values typically not only increase the scatter in the picture, but also spread out the points in the
x-direction. This result reduces the slope of the regression line. In this example, the slope is reduced from 1.95 to
1.10.
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5.4.1 Counting

Counting is a basic method for assessing the size of a

population. As discussed in the example on rhinocer-

os surveys, it is easy to overestimate the ability to

count animals. Be prepared for substantial under-

counts. Counts of spawning salmon, for example, can

be out by a factor of 5 to 10.

Both over- and undercounting can have serious

management implications, and of course these impli-

cations extend to other forms of estimates. In a

silvicultural management experiment, for example,

the numbers of trees in sampled stands may be

counted to estimate stand density. If the stand is too

dense, then by law it must be thinned; if the stand is

understocked, then a remedial measure such as

planting must be taken. In this case, over- and under-

estimation would incur unnecessary cost to the forest

manager. The uncertainty in an estimate must always

be acknowledged, and quantified where possible

through estimates of bias and standard error, along

with confidence limits if appropriate.

5.4.2 Direct physical measurements

Measurements of simple physical attributes such as

length and mass are usually highly accurate. Howev-

er, some situations may demand extraordinarily high

accuracy. For example, complex models will require

extremely accurate measurements if measurement 

errors are compounded in these models.

5.4.3 Indirect physical measurements

Many measurements of physical quantities are indi-

rect. A liquid thermometer, for example, displays the

height of a column of liquid, and measures tempera-

ture only insofar as this height is related to

temperature. The manufacturer must calibrate the

instrument by testing it out at known temperatures.

We cannot safely ignore the manufacturer’s method-

ology if we push the instrument close to its limits. 

These limits can be exceeded by:

1. demanding more accuracy than can be expected of

the instrument (e.g., trying to measure altitude to

the nearest metre when repeat readings at the 

same elevation show chance variation over a range

of 20 m);

2. taking measurements outside of the range of val-

ues for which the instrument was designed 

(e.g., using an altimeter calibrated for use up to

3000 m in a flight over Mount Waddington, whose

summit is at 4019 m); or

3. using the instrument under unusual conditions

not tested in the calibration process (e.g., using an

altimeter at extremely cold temperatures, at which

it was not tested).

Calibration is not an easy task. The scale on a ther-

mometer has evenly spaced markings, which reflect

the approximate straight-line relationship between

temperature and volume (and, hence, height of the

column of liquid). Many other relationships are

curved. Hence, the calibration process involves fitting

a nonlinear relationship between actual values and

measured responses. Other variables may also influ-

ence the relationship. Furthermore, the “actual

values” will in fact be measurements themselves.

Fuller (1987, pp. 177–179) provides a brief introduc-

tion to some of the statistical issues associated with

calibration. Also, see the warning in Section 5.3.2

about measurement errors in an x-variable used in 

a regression analysis.

5.4.4 Subjective estimates and trend indicators

Informal management schemes often rely on subjec-

tive estimates. Many of British Columbia’s smaller

salmon populations, for example, have traditionally

been subjected to annual, visual surveys from which

subjective estimates were made. 

Many people regard annual surveys, such as those

for British Columbia salmon populations, as useful

primarily for monitoring trends. In many instances,

reliable indicators of trend are needed instead of un-

biased measures of population size. A downward

trend in an abundance indicator signals the need for

increased protection, perhaps  regardless of the actual

size of the population.

However, anyone relying on a trend indicator for

management decisions must be very careful. Coho

salmon (Oncorhynchus kisutch) estimation on British

Columbia’s Central Coast illustrates two of the prob-

lems. Coho are notoriously hard to spot, and

abundance estimates of the smaller stocks have been

very subjective. An observer’s subjective guess one

year may be strongly influenced by reported esti-

mates from previous years. Hence, a substantial

overestimate in one of the early years might easily

have become propagated through subsequent years.

Such an error would leave an inflated impression of

the historic abundance levels. Attempts to rebuild

stocks to perceived historic levels would be mis-

placed.

Furthermore, incomplete records over time can

frustrate attempts to determine trends—detecting a
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trend is impossible if no estimates are being collected.

Figure 5.3 illustrates a further problem in using

subjective estimates for assessing trends. This graph

shows the abundance estimates produced by the De-

partment of Fisheries and Oceans for the chinook

salmon (Oncorhynchus tschawytscha) that spawn in

the Upper Fraser Watershed near Tête Jaune Cache.

It looks as if the population has recovered from a

near-calamitous decline in the 1960s. One might also

argue that the recovery gained strength in the late

1970s, and that abundance reached a short-term

plateau around 1980. But the department hired a new

local observer in the late 1970s. He proved to be an

extraordinarily dedicated employee, who developed a

detailed knowledge of the local spawning populations

over his early tenure. We shall never know how much

of the increase in estimated abundance is attributable

to the enhanced knowledge of the resource that this

dedicated observer developed. 

A rigid adherence to an unambiguous protocol

would have eliminated this problem. But we need to

foster opportunities for improvement, not stifle them

with an inflexible protocol. Furthermore, salmon

spawning patterns change over time, sometimes

abruptly. The measurement protocol must be free 

to adapt to these changes. A suggestion for how this

transition might be achieved follows.

Often, the conflicting needs for continuity and

change can be addressed by developing a new proto-

col while retaining the old one. Continuity can be

maintained by running both protocols in parallel

during a test and phase-in period. This continuity

also provides an opportunity for fine-tuning the new

protocol. Important oversights can be corrected 

before the new protocol is used for making manage-

ment decisions.

Problems with observer bias can also be handled

through a similar strategy. When observers are

changed, the measurement series often changes

abruptly. Using multiple observers in a phase-in 

period can provide a series of parallel observations

that can in turn be used to assess the change in ob-

server bias, and provide a training period for the new

observer before his/her results are used for making

key management decisions. If thorough attention is

paid to the measurement protocol, then a regression

or time-series analysis can provide more definitive

evidence of a real trend.

5.4.5 Turning indices into unbiased estimates

In managing fish or waterfowl populations, we can

sometimes reduce reporting biases to obtain reason-

ably accurate estimates of the numbers killed by

humans. However, we often want to know the 

 . Estimated numbers of chinook salmon spawning in the Upper Fraser Watershed near Tête Jaune Cache.
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fraction killed. To do this, we need an unbiased esti-

mate of abundance. By contrast, it is often feasible

only to obtain an index of abundance for much of

the population. Indices can be turned into unbiased

estimates through a sort of calibration process. 

In resource management work, this goal is often

achieved through double sampling and ratio estima-

tion. The Canadian Wildlife Service, for example,

conducts an annual survey of breeding waterfowl.

Aerial surveys are used to obtain rough abundance

estimates. These figures are then supplemented by

more thorough ground surveys. The results of the

ground surveys are used to adjust the less accurate,

but more extensive, aerial surveys for bias. In a sense,

the ground surveys are used to calibrate the aerial

surveys. 

This technique of double sampling is described in

more detail by Cochran (1977, Chapter 12) and

Thompson (1992, Chapter 14). It is a valuable tool in

a wide variety of contexts. For example, in a manage-

ment experiment involving the monitoring of grass

biomass over time, definitive estimates of biomass

could be obtained only through destructive sampling.

By contrast, extensive but imprecise information

could be obtained from subjective, visual estimates.

By sampling a small number of quadrats destructive-

ly, the results of a more extensive set of visual

estimates can be adjusted for bias.

5.4.6 Quantitative measures of imprecise concepts

Forest management is closely linked to ecology,

which in turn is full of vague concepts such as niche

width, niche overlap, similarity, importance, compe-

tition, and diversity (Krebs 1994). Developing precise,

quantitative measures of these concepts is one of the

enduring challenges of the subject. The following dis-

cussion illustrates both the need for precise,

quantitative measures and common problems en-

countered in their construction and use. These are

illustrated in the context of diversity measures.

Biodiversity has recently received increasing atten-

tion in resource management. Yet it is not easy to

define and measure. The Biodiversity Guidebook in

the Forest Practices Code (B.C. Ministry of Forests

and B.C. Environment 1995) defines the concept as

follows:

Biological diversity (or biodiversity) is the diver-

sity of plants, animals and other living organisms

in all their forms and levels of organization, and

includes the diversity of genes, species and

ecosystems, as well as the evolutionary and func-

tional processes that link them.

This definition explicitly mentions the organisms

and levels of organization to be considered, but

leaves the word “diversity” undefined. The guide-

book gives directions on how to manage forests to

maintain biodiversity. Some of these directions are

based on assumptions on how forest ecosystems

function, including:

The more that managed forests resemble the

forests that were established from natural 

disturbances, the greater the probability that 

all native species and ecological processes will be

maintained.

Although this assumption has considerable 

intuitive and practical appeal, how can we be sure

that it is valid and that the strategy is working? We

need to have some way of quantifying  biodiversity so

that we can monitor it directly. This in turn requires

a quantitative definition that pins down this vague

concept.

No single definition will be universally applicable.

A wildlife biologist will be interested in maintaining

wildlife diversity by maintaining the structural diver-

sity in a forest. Thus, two concepts of diversity are

invoked: the species diversity of the wildlife and the

structural diversity of the forest. A fisheries biologist

will focus on maintaining the diversity of individual

fish stocks (not species), which in turn depends on

maintaining a diverse set of healthy fish habitats. 

Indices are useful measures of abstract concepts.

However, a single measure may not capture the con-

cept fully, and several different types of indices may

be needed to measure an imprecise concept. Consid-

er an analogy of blind people trying to describe an

elephant. Each person examines a different part of

the elephant. No one person will obtain an accurate

overall impression of the elephant. Obviously, the

more of the elephant that you can include in the op-

erational definition the better, but there will always

be limitations. 

Now consider species diversity: its simplest defini-

tion is the number of species. But counting or

estimating the number of species in a community is

very difficult. An indefinite number of rare or cryptic

species may go undetected in any survey. 

Furthermore, diversity depends not only on 

the number of species, but also on the lack of 
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predominance of any one species. Few people would

view a cornfield with a few scattered weeds from

seven other species as being as diverse as an alpine

meadow containing a more even mixture of eight

species. Alfred Russel Wallace’s (1895) description of

the diversity in the Amazon rainforest captures the

essence of the concept:

If the traveller notices a particular species and

wishes to find more like it, he may turn his eyes

in vain in any direction. Trees of varied forms,

dimensions, and colours are around him, but he

rarely sees any one of them repeated. Time after

time he goes towards a tree which looks like the

one he seeks, but a closer examination proves it

to be distinct.

Numerous researchers have attempted to develop

a quantitative measure of diversity that would em-

body such an impression—a measure that both

captures the essence of the concept and is easy to im-

plement. To date, most attention has been focused

on three measures of diversity (Routledge 1979). All

but the first require data on relative abundances of

the species. These measures are defined as follows

(with  p1, p2, p3, ..., ps representing the proportion of

the total abundance contributed by species 1, 2, 3, …,s):

1. the species richness,

N0 = s ;

2. an index related to the Shannon-Wiener index

from information theory,

N1 = exp[–∑
s

i =1

pi 1n(pi)]; and

3. an index related to an early proposal by Simpson,

N2 = [∑
s

i =1

pi
2]

–1

In each instance, if all species are equally abun-

dant, the diversity reduces to the species count,  N0. 

It is customary to view N1 and N2 as describing the

number of equally common species that would 

produce an equivalent impression of diversity. 

Which index should be used? A choice of index

should in general depend on the properties of the

index in relation to the goals of a study. The example

portrayed in Figure 5.4 and Table 5.1 illustrates some

of the differences amongst these three indices. 

Figure 5.4 displays the abundance patterns; Table 5.1,

the values of the diversity indices.

Note how the species richness is unaffected by the

relative abundances. Of the other two indices, Simp-

son’s index is less sensitive to the rarer species.

Compare, for example, abundance patterns (c) and

(d). As the rarer species diminish in abundance, the

Shannon-Wiener index declines from 2.19 to 1.34

(i.e., by 0.85). By contrast, Simpson’s index declines

by only 0.42. If, from (d),  the three rarest species

were to go extinct, and the abundances of the other

five were to remain unchanged, then the Shannon-

Wiener index would decline by a further 7% versus

only 2% for Simpson’s index. Thus, the Shannon-

Wiener index is more sensitive to the abundance of

the rarer species.

If it is important to focus on the rarer species, then

Simpson’s index may be inappropriate. But the sensi-

tivity of the Shannon-Wiener index to the rarer

species comes at a cost. It is usually difficult to assess

the abundance of rare species, and the sensitivity of

the Shannon-Wiener index to these quantities makes

the index very hard to estimate (Routledge 1980). To

date, no generally reliable method has been found to

estimate this index. 

When choosing the suite of quantities to be mea-

sured, we need to remember the specific goals of the

project. Simpson’s index, for example, may play a

useful role in assessing trends in dominance of the

more abundant species, but is inadequate in manage-

ment projects where the preservation of rarer species

is a priority. If focusing on the rarer species is impor-

tant, the Shannon-Wiener index would be more

useful if only its bias and standard error could be

more readily predicted. A sensible choice would be to

estimate Simpson’s index along with the abundances

of important rare species.

When using an index measure in an analysis, we

must be aware of the range and scale of the index so

as to make proper interpretations. If, for example, a

diversity index were to drop from 2 to 1, should we be

concerned? If the diversity were measured by either

N1 or N2, this could be interpreted as follows: What

was once comparable to a community of two equally

abundant species has dropped essentially to a mono-

culture. Such a decrease would be clearly noticeable,

and worthy of attention. Had diversity been mea-

sured by ln(N1), as is sometimes suggested, then a de-

cline from 2 to 1 would have been hard to interpret.

Choosing an index to quantify an imprecise 

concept is tricky. One must pick an aspect of the 

elephant that is relatively easy to measure and rele-

vant to the purpose of the study. Overall weight may
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be hard to measure; however, a simple measure of

height may serve as a useful proxy. Following is a 

set of guidelines for selecting and using indices.

5.4.7 Guidelines for selecting and using indices

1. Determine the goals of the experiment.

2. Define, as clearly as possible,  the abstract concept

that is to be assessed.

3. Keeping in mind the goals of the experiment, de-

cide what aspect(s) of the underlying concept are

important in terms of the management or scientif-

ic objectives.

4. Identify indices that have been developed to quan-

tify this abstract concept.

5. Assess the sensitivity of the indices to the impor-

tant aspects identified in step 3. 

6. Examine the range and scale of the indices. Is it

easy to tell whether an observed value represents a

desirable level, or whether an observed change in

the index represents an important change in the

achievement of management objectives?

7. Ensure that the bias and standard error of  all se-

lected indices are well understood and predictable.

Each index shoul not be overly sensitive to small

 . Four dominance patterns. In each instance, eight species are present, but the communities are increasingly
dominated by fewer species.

(a) Even distribution

(c) One dominant species

(b) Four dominant species

(d) A virtual monoculture

 . Diversity measures for the abundance patterns in Figure 5.4

Community Species richness (N0) Shannon-Wiener (N1) Simpson’s (N2)

a 8 8 8
b 8 4.81 4.38
c 8 2.19 1.53
d 8 1.34 1.11
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measurement errors. Large, unquantifiable biases

are particularly troublesome and  can easily arise if

the index depends on complex mathematical func-

tions of the measured values, but can also arise in

simple indices, such as the species richness.

5.5 Reducing Measurement Errors

Although some measurement errors are inevitable,

they can often be reduced substantially. The resulting

benefits to the experiment can be considerable. Fol-

lowing are some guidelines for achieving this goal.

5.5.1 Guidelines for reducing measurement errors

1. Counting

• Ensure that new personnel are trained by expe-

rienced workers. 

• Where feasible, mark or discard items previous-

ly counted to reduce double-counting. 

• Anticipate undercounting. Try to assess its ex-

tent by taking counts of populations of known

size. 

• Try to reduce errors by taking counts only in

favourable conditions and by implementing a

rigorous protocol.

2. Physical measurements

• Instruments should be calibrated before first

use, and periodically thereafter.

• Personnel should be trained in the use of all

measuring devices.

• Experienced personnel, as part of an overall

quality control program, should spotcheck mea-

surements, particularly those taken by new

personnel.

• Incorporate new equipment where appropriate

(e.g., lasers and ultrasound, for distance mea-

surements).

3. Remeasurement

• Watch for the transfer of errors from previous

measurements (e.g., a mistaken birth from an

item erroneously marked as dead).

• Reduce errors in relocating the site of previous

measurements through more careful marking,

use of modern electronic GPS technology, etc.

• Ensure that bias is not propagated through the

use of previous measurements as guides to sub-

sequent ones. (This issue is particularly

troublesome in subjective estimates.)

4. Visual estimates

• Ensure that all visual estimates are conducted

according to rigorous protocols by well-trained

observers.

• Pay particular attention to observer bias. When

bringing a new observer into the program, en-

sure that his/her results are backed up by an

experienced observer’s.

• If sites or times are to be selected as part of the

collection of visual estimates, eliminate selec-

tion bias by providing a protocol for site- or

time-selection. Do not, for example, let vegeta-

tion samplers pick “modal” sites.

5. Data handling

• Record data directly into electronic form where

possible.

• Back up all data frequently.

• Use electronic data screening programs to

search for aberrant measurements that might be

due to a data handling error. 

• Design any manual data-recording forms and

electronic data-entry interfaces to minimize

data-entry errors. In the forms, include  a field

for comments, encourage its use, and ensure

that the comments are not lost or ignored.

5.6 Summary

A century ago, British Columbia’s renewable re-

sources seemed so limitless that we asked very little of

our measurements of the resources and their support

systems. With new requirements imposed (e.g., by

the Forest Practices Code) and with increased har-

vesting capacity, we are escalating our demands on

the measurement systems. In recent years, our sys-

tems for estimating fish populations have let us

down. The recent controversy over the management

of Fraser River sockeye (Fraser et al. 1995), has not

been so much about a breakdown in the quality of

the measurement procedures, as about the fact that

our management expectations have increased beyond

the capacity of the measurement system. 

Assess continually the adequacy of a measurement

system to improve it where possible and to point out

when its limitations may be exceeded. The assess-

ment should include: 

• the choice of quantities to be measured;

• the procedures and equipment for taking the mea-

surements;

• any associated sampling;
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• the processing, storage, and analysis of the data;

and

• the demands and expectations of the resource

managers or others who use the results.

Good quality control procedures are an essential

component of any measurement process. This applies

even if the measurements are to be used solely for in-

dicating trends. A well-designed protocol must be

followed, and the reliability of the data must be com-

mensurate with management needs.

Just as expectations can rise without notice, so can

a gradual deterioration in quality go undetected.

Consider, for example, the monitoring of spawning

habitat in Devoe Creek far up the North Arm of

Quesnel Lake. The creek enters the lake through an

old western redcedar (Thuja plicata) grove, contain-

ing many downed trees and rampant with devil’s

club (Oplopanax horridus). Workers faced with a ris-

ing wind on the long stretch of water back to the

landing would be tempted to cut corners if they be-

lieved that no one valued their work or would ever

check on their accuracy. For field measurements,

often taken in isolated conditions, quality checks will

inevitably be infrequent. The quality of the data will

depend critically on the reliability and commitment of

the field staff; sound, quality management practices will

foster the required spirit.

The myths presented at the beginning of the chap-

ter should now have been dispelled.

It is a  waste of time to worry about measurement

errors. I have enough practice in my field to have

reduced measurement errors to a negligible size.

Measurement errors in many field studies are

large, and inadequate attention to them has led to

major management disasters.

If I know that my measurements are not perfect,

then I should take several, and average them,

maybe throwing out the odd one that is far from

the others.

Taking repeated measurements allows the re-

searcher to assess the average size of  the chance er-

rors. Averaging these measurements will usually 

reduce the impact of the chance errors. However,

aberrant measurements should be singled out for

special attention, not casually or routinely discarded.

They could provide valuable insight, and are an im-

portant part of the information collected. In addi-

tion, averaging will not reduce any systematic bias.

I have the resources only to make a subjective guess

at the abundance of some minor species. Surely this

will be adequate. After all, I am only looking for

trends. If the measurement errors are large, and are

consistently present, can’t we ignore them when we

are looking for trends?

We need to know enough about the errors to be

able to distinguish between a trend in the quantity

being measured and in the measurement errors. Fur-

thermore, a false estimate of the historical state of the

forests could lead to inappropriate management ac-

tions.

Trend indicators are often set up when it seems

too difficult or costly to implement the rigorous pro-

cedures required to produce unbiased abundance

estimates. Trend indicators demand almost as much

rigour, and measurement procedures must be rigor-

ous enough to rule out any cause for a trend other

than a change in abundance. 

I don’t have to worry about measurement errors. 

I always take repeated observations and use stan-

dard statistical techniques to deal with them. If my

measurements do contain large chance errors, then

can’t I just take repeated measurements, do a rou-

tine statistical analysis, and quote a p-value to

silence the pesky biometricians?

The standard statistical analysis procedures require

specific assumptions about the measurement errors.

Violated assumptions lead to questionable analyses

and management decisions.

I have an important job to do. I don’t have the

time or luxury of worrying about statistical niceties

like academics and scientists. I need to get on with

managing for forest production.

Adaptive management of British Columbia’s

forests is an important task. Thorough attention to

measurement errors and other statistical niceties will

help, not hinder, the ongoing development of im-

proved management strategies.

5.6.1 Guidelines for developing a measurement

protocol

Following are recommended guidelines for improv-

ing the quality and value of measurements. As with

any general guidelines, these will need to be adapted

to specific applications, and are intended more as an

initial checklist of important items to consider than

as an inflexible set of rules. 
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1. Determine what parameter needs to be measured. In

so doing, pay attention both to the relevance of the

quantity being measured and the practical difficulties

in obtaining reliable measurements or estimates.

Consider both the concept and its measurement.

2. Determine the demands that need to be placed on the

quality of the resulting measurements or estimates.

3. Devise a measurement system that will meet these

demands. If this task is impossible, reassess the man-

agement objectives and strategies and revisit

guidelines 1 and 2.

4. Assess the accuracy of the proposed measurement sys-

tem by taking repeated measurements of known

quantities under a variety of conditions.

5. Establish an unambiguous protocol for taking mea-

surements, and ensure its proper implementation.

6. Implement a system of periodic checks on the contin-

uing performance of the measurement system in light

of internal changes and external demands. Watch for

subtle increases in the demands placed on the system. 

7. Look for ways to develop incremental improvements

while maintaining the integrity of any long-range

data series. When implementing changes, phase them

in, running new and old methods in parallel during

a transition period.
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Abstract

Occasional erroneous conclusions (errors of inference)
are unavoidable in the analysis of results from man-
agement experiments and monitoring programs.
However, their probability of occurrence in a given ex-
periment can be controlled. In an experiment compar-
ing two treatments, conclusions can be incorrect in
two ways: (1) concluding that a difference between
the treatments is real when in fact it is not (a “Type I”
error), or (2) concluding that there is no difference be-
tween treatments when in fact a difference exists (a
“Type II” error). Both types of error can be costly in
typical adaptive management experiments, where
treatments involve the effects of commercial activities,
such as harvesting, on ecosystems. A Type I error may
lead to unnecessary limitations on commercial activi-
ties, while a Type II error may result in the continua-
tion of activities damaging to the ecosystem. Type I
error is limited by the conventional significance level
of statistical tests to a frequency of less than five errors
per 100 tests performed. The method for estimating
and limiting Type II error rate (“statistical power analy-
sis”) is less well known but just as important. This
chapter discusses conceptual and practical aspects of
statistical power analysis (including references and
software that aid in performing power analysis) and its
role in the design of large-scale experiments in forest
management.

6.1 Introduction: Type I and Type II errors

A major goal in adaptive and experimental manage-

ment is to improve our understanding of managed

biological systems by making reliable conclusions

(inferences) from experiments and monitoring pro-

grams. However, any experimental inference has a

chance of being incorrect, and these errors can result

in large economic and ecological costs. Therefore, ex-

perimenters must understand how errors of

inference occur and how to control them. This chap-

ter discusses the following topics: 

• the relationship between the two types of errors of

inference in statistical tests, with a focus on the

category of error most often ignored—Type II

error, failure to reject a null hypothesis when it is

in fact false;

• factors that influence the probability of a Type II

error;

• strategies by which those factors can be manipulat-

ed in experimental design to control error rates in

ecological studies; and

• software and literature dealing with theoretical and

practical aspects of Type II error and its manage-

ment.

6.2 What Are Type I and Type II Errors, and How

Do They Fit into Statistical Inference?

6.2.1 Statistical inference is an important part of

the process of evaluating a scientific hypothesis

Statistical inference is a form of reasoning that leads

to rational conclusions about states of nature when

the available information comes from a sample of the

population or system under study (Kirk 1982). 

Figure 6.1 illustrates the position of statistical infer-

ence in the iterative process of evaluating a scientific

hypothesis. Usually the first step is the statement of

the hypothesis as a testable proposition that is tenta-

tively adopted as an explanation for observed facts

and as a guide for investigation (Kirk 1982). For ex-

ample, an ecologist studying the effect of logging

practices on Coeur d’Alene salamanders near S4
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hypotheses (adapted from Kirk 1982). HO
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streams in the Kootenay Valley might begin with 

the scientific hypothesis: “The 10 m wide riparian 

reserve zone recommended by the Forest Practices

Code (B.C. Ministry of Forests and B.C. Environ-

ment 1995) is sufficient to maintain salamander pop-

ulations as a component of vertebrate biodiversity.”

Next, deductive logic is used to generate a statisti-

cal hypothesis that follows from the scientific

hypothesis. This statistical hypothesis is a quantita-

tive statement about some variable whose sampling

distribution can be described statistically. A statistical

hypothesis that proceeds logically from the salaman-

der example might then be as follows: “Population

density of salamanders is not reduced in experimen-

tal 10 m wide riparian reserves on S4 streams,

compared with the density of control populations 

in comparable habitat in unlogged watersheds.”

After identifying the experimental units, the exper-

imenter decides on the statistical parameter to be

estimated and develops appropriate measurement

and sampling procedures. In the salamander exam-

ple, the experimental units would be watersheds and

the estimated parameter would be mean population

density across sampled watersheds in two treatment

groups: an experimental group of logged watersheds

with riparian reserves and a control group of un-

logged watersheds. Further refinement would

transform the statistical hypothesis into mutually ex-

clusive null and alternative hypotheses, denoted HO

and HA, respectively. Examples might be “HO: mean

population density in the experimental riparian re-

serves (µE) ≥ mean control population density (µC),”

and “HA: µE < µC.”

Statistical inference provides a logical structure for

drawing conclusions about whether the null hypoth-

esis can be rejected. The basis for this decision is the

statistical test, which uses a statistical model to assess

the probability that the observed data could have

come from a population of experimental units for

which the null hypothesis is true. If the probability is

sufficiently low, we reject the null hypothesis HO and,

by implication, provisionally accept the alternative

hypothesis HA. This decision inductively influences

our degree of belief in the scientific hypothesis under

consideration. Typically, in basic science, several iter-

ations of this process are required before consensus 

is reached about the plausibility of the scientific hy-

pothesis. 

In the salamander example, if the mean of popula-

tion density measurements in watersheds with

riparian reserves were significantly lower than that of

controls, statistical inference would reject the null

hypothesis. This experiment alone would provide

one line of evidence about the scientific hypothesis,

suggesting that the recommended riparian reserves

may not be sufficient to preserve the salamander

population as an element of biodiversity. If making a

decision about the adequacy of this management rec-

ommendation was not urgent, further studies would

be desirable to provide a more thorough test of the

scientific hypothesis.

6.2.2 Statistical inference can lead to any one of

four outcomes, two of which are incorrect

The four possible outcomes of a statistical hypothesis

test are shown in Table 6.1. If the null hypothesis is

really true, then two outcomes are possible: Not re-

jecting HO is a correct inference, while rejecting it

constitutes a Type I error. Similarly, if HO is really

false, the correct inference is to reject it, and failing to

do so constitutes a Type II error. The probability of

committing a Type I error is α, while the probability

of a Type II error is β. The power of the test (1–β) is

the probability of correctly rejecting HO when it is re-

ally false. 

In the salamander example, a Type I error would

Inference 

State of nature Do not reject HO Reject HO 

(Manage as though HO were true) (Manage as though HA were true)

HO true Correct (1–α): Type I error (α):
Correctly infer that no Infer that treatment effect exists 
treatment effect exists when in fact there is none

HO false Type II error (β): Correct (power = 1–β):
Infer that no treatment effect Correctly infer that 
exists when in fact there is one treatment effect exists

 . Four possible outcomes of a statistical test of a null hypothesis. The probability of each outcome is given in
parentheses. Management decisions that might proceed from the inference are indicated in parentheses. Adapted
from Toft and Shea (1983).
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be committed if the experimenter concluded that the

density of experimental populations had decreased

when in fact they were really doing at least as well as

the controls. If management decisions followed from

this erroneous inference, the forest industry might

unnecessarily be required to leave a wider reserve

along S4 streams.

On the other hand, a Type II error would be com-

mitted if the experimental population had really

declined relative to controls, but the experiment

failed to detect the decline. In this case, managers

would conclude that 10-m riparian reserve zones

were sufficient to maintain the species. They might

implement this level of riparian protection on a large

scale, without realizing that the practice, in fact,

failed to meet the objective of maintaining the sala-

mander population in the community.

6.2.3 For a complete analysis of possible errors of

inference, the alternative hypothesis must indicate

a treatment effect worth detecting

In statistical tests, the data actually observed in an ex-

periment are compared with the data that could be

observed if the population under study had a particu-

lar assumed value for one of its statistical parameters.

To represent that assumed value, a null hypothesis

must always include an equality relationship (often

called a “point null hypothesis”). It may include an

inequality as well if treatment effects are expected to

occur in one direction. Thus, HO: µ1≥ µ2 and HO: µ1= µ2

are valid null hypotheses, but HO: µ1< µ2 is not.

In the salamander example, only the equality rela-

tionship of  the null hypothesis (HO: µE ≥ µC) is

actually used in the statistical test. The experimenter

calculates the observed value of the t-statistic 

(xE

—
– xC

—
)/s, where  xE

—
is the mean of population 

density estimates in experimental (logged with 10-m

riparian reserve zones) watersheds; xC

—
is the mean of

population density estimates in control (unlogged)

watersheds; and s is the standard error of the differ-

ence between the sample means. This observed value

of t is compared with the distribution of estimates of

t that could arise if the salamander population densi-

ties really were equal in both the experimental  and

control  watersheds. HO is rejected if the calculated t

value is extreme, such that the probability that it

could come from that t distribution is less than the

“critical α” (the maximum acceptable rate of Type I

error, set by convention to 0.05). In other words, if

HO were really true and the experiment were repeated

many times, the null hypothesis would be rejected

(incorrectly) in at most 5% of the replicate experi-

ments.

Because traditional practice has focused only on

rejection of the null hypothesis, scientists have usual-

ly been content to use alternative hypotheses with no

equality relationship, such as HA: µ1 < µ2. However,

to analyze the probability of Type II error, a statistical

parameter based on the data must also be compared

to a distribution that could occur if the alternative

hypothesis were true; this comparison requires that

HA includes an equality. The difference between the

equality relationships in HO and HA expresses the

minimum change the experimenter is interested in

detecting reliably (i.e., with a probability of 1–β). In

the salamander example, if the experimenter decides

that it is important to detect a 10% reduction in pop-

ulation density, she would state the alternative

hypothesis as  HA: µE ≤ 0.9 × µC. 

The requirement that HA be bounded by an equali-

ty forces us to recognize that statistical significance is

not the same thing as biological significance. Given 

a large enough sample and enough decimal places,

even the most trivial differences between means can

be declared statistically significant. To avoid this out-

come, the experimenter in the salamander example

has clearly chosen what differences are important to

detect—declines in population density of  10% or

more. This difference, the distance between the

equality relationships of the two hypotheses, is called

the “effect size” (see Section 6.5). For differences less

than the biologically significant effect size, the experi-

menter is willing to provisionally accept HO when it

is actually false. Having made this decision, she can

design the experiment without wasting resources on

the detection of biologically trivial differences.

6.3 Why Are Type I and Type II Errors Important

in Adaptive Management?

6.3.1 In applied science and management, statisti-

cal inference often leads directly to decisions

Progress in basic science has traditionally depended

upon a conservative approach to the acceptance of

new hypotheses. This approach is used because 

waiting for evidence to accumulate has little disad-

vantage; a true scientific hypothesis will surely be

discerned by the scientific community eventually

after repeated iterations of the process in Figure 6.1.

On the other hand, erroneously adopting a 

hypothesis that later proves to be false can waste time

and effort. Therefore, scientists doing basic research
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try to minimize the probability of Type I error by

keeping α small, without much explicit concern for

the magnitude of β. In basic science, failure to reject

the statistical hypothesis HO does not imply the im-

mediate acceptance of the scientific hypothesis from

which it is derived, but rather a further suspension 

of judgement about it. A consensus to “accept” a 

scientific hypothesis is achieved only after repeatedly

placing it at risk by testing its predictions (Platt 1964).

In contrast, applied scientists and resource man-

agers must be concerned with both types of error.

Decision-makers pressured by time constraints often

must make judgements before adequate evidence is

accumulated; sometimes they have only a single sta-

tistical test of the scientific hypothesis in question

(Peterman 1990a). Thus, failure to reject a statistical

null hypothesis may result in the de facto acceptance

of the null scientific hypothesis. Management actions

proceed as though the null hypothesis were indeed

true, despite the finite probability that this conclu-

sion might be a Type II error (Table 6.1).

6.3.2 Actions based only on either type of error 

can be costly
As in other resource management contexts, experi-
ments or monitoring programs in managed forest
ecosystems frequently involve tests of hypotheses
about the effect of human activity on the ecosystem.
The statistical tests used to evaluate these hypotheses
are usually structured on null hypotheses of no effect
on ecosystem variables; for example, “HO: Water
quality in streams within 100 m of a logging road is 
at least as good as that in watersheds without roads.”
With this null hypothesis, a Type I error occurs if
managers conclude that water quality is reduced
when in fact it is not. The costs of Type I errors usu-
ally are borne by those interested in exploiting the
resource. For example, logging companies suffer fi-
nancially if their roadbuilding activities are curtailed
due to an incorrect rejection of HO.

However, the costs of a Type II error may be even
greater, and they often affect the ecosystem, public
health, or the public purse. With a Type II error, man-
agers would incorrectly conclude that roadbuilding
does not affect water quality. The consequences
would include both the effects of reduced water qual-
ity on humans and biota, and the costs of correcting
the damage. Thus, in contrast to the relaxed ap-
proach to Type II error common in basic science, 
applied experimentation and management require
attention to both types of error (Parkhurst 1990; Pe-
terman 1990a, 1990b).

6.3.3. Decision-makers need quantitative informa-

tion about probabilities of errors of inference

Management of forest ecosystems is inherently un-

certain, and the costs associated with both types of

errors may be high. Decision-makers must quantify

uncertainties and their associated costs, including

them explicitly in their plans (Morgan and Henrion

1990). Decision analysis (Raiffa 1968), an effective

method for analyzing alternative management ac-

tions in the face of uncertainty, requires estimates of

the probability that both null and alternative hy-

potheses are actually true (i.e., probabilities for the

states of nature in Table 6.1). These probabilities can

be calculated using Bayesian methods of statistical in-

ference (Bergerud and Reed, this volume, Chap. 7;

Peterman and Peters, this volume, Chap. 8). While it

is not possible to calculate the probability that a hy-

pothesis is true using classical statistical tests, the

probability of incurring either a Type I or a Type II

error can be controlled to acceptable levels through

careful experimental design and statistical power

analysis. 

6.4 What Factors Limit Rates of Type I and 

Type II Error?

6.4.1 Experimenters can control Type I error rate

by choosing the critical level of α
The traditional moment of truth in statistical proce-

dures is the significance test. The P-value calculated

in most familiar statistical tests indicates the proba-

bility of obtaining a test statistic at least as extreme as

the one calculated from the data, if HO were true. The

significance level is a critical value of  α—the maxi-

mum probability of Type I error (rejecting HO when

it is true) that the scientist is willing to tolerate. Thus,

when a P-value is less than 0.05 (the usual critical

value of  α), the experimenter rejects the null hypoth-

esis with the guarantee that the chance is less than 1 in

20 that a true null hypothesis has been rejected.

This guarantee about the probability of making a

Type I error implicit in significance testing is valid

only if the assumptions of the test are met. Other-

wise, it can be difficult to determine the actual

probability of Type I error. The assumptions of vari-

ous significance tests are the subject matter of most

practical reference books on biometrics and will not

be discussed here.

The significance test analyzes only the case in

which HO is really true (the top row of Table 6.1), and

thus tells only half the story. If in fact HO is not true,
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Type II error becomes the concern (bottom row of

Table 6.1). The significance test alone provides no in-

formation about its probability. 

6.4.2 Experimenters can control the Type II error

rate by planning for a suitable level of statistical

power

While the significance test limits the rate of Type I

error, it is equally important to control the probabili-

ty of Type II error. To achieve this, power analysis is

used to estimate β, the probability of Type II error,

and its complement, statistical power (1–β), the

probability of detecting a specified treatment effect

when it is present (Cohen 1992).

Statistical power is a function of several variables:

• sample size, N;

• variance of the observed quantities, s 2;

• effect size (the treatment effect the experimenter

wants to be able to detect); and

• α (the maximum rate of Type I error tolerated).

In general, given any four of these five variables

(power, sample size, variance, effect size, and α), 

the fifth can be solved for.

To understand how each of these variables influ-

ences power, consider a study designed to address the

question, “Is this area good breeding habitat for

wood ducks?” The experimenter knows from other

studies that the ducks exhibit the strongest prefer-

ence for nest cavities with a diameter of 25 cm and

that the standard deviation for diameter of cavities is

10.0 cm in the mixture of tree species present. He de-

cides to sample 20 cavities and to analyze the sample

mean using a z-test, with the statistical hypotheses

HO: µ = 25 and HA: µ < 25.

This statement of the statistical hypotheses is not

adequate, because statistical power analysis requires

that HA must be bounded by an equality relationship,

as discussed in Section 6.2.3. In this case, the experi-

menter suspects that the ducks will not use cavities

with a diameter less than 22 cm, so he would like to

detect reliably a difference in mean diameter of 3

cm—the biologically significant effect size. Thus, for

power analysis, the hypotheses are HO: µ = 25 and 

HA: µ ≤ 22, with the implicit provision that the exper-

imenter is not concerned about rejecting HO if the

mean cavity diameter lies between 22 and 25 cm.

Figure 6.2a shows the expected sampling distribu-

tion, under HO and HA, for estimates of mean

diameter of cavity based on samples of 20 cavities.

The light shaded area under the left tail of the µO

distribution is 5% of the total area under the curve

(below 21.4 cm). If the sample mean falls in this re-

gion, the null hypothesis will be rejected. If HO is true

(i.e., the true mean is indeed 25 cm), yet the sample

mean falls in this tail, a Type I error will occur. 

The µA distribution represents the sampling distri-

bution of estimates of the mean diameter if the

equality relationship of HA is true (i.e., µ = 22). In

this case, observing a sample mean under 21.4 cm will

lead to the correct inference (that HO is false). Statis-

tical power, the probability of correctly rejecting the

null hypothesis, is represented by the unshaded area

under the µA curve (1–β). The dark area under the

right portion of the µA curve represents β, the proba-

bility of committing Type II error. If the true mean

cavity size is in fact 22 cm, yet the observed sample

mean is greater than 21.4 cm, the null hypothesis 

(µ = 25) will not be rejected and a Type II error will

occur. In this example, α, the probability of Type I

error, is constrained to 0.05, while β, the probability

of Type II error, is 0.60 and statistical power (1–β) is

0.40. Hence, the experimenter has only a 40% chance

of reliably identifying inadequate breeding habitat for

wood ducks.

What can the experimenter do to increase the

power of this test? One possibility is to increase sam-

ple size. Figure 6.2b shows the case in which sample

size has been doubled to 40. Because increasing N re-

duces the standard error of the mean (s/¶N), the

distributions under HA and HO become narrower.

With a narrower distribution, the 5% cutoff point for

hypothesis testing increases to 22.5 cm. Therefore, the

dark area under the µA curve representing β is now

reduced from 0.60 to 0.38 of the total area. In this ex-

ample, therefore, doubling the sample size has

increased statistical power from 0.40 to 0.62.

Increasing the effect size of interest also increases

power. Suppose the experimenter believes that wood

ducks will use cavities with diameters as small as 

19 cm. He would like to reject HO reliably if the mean

is ≤ 19 cm, but is content to accept HO incorrectly if

the mean is between 19 and 25 cm . Figure 6.2c shows

the sampling distributions for an effect size of 6 cm,

twice as large as that in Figure 6.2a. In this case, the

overlap between the two distributions of estimates of

the mean is reduced because µO and µA are farther

apart. The dark area representing β is now 0.14 of the

total area, so statistical power is 0.86. The experi-

menter has an 86% chance of correctly identifying

unsuitable wood duck habitat, more than double the

power of the design in the basic scenario.
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Decreasing the variance of the observed variable

(by improving measurement precision or by various

techniques of experimental design, such as blocking)

also increases power by reducing the standard error

of the estimated means. Figure 6.2d represents the

wood duck observations as in the basic scenario, with

the exception that the experimenter has decided to

measure only those cavities in the species of tree most

favoured by the ducks. The SD is known to be 5 cm

in that species, half that in the basic scenario. Here

again, the dark area under the µA curve representing

the probability of Type II error is reduced to 0.14, so

statistical power is 0.86.

Finally, increasing the probability of making a

Type I error will increase power. In Figure 6.2e, the

critical α level (the grey tail under the µO distribu-

tion) is doubled to 0.10. Consequently the range of

estimated means for which HO is correctly rejected

increases, resulting in a modest increase of power to

0.52. This situation requires a trade-off: the experi-

menter is willing to run a 10% chance of incorrectly

labelling good habitats as unsuitable for wood ducks

to produce a 52% chance of correctly identifying un-

favourable habitats.

6.5 The Concept of Effect Size is Complex

6.5.1 How are biologically significant, detectable,

and standardized effect sizes applied?  

In Section 6.2.3, effect size was introduced as the dif-

ference between the equality components of the null

and alternative hypotheses, usually chosen to repre-

sent a biologically significant difference. In the wood

duck example, the biologically significant effect size of

interest was easily understood as the difference be-

tween the minimum acceptable nest cavity diameter

of 22 cm and the preferred size of 25 cm. This concept

is most useful when the experimenter uses the rela-

tionships involving power and sample size to address

a question such as, “To have an 80% chance of de-

tecting a treatment effect at least as large as the

biologically significant one, what sample size should I

use?” 

On the other hand, sometimes the sampling pro-

gram is already set, and the experimenter would like

to know how large an effect size could be detected

with, say, 80% reliability. In that case, detectable effect

size is the unknown to be calculated, rather than an

input determined by biological processes or the ex-

perimenter’s choice. See Section 6.6.2 for more

discussion of detectable effect size. 

These concepts of effect size require that all the

treatment effects of the experiment be summarized in

a single parameter. This approach is straightforward

for some designs. In the wood duck example, the bio-

logically significant effect size was the difference

between a population mean and a known constant

(the preferred cavity size). Similarly, when compar-

ing two populations means or two correlation

coefficients, the estimate of effect size is simply the

difference between the two values. However, formu-

las for effect size become more complex in designs

that involve many relationships among statistical pa-

rameters, such as multiple regression or analysis of

variance. 

In addition, to facilitate calculation of power and

comparison between experiments, formulas for effect

size are usually presented in a standardized form, in-

cluding measures of variance as well as summaries of

the magnitude of treatment effects. For example, the

difference between two means is expressed as a stan-

dardized effect size by dividing by the standard

deviation: (µ1–µ2)/σ, where µ1, and µ2 indicate the

true population means and σ indicates the (com-

mon) standard deviation of the populations (Cohen

1988). Standardized effect size has several advantages.

It combines into a single parameter two of the four

variables that influence power—effect size and vari-

ance. Because it has no units, standardized effect size

allows comparisons to be made among different ex-

periments.

6.5.2. Arbitrary effect sizes can also be useful

Ideally the effect size to be detected should be “bio-

logically significant,” but in many cases this value

cannot be expressed quantitatively due to lack of in-

formation. To assist in determining sample size in

these cases, Cohen (1988) identifies representative

“small,” “medium,” and “large” standardized effect

sizes, based on the range observed in the behavioural

sciences literature. Because they convey an intuitive

sense about the data irrespective of the subject area,

these levels can be useful as standard, if arbitrary,

substitutes for a biologically significant effect size in

ecological power analysis as well. In Cohen’s (1988)

classification system, effect sizes are typically catego-

rized as “small” when they are subtle. Small effect

sizes are often associated with newly detected phe-

nomena or very noisy systems. “Medium” effect sizes

are large enough to be perceived in the course of nor-

mal experience, while “large” effect sizes are easily

perceived at a glance. 
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To get a feeling for small, medium, and large stan-

dardized effect sizes for the wood duck example,

suppose the investigator really had no idea what devi-

ation from the preferred mean of 25 cm would

constitute an “unsuitable habitat.” He might decide

to detect a “medium” effect size, reasoning that a dif-

ference perceptible to a human observer should be

evident to the ducks. Cohen (1988) defines a 

“medium” standardized effect size for a t-test as 

(µ1 – µ2)/σ = 0.5. Using the standard deviation

among cavity diameters (10 cm) in the formula, the

experimenter would need to set HA: µ2 ≤ 20 cm. If the

experimenter felt that even a subtle difference in cav-

ity size could be important to the ducks, he would

choose Cohen’s “small” standardized effect size (0.2)

and set HA: µ2 ≤ 23 cm. Finally, if he felt that only an

obvious difference was worth detecting reliably, he

could choose a “large” standardized effect size (0.8)

and set HA: µ2 ≤ 17. 

Because of their importance and subtlety, effect

size concepts have received considerable attention.

Further discussion can be found in: Toft and Shea

(1983); Rotenberry and Wiens (1985); Tanke and

Bonham (1985); Stewart-Oaten, et al. (1986); Kraemer

and Thiemann (1987); Millard (1987a); Cohen (1988,

1992); Forbes (1990); Parkhurst (1990); Peterman

(1990a); Fairweather (1991); Faith et al. (1991); Mat-

loff (1991); McGraw and Wong (1992); Nicholson and

Fryer (1992); Schrader-Frechette and McCoy (1992);

Stewart-Oaten et al. (1992); Scheiner (1993); Osen-

berg et al. (1994); and Mapstone (1995).

6.6 How Should Power Analysis be Used in Experi-

mental Adaptive Management?

6.6.1 Power considerations are an intrinsic part of

experimental design

The selection of experimental design is largely a ques-

tion of managing the factors that influence Type II

error rate: sample size, variance, effect size, and α.

These variables affect statistical power in different

ways. In the wood duck example, halving the sample

variance and doubling the biologically significant ef-

fect size improved power more than did doubling

sample size or doubling the critical level of α. Thus,

while α is completely under the experimenter’s con-

trol and there are good reasons to choose critical

α-levels other than 0.05 (see Section 6.7), changing

critical α-level is not the most effective way to gain

power (Lipsey 1990). Instead, as we will discuss,  

efficient design usually requires specific knowledge

about the experimental system, which suggests that

pilot studies may  sometimes be essential.

Choice of sample size and distribution of sampling

effort in time and space are largely under the control

of the experimenter and have been the subject of

much theoretical development (Pentico 1981; O’Brien

1982; Hinds 1984; Hurlbert 1984; Andrew and Map-

stone 1987; Ferraro et al. 1989; Green 1989; Krebs

1989; Kupper and Hafner 1989; Lipsey 1990; Ferraro

et al. 1994; Magnussen and Boyle 1995; Mapstone

1995). For many frequently used statistical tests, the

sample size necessary to achieve a given level of

power is easy to look up in such references as Cohen

(1988) or to calculate using software packages

(Thomas 1997b; Thomas and Krebs 1997). However,

in large management experiments where information

is costly to gather, decisions about sample size must

consider sampling costs as well.

While sample size is relatively straightforward to

adjust, experimenters should not overlook other as-

pects of experimental design that can be equally

effective at reducing rates of Type II error. First,

treatments can be chosen to increase effect size de-

tectable in an experiment. For example, in a

management experiment involving effects of fertiliza-

tion on green-up, it is important to know when the

fertilizer should be applied to maximize its effect.

Second, choosing dependent variables that are sensi-

tive to treatments or impacts can also increase effect

size (Lipsey 1990). Third, the power of an experimen-

tal design can be strongly dependent upon the shapes

of response curves (Lipsey 1990; Nicholson and Fryer

1992). For example, if the relationship between the

independent and dependent variable is known to be

relatively steep in slope over some range of the inde-

pendent variable, treatments targeted to that range

would produce the greatest effect size.

Taylor and Gerodette (1993) discussed an interest-

ing example of the choice among dependent

variables, in which the power to detect a decline in a

Northern Spotted Owl population was influenced by

the variable monitored. Based on power analysis of a

number of simulated monitoring programs, the 

authors made specific recommendations about the

choice of dependent variable. At low population 

densities, estimates of birth and death rates provided

higher power to detect population declines than did

estimates of population size, whereas the reverse was

true at high population densities.

In another study designed to identify the most 

useful variables for assessing impacts on water 
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quality, Osenberg et al. (1994) compared the sensitiv-

ity of population-based biological variables,

individual-based biological variables, and chemical-

physical variables. They found that standardized

effect sizes (and hence power) were greatest for indi-

vidual-based biological variables because they

responded most sensitively to impacts and exhibited

relatively low error variance. 

Ecological variables often exhibit large variance, so

strategies for reducing variance are especially impor-

tant for achieving high statistical power. The total

variance is the sum of error variance and variance

that can be accounted for with additional informa-

tion. Therefore, it is useful to account for as much of

the variance as possible in the experimental design.

Examples include blocking (Hurlbert 1984; Krebs

1989), covariate analysis (Wiens and Parker 1995),

and controlling for spatial heterogeneity (Dutilleul

1993). Error variance can also be reduced by improv-

ing measurement precision and reliability (Williams

and Zimmerman 1989; Lipsey 1990).

How could these strategies be applied to the 

salamander example from Section 6.2.2? The experi-

menter might suspect that population density is

affected by aspect, irrespective of the width of the ri-

parian reserve. The sample watersheds could be

divided into three blocks (north-facing, south-facing,

and east- or west-facing), to control for the variance

associated with aspect. Similarly, the experimenter

could include, as covariates, information about the

quantity and decay state of coarse woody debris in

each sample plot to account for some of the variance.

The error variance in estimates of population density

might also be reduced by sampling more intensively.

Finally, the experimenter might decide to estimate

recruitment and death rates of salamanders in addi-

tion to population density in an effort to measure

more responsive variables.

Finally, the most sophisticated design is not always

the most powerful. In more complex experimental

designs, statistical power is really a function of de-

grees of freedom, rather than straightforward sample

size. Because degrees of freedom are influenced by

both the extent of replication and the number of pa-

rameters to be estimated, increasing the complexity

of the design can be counterproductive with respect

to power. For example, in analysis of variance

(ANOVA), increasing the number of factors increas-

es the number of parameters (treatment means) to be

estimated and this decreases the effective number of

replicates per cell, reducing power (Cohen 1988).

Therefore, to maintain comparable power to detect a

given main effect within a factorial ANOVA design,

more replicates per cell are required than if that same

main effect were tested within a one-way design. In

addition, interactions are detected with lower power

than main effects. When total sampling effort is re-

stricted, it may be impossible to increase replication

adequately to justify adopting a complex design

(O’Brien 1982;  Cohen 1988; Lipsey 1990).

6.6.2 A posteriori power analysis can help interpret

nonsignificant results

When interpreting a statistically nonsignificant result

for a completed experiment, an experimenter should

calculate power a posteriori rather than uncritically

“accepting” the null hypothesis (Peterman 1990b;

Thomas 1997a). A posteriori power analysis answers

the question, “What was the probability that this ex-

periment could have detected a specific, biologically

important effect size?” Calculating power a posteriori

is of course the only option if the Type II error rate

was not considered in the design of the experiment,

but it may also be necessary in well-designed experi-

ments when sample variance turns out to be higher,

or samples smaller, than expected. Examples of 

a posteriori power analysis are becoming increasingly

common in ecological literature (Thompson and

Neill 1991, 1993; Greenwood 1993; DeGraaf 1995; Reed

and Blaustein 1995; Lertzman et al. 1996; Pattanavi-

bool and Edge 1996).

Effect size can be problematic in a posteriori

analyses. It is tempting to use the actual observed dif-

ference as a measure of effect size, but the analysis is

meaningful only if based on an effect size chosen 

independently of the data, such as a biologically sig-

nificant effect size (Thomas 1997a). If there is no

obvious biologically significant effect size, Cohen’s

(1988) representative small, medium, or large stan-

dardized effect sizes can be used. 

Alternatively, in the absence of a biologically sig-

nificant effect size,non-significant results can be

evaluated a posteriori with “reverse power analysis,”

which addresses the question, “What effect size could

have been detected with acceptable power?” This

technique involves solving for a different variable,

detectable effect size rather than power (Underwood

1981). Lertzman (1992) and Schieck et al. (1995)

demonstrate examples of this analysis.

Frequently, it is hard to decide what constitutes

“acceptable power” in a reverse power analysis. In

this case, it is more informative to present the results
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not as a point calculation on some arbitrarily selected

level of power, but rather as a graph of power versus

detectable effect size for the experiment under con-

sideration. Figure 6.3 demonstrates this relationship

for the nonsignificant correlation coefficients between

density of trees growing in gaps and gap area (Lertz-

man 1992), based on sample sizes of 36–38. Lertzman

(1992) reported that he could have detected correla-

tions of 0.45 with 80% probability; the graph presents

a wider picture  (e.g., the analysis could have had a

50% chance of detecting correlations of 0.32 and a

95% chance of detecting correlations of r = 0.54 or

larger).

6.6.3 Principles of sound experimentation increase

power and improve inferences about causation in

nonexperimental situations

When the management problem does not demand or

allow direct experimentation, managers can still learn

from passive (nonexperimental) monitoring, if prin-

ciples of experimentation can be applied to decrease

the probability of erroneous conclusions. Therefore,

information-gathering protocols should be designed

so that they include clearly contrasting treatments,

controls, and attention to measurement error even

where the situation permits only passive monitoring.

The ongoing development of Before-After-Control-

Impact paired (BACI) designs in environmental

impact research is an instructive example of this ap-

proach. These sampling designs have been proposed

to bring some benefits of experimentation to the

monitoring of unreplicated environmental impacts,

especially those impacts that are accidental (Bern-

stein and Zalinski 1983; Faith et al. 1991; Underwood

1991, 1994; Stewart-Oaten et al. 1992; Schroeter et al.

1993; Osenberg et al. 1994). See Schwarz (this volume,

Chap. 3) for a discussion on sampling designs for im-

pact studies.

 . A posteriori power analysis: relationship between Pearson correlation coefficients and the power with which
they could be detected, given N = 38.
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6.7 How do Experimenters Decide What Probabili-

ties of Error are Acceptable?

6.7.1 Error rates have traditionally been set by con-

vention

Errors of inference are inherent in any system that

involves learning from incomplete information, but

managers and experimenters can control the fre-

quency of these errors. While the Type I error rate α
has conventionally been limited to 0.05, no universal-

ly accepted limit for Type II error rates has emerged.

Cohen (1988) suggested that experiments should be

designed to have a power of 0.80. Others have pro-

posed that α and β should be made equal (Lipsey

1990). These conventions are arbitrary and do not re-

flect any measure of the relative importance of the

two types of error or the gravity of their conse-

quences.

6.7.2 In applied science, costs of errors should be

taken into account

In resource management experiments, where errors

of inference may lead to substantial costs, those costs

must be considered. Certainly the status quo, in

which β is ignored, is undesirable because the proba-

bility of incurring large and possibly irreversible costs

associated with Type II error can be very high and

unknown. 

One possibility is to set the expected costs of the

two types of errors equal, where expected cost is the

cost of the error times its probability (Toft and Shea

1983; Peterman 1990a). Thus, if C1 and C2 are the re-

spective costs of Type I and Type II errors, we set 

C1 α = C2 β. An acceptable value for β should then be

(C1/ C2)  α. Mapstone (1995) suggests that both α and

β may need to vary when costs of sampling or other

circumstances do not allow β to become as small as

prescribed by this formula. While issues of cost and

error rates have been discussed by many 

authors (Pentico 1981; Hinds 1984; Mapstone and 

Andrew 1987; Millard 1987a, 1987b; Ferraro et al. 1989;

Loftis et al. 1989; Davis and Hardy 1990; Holland and

Ordoukhani 1990; Parkhurst 1990; Fairweather 1991;

Schroeter et al. 1993; Power at al. 1995; Wiens and 

Parker 1995), few examples of these considerations

are being practiced.

6.7.3 Other factors should also influence the choice

of α and β
The purpose of the research should be considered

when setting α and β. The efficiency of exploratory

research or “data snooping” will often improve if α is

set relatively high and β relatively low, because it is

important to detect previously unknown relation-

ships. Careful follow-up studies can discover any

cases of Type I error—incorrect identification of a 

relationship where in reality none exists.

Another issue in setting error rates is the prior

probability that each hypothesis is true. A hypothesis

that seems likely to be true, based on related research,

should be treated more cautiously with respect to er-

roneous rejection than a hypothesis that seems less

credible (Lipsey 1990). For example, suppose that we

can reasonably expect the community of soil mi-

croorganisms to be less disturbed in a retention

silvicultural system than in large clearcuts, but that

the difference may be subtle. An experiment compar-

ing these silvicultural systems should be designed

with high power to detect the difference (i.e., β
should be set low). 

6.8 Recommendations for Adaptive Management

6.8.1 Explicit attention to rates of Type I and Type

II error should become standard practice

Several authors have surveyed experimental literature

and found few examples that address Type II error

(Sedlmeier and Gigerenzer 1989; Peterman 1990a,

1990b; Fairweather 1991; Searcy-Bernal 1994). Al-

though there has been some discussion about

reconsidering the arbitrary limit on Type I error 

(α < 0.05), that limit is rarely reviewed in discussions

of either power analysis or significance testing. How-

ever, the number of journal articles reporting new

theoretical developments in the application of power

analysis to ecological problems and the increasing

availability of software for the purpose suggest that

errors of inference will be easier to estimate and 

interpret in the future. The following recommenda-

tions apply to all ecological research, but especially to

large-scale management experiments:

• Experimenters and decision-makers should em-

brace the concept that some errors of inference are

unavoidable, but their frequency can be controlled

by astute design of experiments and monitoring

systems.

• A priori power analysis, with an explicit statement

of desirable levels of α and β, should be included

in the design process for all experiments and mon-

itoring programs.
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• All reports of nonsignificant results should men-

tion the effect size and power of the experiment.

Where appropriate, a posteriori power analysis may

be used.

• Where potential costs of the errors of inference to

various stakeholders can be quantified, these costs

should be included in decisions about acceptable

levels of α and β.

• Where currently available experimental designs

lack power, research should be directed toward de-

veloping new, powerful methodologies, such as

Before-After-Control-Impact paired designs (Un-

derwood 1994).

• Resources should be allocated to pilot studies that

will help to improve the power of large experi-

ments.

• A priori power analyses are often difficult because

not enough is known about potential response vari-

ables, biologically significant effect sizes, and spatial

and temporal variability. It would be useful to carry

out large-scale, long-term monitoring of these vari-

ables in forest ecosystems, with the express pur-

pose of estimating them for use in future power

analyses and choices about experimental design

(Osenberg et al. 1994). Standard response variables

such as those proposed by Keddy and Drummond

(1996) for eastern deciduous forests could become

a starting point for this sort of database.

6.9 Relevant Literature and Software

6.9.1 A few key references guide experimenters

through power analysis for the most frequently

used statistical tests

The classic reference to statistical power is Cohen

(1988). Cohen provides clearly written instructions

for calculating standardized effect size and other

input parameters to power and sample size tables. He

provides these tables for t-tests, tests involving corre-

lation coefficients, tests involving proportions, the

sign test, chi-square tests for goodness of fit and con-

tingency, analysis of variance and covariance,

multiple regression and correlation, and set correla-

tion and multivariate methods (e.g., canonical

correlation, MANOVA, and MANCOVA). 

Zar (1996) presents a graph of power and sample

size for analysis of variance, as well as formulas for

calculating power and required sample size for a vari-

ety of other tests. While he does not include tabled

values, the formulas are discussed with the details of

the tests themselves, including biological examples.

In addition, Zar discusses examples of a posteriori

power analyses.

Nemec (1991) introduces power analysis using ex-

amples from forest research. Included are example

routines for the SAS statistical software package that

compare the power of completely randomized and

randomized block analysis of variance designs, and

calculate power for one- and two-sample t-tests and

one- and two-way ANOVA. Several pamphlets ad-

dressing various aspects of power analysis are also

available from the B.C. Ministry of Forests (Bergerud

1992, 1995a, 1995b, 1995c, 1995d; Sit 1992).

Lipsey (1990) discusses and compares many factors

that affect statistical power, including adjustment of

critical α and strategies for optimizing standardized

effect size. This book presents power and sample size

relationships as graphs, at some cost to precision in

reading off the numbers.

6.9.2 Power analysis is available in many software

packages

Over the last few years, the variety of software pack-

ages that perform power analysis, sample size

determination, and effect size operations has greatly

increased. Thomas (1997b) maintains an annotated

list of software packages on the World Wide Web.

Many of these packages are reviewed in Thomas and

Krebs (1997). For other discussions of software, see

Goldstein (1989), Borenstein et al. (1990, 1992),

Rothstein et al. (1990), Steiger and Fouladi (1992),

and Meyer (1995). In addition, on-line power calcula-

tions are available for ANOVA (Friendly 1996) and

for correlation coefficients and tests of parameters

for normal, Poisson, and exponential distributions

(Bond 1996). 

6.9.3 Power analysis procedures have been devel-

oped for many specialized applications relevant to

ecological experimentation

Numerous examples are available of power analyses

for complex designs, including factorial and repeated

measures—analysis of variance (O’Brien 1982;

Bittman and Carniello 1990; Muller et al. 1992), mod-

erated multiple regression (Stone-Romero et al.

1994), and multivariate general linear hypotheses

(Muller and Peterson 1984). These papers focus on

practical methods for addressing questions related to

power, effect size, and sample size. 

Long-term ecological experiments and monitoring
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programs, like long-term medical trials, may not

need to be carried to completion if early data are suf-

ficiently decisive (Allison et al. 1997). These studies

should therefore be subject to interim analysis to ad-

dress the question, “Given the results so far, what are

the chances that the conclusions will change if the 

experiment or monitoring is continued to comple-

tion?” As an example, Davis and Hardy (1990)

described one decision process for interim analysis of

long-term medical trials. This process—stochastic

curtailment—involves calculating, given the current

data, the maximum possible levels of α and β that

would occur if the experiment were carried to its

conclusion. If, at some interim point, those maxi-

mum error levels are suitably low, the experiment or

monitoring program could be terminated.

Deviations from normal distributions are often of

concern to ecologists. Gingerich (1995) compared the

power of three tests designed to distinguish normal

from lognormal distributions. Based on Monte Carlo

simulations, he concluded that the Anderson-Darling

test is the most powerful, but even it requires very

large sample sizes to achieve high power. The power

of all the tests was sensitive to the coefficient of varia-

tion (V = s/x
–

) in the sample; power increases as V

increases. Sawilowsky and Blair (1992) discussed the

Type I and Type II error properties of the t-test ap-

plied to measures with frequency distributions that

differ grossly from normal. They concluded that the

t-test is subject to increased Type I error under devia-

tions from normality when the test is one-tailed or

when sample sizes are small or unbalanced. Type II

error does not increase dramatically, but Sawilowsky

and Blair suggested that nonparametric substitutes

often have higher power than the t-test when its as-

sumptions of normality are seriously violated.

Measures of biodiversity are often important re-

sponse variables in adaptive management

experiments. To estimate statistical power for studies

involving these measures, their sampling variance

and other distributional properties must be known.

Methods to address this issue are currently under 

development. For example, Magnussen and Boyle

(1995) provide guidelines for power and sample size

for tests involving the Shannon-Weaver and Simpson

diversity indices. Mark-recapture methods are being

adapted to improve the estimation of species richness

and its distributional properties (E. Cooch, Simon

Fraser University, pers. comm., 1996).

Other types of statistical tests, specifically designed

for ecological contexts, have been subjected to power

analysis. Some examples that may be useful in adap-

tive management experiments include: 

• density dependence—power and sample size for

tests designed to detect whether population para-

meters vary as a function of population density

(Solow and Steele 1990; Dennis and Taper 1994);

• trend detection—power and sample size for tests

designed to detect whether a variable is changing

with time (Hinds 1984; Tanke and Bonham 1985;

Harris 1986; Gerodette 1987, 1991; Whysong and

Brady 1987; Kendall et al. 1992; Loftis et al. 1989);

• detection of rare species—sample sizes necessary

to detect rare species, based on the Poisson distrib-

ution (Green and Young 1993);

• resource selection—patterns of Type I and Type II

errors for four tests of habitat/resource selection

(Alldredge and Ratti 1986);

• home range independence—power of Schoener

statistic for independence of animal home ranges

(Swihart and Slade 1986);

• environmental monitoring—power, sample size,

and cost considerations for programs of environ-

mental impact monitoring (Skalski and McKenzie

1982; Millard 1987b; Ferraro and Cole 1990;  

Ferraro et al. 1989; Parkhurst 1990; Smith and

McBride 1990; Ferraro et al. 1994; Wiens and Park-

er 1995);

• analysis of covariance in environmental monitor-

ing—analysis of Type I and Type II error for

ANCOVA with examples from water quality mon-

itoring (Green 1986);

• environmental impact detection, unique cases, and

before-after-control-impact design issues (Bern-

stein and Zalinski 1983; Faith et al. 1991;

Underwood 1991, 1994; Stewart-Oaten et al. 1992;

Schroeter et al. 1993; Osenberg et al. 1994; Allison

et al. 1997; Gorman and Allison 1997); and

• spatial patterns and heterogeneity—power analysis

for experimental designs that take spatial patterns

and heterogeneity into account (Andrew and Map-

stone 1987; Downing and Downing 1992; Scharf

and Alley 1993).

6.9.4 When analytic methods are not appropriate,

Monte Carlo simulation can be used to estimate

power

Many ecological analyses involve specialized statistics

or experimental designs for which no analytic formu-

las exist for calculating power. In such cases, Monte

Carlo simulation can be used to produce many simu-

lated data sets generated from distributions with
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known parameter values corresponding to given null

and alternative hypotheses. The experimenter can

then estimate statistical power by tallying the fre-

quency with which HO is correctly rejected by the

simulated data. 

Taylor and Gerodette (1993) used this method to

determine the power to detect population declines in

the Northern Spotted Owl when the monitored vari-

ables were estimates of survival and reproductive

rates. They simulated hypotheses about trends in

population density: the null hypothesis represented a

stable population (λ = 1, where λ is the geometric

rate of population change), while a set of alternative

hypotheses represented populations declining at

specified rates (e.g., λ = 0.96). Survival, reproduc-

tion, capture, and recapture of individual birds in

each declining or stable population were modelled

stochastically using known ranges of variation over a

number of years; the mark-recapture estimates of de-

mographic parameters were analyzed to generate an

estimate of λ. Each population and its associated esti-

mates of λ were simulated several thousand times.

For stable populations (i.e., ones for which HO was

true), the critical value of estimates of λ was deter-

mined by finding the fifth percentile of the frequency

distribution of simulated estimates. Below that value,

HO would be rejected at α = 0.05. Then, for simulated

populations in which HA was true, the power to de-

tect the decline could be estimated by tallying the

proportion of parameter estimates for which HO was

rejected at the critical value.

Other examples of Monte Carlo methods for

power analysis include Loftis et al. (1989), who used it

to identify the most effective tests for detecting trends

in long-term water quality monitoring, and All-

dredge and Ratti (1986), who simulated the statistical

behaviour of a number of models of habitat selection.

Using Monte Carlo simulations of fish populations,

Peterman and Routledge (1983) estimated the power

of proposed management experiments, and Peter-

man and Bradford (1987) demonstrated the difficulty

of reliably detecting time trends in recruitment.

6.10 Conclusions

Scientists and resource managers are benefiting

from a new level of sophistication in the statistical in-

terpretation of management experiments and

monitoring programs. This involves an explicit and

balanced focus on errors of inference, including Type

II error (failure to reject a false null hypothesis) as

well as Type I error (rejecting a true null hypothesis).

As this new standard of practice evolves, decision-

makers and experimenters will find it helpful to bear

in mind the following points: 

• Experimenters can control statistical power a priori

by making wise decisions regarding pilot studies,

sampling methodology, and experimental or mon-

itoring design. The advice of statistical consultants

is increasingly important in the planning process

as standards of experimentation improve.

• If the outcome of an experiment or monitoring

program is likely to influence a management deci-

sion, statistical power should be reported when

results are non-significant.

• In many situations, it is useful to free Type I and

Type II error rates from traditional arbitrary val-

ues. Desirable levels of both error rates can be

selected rationally as a function of the goal of the

study, current understanding of the system under

investigation, and costs of each type of error.

• Software and written explanations, designed to

make statistical power analysis accessible to a wide

range of users, are widely available.
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Abstract

This chapter provides a brief introduction and
overview of the Bayesian approach to statistical infer-
ence. The Bayesian approach is particularly suitable for
adaptive management since it provides a way of in-
corporating prior knowledge with newly acquired
knowledge and, based on a model, can be used to as-
sign probabilities to possible states of nature. These
probabilities are directly useful in decision theory ap-
plications. In contrast, the familiar and well-known
frequentist methods treat each experiment or study
on its own, formally ignoring other information, and
thus syntheses of information must be done in an ad
hoc fashion.

Frequentist and Bayesian statistical approaches are
briefly contrasted by way of a forestry example. This
example is then simplified and used to demonstrate
Bayesian methods. Bayesian decision theory and
model building are also described.

7.1 Introduction

In most introductory statistics courses, students en-

counter basic concepts of the familiar frequentist

paradigm, such as sampling distributions, signifi-

cance tests, P-values, and confidence intervals. These

concepts, which are further developed in specialized

courses on regression, design of experiments, and

sampling methods, form the basis of the statistical

toolkit that most graduates carry with them into the

world of science and management. When faced with

problems involving experiments, data, and decisions,

most foresters, biologists, and forest managers will

naturally reach into this toolkit. However, the famil-

iar statistical toolkit often proves inadequate for deal-

ing with management problems. Managers make de-

cisions in an environment of uncertainty, where the

best choice among several alternatives is unknown.

They often want to know the probability that a hy-

pothesis is true, or the degree to which it is true—in-

formation that frequentist statistics does not directly

provide. Despite its limitations for management, the

frequentist framework is seldom questioned by prac-

titioners, partly because the limitations of frequentist

methods are rarely discussed in introductory courses,

but perhaps more importantly, because practitioners

know of no alternative.

Bayesian statistics, on the other hand, is an alter-

native theory, which is particularly suitable for

adaptive management since it provides a way of in-

corporating prior knowledge with newly acquired

data and of assigning probabilities to possible states

of nature. 

The essential difference between the Bayesian and

the frequentist approaches hinges on the way in

which uncertainty is modelled, and on the way in

which randomness is conceived. To the Bayesian, un-

certainty can be represented by assigning

probabilities to various possibilities. These probabili-

ties may be obtained from previous data or from the

subjective beliefs of those knowledgeable of the sub-

ject matter. In contrast, a frequentist considers that

probabilities can only be meaningfully assigned to

events in repeatable experiments.1 It is claimed that

the road to scientific progress lies through objectively

falsifying or confirming scientific hypotheses, rather

than through adjusting one’s beliefs concerning their

plausibility.  However, adaptive management in-

volves exactly the second kind of process, as

information on the consequences of management 

actions becomes available as part of an ongoing

process.

This chapter presents a brief overview of the

Bayesian approach to statistical inference and deci-

sion-making. Bayesian ideas are also contrasted with

those from the dominant frequentist paradigm. Pe-

terman and Peters (this volume, Chap. 8) discuss in

more depth the application of Bayesian statistics to

management decisions.

7.2 Frequentist and Bayesian Statistics

The dominant paradigm for statistical inference is

based on a frequentist notion of probability, which

we will call frequentist statistics. Data generated from

an experiment or study are fitted by a statistical

model. This model usually includes one or more un-

known quantities called parameters, which are esti-

mated during the fitting process. The fitted model 

7 BAYESIAN STATISTICAL METHODS
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1 An accessible discussion of some of these points can be found in Swindel (1972), Dennis (1996), and Edwards (1996), and in the Teacher’s
Corner of The American Statistician, Vol. 51, (3), pp. 241–74 (several articles).
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summarizes the data and can be used to answer ques-

tions or to calculate confidence limits for the para-

meters. Questions are posed as hypotheses, the most

frequent being the well-known null hypothesis (that

a particular parameter’s unknown value is zero). By

considering many hypothetical replications of the ex-

periment, statisticians can determine the behaviour

of fitted parameter values or of some function of the

parameters. This behaviour is described by a frequen-

cy or sampling distribution (such as the normal, t-,

and F-distributions) and is used to calculate the fa-

miliar P-values and confidence intervals.

One could argue that frequentist statistics is only

really applicable to the analysis of data that arise from

a procedure that is intrinsically repeatable. Such a re-

striction would severely limit its use. For example, it

would rule out almost completely its use in time–

series analysis, time being universally recognized as

non-repeatable. This restriction would also rule out

applying frequentist statistics in many areas of

forestry, because trees generally take a long time to

grow and growing conditions could change over the

course of an experiment. For example, an experiment

involving growing various tree species would not re-

ally be repeatable, given the dependence of growth

upon weather over several decades and the possibili-

ties of site changes. However, this objection is usually

overcome by observing that replication is regarded in

a hypothetical sense for the purpose of interpreting

results, and that even in truly repeatable experiments,

the experiment is seldom actually repeated. Rather,

in both cases one contemplates a universe of possible

replications for the purpose of comparing the actual

observed results.

In forest management, managers would like simple

answers to practical questions from sampling proce-

dures and studies, whether experimental, observa-

tional, or a combination of the two. For example, an

assessment of the probability that one or more hy-

potheses are true, or the probability that an estimate

of a parameter is reasonably close to its unknown

true value, would be useful information when formu-

lating decisions. Insofar as frequentist statistical

methods do not directly provide this information (al-

though the results of frequentist statistical analysis

are often loosely misinterpreted in this way) they

may be of limited use to the forest manager. Bayesian

methods on the other hand can provide precisely this

sort of information.

Bayesian inference allows direct computations of

the probability of a hypothesis being true, or of the

probability distribution of a parameter in a statistical

model. An essential difference from the frequentist

approach is that probabilities are assigned to possible

parameter values before the study is conducted.

These probabilities can incorporate knowledge

gained by the investigators from their own or others’

data, their experience, and even, if so desired, their

intuition. However, because it is impossible to inter-

pret such a probability as a long-run relative

frequency, a wider definition of probability known as

subjective probability must be adopted. While this de-

finition includes the frequentist notion of

probability, it is now extended or broadened and

makes meaningful such questions as, “What is the

probability that the Vancouver Canucks will win the

Stanley Cup in 2000?’’ or “What is the probability

that it will rain tomorrow?’’  These questions have no

meaning in the frequentist sense (because the Stanley

Cup competition is played only once in 2000, and to-

morrow is similarly unique), but certainly make

sense to the person in the street, whether sports fan,

gambler, or simply somebody who listens to a weath-

er forecast.

In the Bayesian paradigm, this prior information is

described by a prior probability distribution for the

model parameters and reflects personal knowledge or

beliefs before the study is conducted. The data modi-

fy this distribution to produce a posterior probability

distribution, which describes the accumulated infor-

mation. This relationship, known as Bayes’ theorem,2

can be written in equation form as:

posterior = (prior) × (likelihood of data 

given prior) × (constant) (1)

Although a Bayesian statistician can meaningfully

make statements such as: “With posterior probability

0.95 the total volume of wood in the stand lies be-

tween 46 000 and 52 000 m3,” or that the posterior

probability of a certain hypothesis being true is 0.08,

making such appealing conclusions bears a price—

prior probabilities must be specified and the results

depend upon this specification. 

Specifying the prior distribution can be challeng-

ing. The practitioner who may shudder at the

thought of determining a prior distribution, should

be reassured that the relative importance of the newly

collected data to that of the prior distribution in 

2 An informal proof of Bayes’ theorem using the example in Section 7.3 is presented in Appendix 1.
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determining the posterior distribution increases with

the sample size of the newly collected data.  Thus,

when sufficiently large amounts of data are collected,

the prior distribution becomes relatively unimpor-

tant and the posterior distribution depends almost

exclusively on the data via the likelihood function.

Often a convenient prior distribution that reflects ig-

norance is the reference prior, which roughly speaking

assumes that all possible values of the parameter (re-

flecting all possible hypotheses) are equally probable.

Readable discussions of the fundamentals of

Bayesian statistics can be found in, for example,

Wonnacott and Wonnacott (1977, Chap. 19),

Kennedy (1985, Chap. 12), Berry (1996), and Ellison

(1996). More complete and mathematical discussions

of Bayesian methods (in rough order of increasing

mathematical difficulty) can be found in, for exam-

ple, Cox and Hinkley (1982), Gelman et al. (1995),

and Box and Tiao (1973).

The following example will help to show the 

differences between the frequentist and Bayesian 

paradigms and how the parts of the Bayesian 

approach work together.

7.2.1 A silviculture example

For planning purposes, suppose that a district silvi-

culturist is interested in knowing if a recently logged

cutblock will naturally regenerate within the next 

2 years. If it does regenerate then treeplanting would

not be necessary and resources could be directed

elsewhere. In 2 years’ time, the cutblock will be sam-

pled according to a standard protocol and the results

used  in a decision rule to determine if planting is

necessary. 

Suppose quite a bit of information is already avail-

able on other, older cutblocks, which are similar in

all relevant respects and thus belong to the same stra-

tum.3 The silviculturist might apply this information

to plan the use of available resources. This process

could be done informally, by using professional

judgement, or formally, by developing a statistical

model to predict how likely it is that planting would

be necessary. The Bayesian would develop the statis-

tical model and call it the prior distribution for the

cutblock’s density in 2 years’ time. Regardless of its

name, the model could be used to calculate the prob-

ability that planting will be necessary at that time.

The standard frequentist approach would, at least,

appear to ignore this prior information when the 

cutblock is sampled in 2 years’ time. For instance, the

protocol might be to calculate the 90% confidence

limits around the density estimate of the number of

stems per hectare (stems/ha) in the cutblock. If the

lower confidence limit was below a minimum stock-

ing standard (MSS) then planting would proceed.

Formally, this decision rule does not use the prior

distribution or any other ancillary information. The

silviculturist’s final decision may, of course, be based

on many factors in addition to the numerical deci-

sion rule results.

In contrast, the Bayesian would explicitly include

the information contained in the prior distribution

by combining it with the collected data via Bayes’

theorem to produce a posterior distribution for the

estimate of the cutblock’s density. This result could

then be used to calculate a posterior probability in-

terval (also called a credibility interval). While the

fundamental concepts underlying this interval are

quite different from those underlying the confidence

interval, this credibility interval can be used in a simi-

lar fashion. Thus a similar decision rule could be

used, namely, if the lower 90% posterior probability

interval is above the MSS then conclude that the cut-

block is satisfactorily restocked and does not need

planting.

Both statistical approaches will sample the cut-

block in 2 years, and use the data to decide if planting

is necessary. Formally, this sample data will stand on

its own for the frequentist while the Bayesian will use

all the data—not only the newly collected data but

also that collected earlier.

For this example, the Bayesian posterior probabili-

ty interval may be shorter than the frequentist’s

confidence interval because of the inclusion of prior

information (and effective increase in sample size).

The mean of the posterior distribution (called the

posterior mean) is a weighted average of the prior and

observed means. If these values are not too different,

then the posterior mean will be similar to that of the

frequentist. On the other hand, if the observed mean

is quite different from that of the prior distribution,

then the posterior mean is shifted from the observed

mean towards the prior mean. The amount of shift

depends upon the ratio of the variance of the ob-

served mean to that of the prior distribution. If the

observed mean is well known (as indicated by a small

standard error) then the shift will be small. On the

other hand, if the standard error is relatively large,

3 This sort of stratum is known as a working group within the B.C. Ministry of Forests.
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then the shift could be substantial because the data

have not added much information to the posterior

distribution.

7.2.2 Interpreting confidence limits and P-values

This section discusses the correct interpretation of

confidence intervals and P-values. Rarely do these

tools directly answer the research questions under

consideration, but they are often incorrectly inter-

preted as if they do.

To illustrate, let us consider a simple estimation

problem in which a forester wishes to estimate the

total volume of wood in a cutblock. From the sample

data obtained, a 95% confidence interval is calculated

for the total volume. Let us suppose that this confi-

dence interval ranges from 16 000 to 24 000 m3. The

correct interpretation of this interval is that if the

forester were to sample again, and again and again,

each time calculating a 95% confidence interval, 95

out of every 100 calculated intervals would contain

the true total volume in the long run. Or, put another

way, in the long run only 5% of all 95% confidence

intervals (assuming everything else is correct) would

miss the mark—that is, not contain the parameter

(here, the total volume) being estimated.

To the manager reading the forester’s report which

has a 95% confidence interval of 16 000–24 000 m3

for the total volume, it seems much the same as say-

ing that with probability 0.95 the total volume lies

between 16 000 and 24 000 m3. Certainly most

“users” (including some statisticians) would treat the

result in such a fashion. However, under the frequen-

tist paradigm, probability is the long-run relative

frequency of an event in many trials. In this example,

the parameter, total volume of wood, is a fixed but

unknown quantity, not a random variable. The para-

meter is either captured or not captured in the

confidence interval. Because a relative frequency

could never relate to the parameter, a researcher can-

not correctly talk about probabilities concerning the

parameter. Nonetheless, confidence intervals will in-

evitably be wrongly interpreted in this way. Most

non-specialists would be hard pressed to distinguish

between a statement with “95% confidence” and one

with “95% probability’’ of being correct.

The same is true of P-values. For example, a com-

puted P-value of 0.03 will often be misinterpreted as

the probability that the null hypothesis is true. In

fact, this P-value should be interpreted as the proba-

bility (in the frequentist sense) of obtaining

observations as discrepant or more discrepant with

the null hypothesis, than those actually observed, if

in fact the null hypothesis is true. In other words, if

the null hypothesis were true and the experiment

were repeated many times, the results of only 3% of

the experiments would be as great or greater than the

discrepancy observed in the actual experiment. A

mental shorthand for this is to think of the P-value 

as a measure of evidence against the null hypothesis

(with small P corresponding to strong evidence).

While these common tools are useful, they only in-

directly answer most research questions. In contrast,

Bayesian methods often directly answer such ques-

tions.

7.3 The Fundamentals of Bayesian Statistics

This section will briefly describe Bayesian statistical

methodology, and then use a simple numerical ex-

ample to demonstrate the steps involved. 

7.3.1 Components of a Bayesian analysis

To make statistical comparisons or estimations, a

probabilistic model must be developed to describe

how the observations are generated. As in frequentist

statistics, this model will involve unknowns called

parameters. While frequentist methods treat these

unknowns as fixed, the Bayesian approaches these

unknowns as random variables. Thus, in addition to

the probability model, Bayesian inferential methods

require probability distributions for the unknown

parameters in that model. A Bayesian analysis re-

quires three groups of probability distributions:

1. The first is the prior probability distribution for

the unknown parameters in the data probability

model. These parameters are developed before any

data are collected and describe what the researcher

might observe when the data are collected. This

prior distribution may be developed: (1) empirical-

ly, by using previously collected data (noncontro-

versial but technically more demanding and

known as empirical Bayes); or (2) subjectively, by

carefully thinking about the situation and the sci-

ence involved to develop a model that captures

what the researcher might reasonably expect will

be observed. When very little is known before-

hand, then noninformative or reference prior dis-

tributions are used. These are convenient and give

all plausible values of the unknown parameters a

reasonable weighting so that the chosen prior dis-

tribution has little influence on the final outcome.



2. The second group of distributions form the 

probability model for the data collected from the

research study. Along with the data, these  distrib-

utions are used to develop the likelihood. This

information is then fed into Bayes’ theorem along

with the prior distribution to generate the third

component.

3. The posterior probability distribution is the output

or outcome of a Bayesian analysis and summarizes

what is known. It can be used to develop credibili-

ty intervals and probabilities for interesting values

of the model parameters. 

The relationship between these components of a

Bayesian analysis is shown in Figure 7.1.

7.3.2 Example with single sample plot

For illustration purposes, let us rework the previous

silviculture example. Recall that the silviculturist is

interested in determining whether the cutblock will

be satisfactorily restocked (SR) or not satisfactorily

restocked (NSR). This measurement will determine if

planting will be necessary. Suppose that this particu-

lar stratum has 100 previously studied cutblocks; of

those, 16 were SR (16%) while 84 were NSR (84%).4

This information provides the prior probability dis-

tribution,5 namely the probability that the new

cutblock is NSR is 0.84. Thus, without sampling the

new cutblock, the odds are 84 to 16 or, about 5 to 1,

that it will need planting. 

Suppose that we put just one plot into this cut-

block, and determine that it is understocked (i.e., the

observed number of well-spaced trees in that plot is

less than the MSS). These data are used with the prob-

ability model to develop the likelihood. We can use

more of the previously collected data on the similar

100 cutblocks to build this probability model and so

eventually develop the posterior distribution. 

Suppose that an average of 10 plots was placed in

each cutblock and that each plot was classified as un-

derstocked (denoted by US) or stocked (denoted by

S), with the results shown in Table 7.1. These data are

also shown pictorially in Figure 7.2. For this simple
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4 Assume that this information is known without error.

5 Assuming, of course, that this new cutblock is correctly identified as belonging to this stratum.

Prior
distribution

Posterior
distribution

Data

Bayes
theorem

 . Components of a Bayesian analysis.

 . Distribution of sample plots for the silviculture
example.

672 plots
observed to be
understocked

168 plots
observed to
be stocked

72 plots
observed to be
understocked

88 plots
observed to
be stocked

1000
plots

160 plots
from SR

cutblocks

840 plots
from NSR
cutblocks

 . Numbers of previously sampled plots (observed
as US or S) from both NSR and SR cutblocks. An
average of 10 plots was placed in each cutblock.

Stocking status of plots

Cutblock status US S Total

NSR 672 168 840
SR 72 88 160
Total 744 256 1000
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example, we can actually skip the development of the

likelihood and directly obtain the posterior distribu-

tion from Table 7.1. Notice that 744 of all the

observed plots were found to be US. Of those, 672

were sampled from NSR cutblocks. Therefore, the

posterior probability that the current cutblock is NSR

given that the one observed plot is US is 

672
–––
744

= 0.903.

With relevant prior information and the sampling

results of just one plot, the Bayesian approach allows

the determination of the posterior probability that

the cutblock is NSR. On the other hand, the frequen-

tist approach formally ignores the prior information

and so could do little with just one plot. In any case,

regardless of approach, it is unwise to decide the

management of the cutblock on the basis of one plot.

In Section 7.3.1, we will extend the methodology to

samples of several plots. For the rest of this section,

we will fill in the steps just skipped by developing the

necessary statistical notation, the probability model

for the data, and the posterior probability distribu-

tion.

The two possible “true” states of the cutblock can

be denoted by the random variable θ, which can have

one of two values, either NSR or SR. Based on 

Table 7.1, the prior probability that the cutblock is

NSR is denoted by p(θ = NSR) = π0 = 0.84 while the

prior probability that the cutblock is SR is denoted by 

p(θ = SR) = 1–π0 = 0.16. This prior distribution has a

Bernoulli distribution with parameter π0 (a special

case of the binomial distribution when the sample

size is one).

The data, denoted by X, can have one of two val-

ues: either X = US or X = S. The probability model

provides the probability of the data given the “true”

state of nature and is denoted by p(X |θ) (the vertical

bar “|” means “given”). This symbol is read as “the

probability of observing the data, X, given (a specific

value of) the parameter, θ.” In this case, two such

models are used—one for each state of nature, θ . For

a sample of one plot, both models follow a Bernoulli

distribution. From Table 7.1, we see that

p(X =US|θ = NSR) = 
672
–––
840

= 0.80 ,

while 

p(X =US|θ = SR) =
72

–––
160

= 0.45.

These probabilities are parameters of the probability

models for the two states of nature and will be denot-

ed by π1 and  π2 , respectively. They are also

conditional probabilities because they are the proba-

bility that X = US given (or conditional on) the true

state of nature. Furthermore, these probabilities are

the likelihood6 functions, because they provide a mea-

sure of the likelihood of observing the data, X, given

specific values for the state of nature, θ. The model

parameters are summarized in Table 7.2 and in the

tree diagram in Figure 7.3.

A derivation of Bayes’ theorem using this example

is presented in Appendix 1. The conclusion from that

appendix is that the posterior probability of a partic-

ular state of nature, θ, given the data X is given by: 

p(θ|X) = 
p(θ) × p(X|θ)

.
p(X)

For this example, the probability that the new cut-

block is NSR given that the observed plot is US is:

6 Not all conditional probabilities are likelihoods.

Table 7.2 The probability parameters for p(θ), the prior distribution of θ (cutblock is NSR or SR), and
p(X|θ), the conditional probability of observing X, given θ (cutblock is NSR or SR). All values
were calculated from those in Table 7.1.

Probability parameters Conditional probabililty or likelihood, p(X|θ) for

Cutblock status Prior probability: p(θ) X = US X = S

θ = NSR π0 = 0.84 π1 = 0.80 1–π1 = 0.20 
θ =  SR 1–π0 = 0.16 π2 = 0.45 1–π2 = 0.55



95

 . The likelihoods (probability that X plots out of 12 are US given θ) and the posterior probability that the cutblock
is NSR for all possible X values, when the prior probability, π0 = 0.84

X = Likelihood that Likelihood that Posterior
number of plots are US plots are US probability

US plots when θ = NSR when θ = SR for θ = NSR Cutblock is Management
observed p(X |θ = NSR) p(X |θ = SR) p(θ = NSR| X) most likely decision

0 0.000  0.001 0.000 SR not plant
1 0.000 0.008 0.000 SR not plant
2 0.000 0.034 0.001 SR not plant
3 0.000 0.092 0.003 SR not plant
4 0.001 0.170 0.016 SR not plant
5 0.003 0.222 0.073 unclear unclear
6 0.016 0.212 0.277 unclear unclear
7 0.053 0.149 0.652 unclear unclear
8 0.133 0.076 0.902 unclear unclear
9 0.236 0.028 0.978 NSR plant

10 0.283 0.007 0.995 NSR plant
11 0.206 0.001 0.999 NSR plant
12 0.069 0.000 1.000 NSR plant

Total 1.000 1.000

π0 = 0.84

1–π0 = 0.16

π1 = 0.80

1–π1 = 0.20

π2 = 0.45

1–π2 = 0.55

θ= NSR

θ= SR

X = US

X = S

X = US

X = S

States of nature, θ,
for the cutblock

Data, X, of the one
observed plot

 . Probability tree for the silviculture example.
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posterior probability = p(θ = NSR|X = US)

=
π0 × π1

π0 × π1 +(1–π0) × π2

= 0.903

as earlier found directly from Table 7.1.

7.3.3 Example with several sampling plots

Making management plans by sampling one plot is

unrealistic. Therefore, we extend the Bayesian 

methods for one plot to that of several plots so that

the cutblock can be properly sampled. The mathe-

matical development for this case is given in

Appendix 2. Suppose a sample of n plots is placed in

the cutblock with the same prior probabilities as

shown in Table 7.1. We will now use X to represent

the number of plots observed to be understocked

(US). From Appendix 2, the posterior probability

that the cutblock is NSR given that X plots are ob-

served to be US is:

p(θ = NSR |X) = 
p(θ = NSR) × p(X |θ = NSR) 

. (2)
p(X)

Table 7.3 gives the likelihoods and posterior proba-

bilities that the cutblock is NSR for n = 12 sample

plots (using a protocol of one plot per hectare of cut-

block to determine that 12 plots are required) and for

all possible X values (X = 0 to X = 12). The posterior

probabilities are calculated using equation (2), with

the prior probability being p(θ = NSR) = π0 = 0.84.      

If four or fewer plots out of 12 are observed to be

US, then deciding that the cutblock is SR seems clear

because the posterior probability is less than 0.05.

Also, if eight or more plots are observed to be US

then the NSR decision is clear because the posterior

probability is greater than 0.95. But when 5, 6, or 7

out of 12 plots are observed to be US then the man-

agement decision is not clear. These results depend

on the model probability values of π1 and π2. If their

values had been more widely separated then the un-

clear decision would have occurred for fewer

X-values; if their values had been more similar, then

the undecided decision would have occurred for

more X-values. Odds ratios provide another way to

express these results.

7.3.4 Odds ratios

Another way to look at these results is to calculate the

posterior odds that the cutblock is NSR (θ = NSR)

given X plots observed to be understocked. This 

calculation determines the ratio of the posterior

probability that the cutblock is NSR (denoted by 

p(θ = NSR|X)) to the posterior probability that the

cutblock is SR (denoted by p(θ = SR|X)), namely:

p(θ = NSR|X)
=

p(θ = NSR) × p(X|θ = NSR) (3)

p(θ = SR|X) p(θ = SR) × p(X|θ = SR)

=
p(θ = NSR) × p(X|θ = NSR)

p(θ = SR)        p(X|θ = SR)    

=  
π0 × p(X|θ = NSR) 

.
1–π0 p(X|θ = SR)

The posterior odds is composed of two parts: 

1. the ratio of the prior probabilities, or the prior odds

is

π0–––
1–π0

= 
0.84
–––
0.16

= 5.25, and 

2. the ratio of the two conditional probabilities

known as the Bayes Factor, 

p(X|θ = NSR)

p(X|θ = SR) 

For n = 1 and X = US, the Bayes factor is:

Bayes factor = BF = 
p(X = US|θ = NSR)

= ( π1–––π2 )p(X = US|θ = SR)

=
0.80
–––
0.45

= 1.78

and so the posterior odds are:

p(θ = NSR|X)
=( π0––––

(1–π0))×(π1––π2
)p(θ = SR|X)

= (0.84
–––
0.16)×(0.80

–––
0.45) = 

0.672
––––
0.072

= 9.3.

This value means that, having observed that one

plot is US, the odds are about 9 to 1 that the cutblock

is NSR. If the observed plot had been S (stocked), the

odds would have been

(0.84
–––
0.16) × (0.20

–––
0.55) = (5.25 × 0.364) = 1.91,

about 2 to 1 that the cutblock is NSR, or about 1 to 2

that the cutblock is SR. Notice how the data have

modified the prior odds of about 5 to 1.

For multiple sample plots,  n = 12, with seven plots

(X = 7) found to be NSR, the prior odds remain at
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5.25 while the Bayes factor will be (values from 

Table 7.3) (0.053/0.149) = 0.36. Thus the posterior

odds is now (5.25 × 0.36) = 1.78, meaning that the

odds are about 9 to 5 that the cutblock is NSR.

A value of the Bayes factor greater than 1 indicates

that the data contain evidence to favour the hypothe-

sis that the cutblock is NSR, while a value less than 1

indicates the opposite (evidence favours the hypothe-

sis that the cutblock is SR).

A common reference prior (used, for instance, if no

data had been available to develop the prior probabil-

ities) would give both possible states, NSR or SR,

equal probabilities so that the prior odds would be 1.

In this case, the Bayes factor would directly provide

the posterior odds. For further discussion, see Kass

and Raftery (1995).

7.3.5 Bayes factor for significance testing

The Bayes factor is a measure of the evidence for two

competing hypotheses, and can be directly used to

help choose one hypothesis over the other. Example

cutoff values for both are shown in Table 7.4 and

were taken from Ellison (1996), who quotes Kass and

Raftery (1995, Sec. 3.2).

 . Suggested cutoff values for the Bayes factor (BF)
when comparing two hypotheses

Evidence against H: Cutblock
BF is SR as opposed to NSR

0 – 1 Nothing to mention
1 – 3 Not worth more than a bare mention
3 – 20 Positive

20 – 150 Strong
> 150 Very strong

For the multiple sampling plot example in the last

section, the Bayes factor was 0.36, which suggests lit-

tle evidence against the hypothesis that the cutblock

is SR. Alternatively, the Bayes factor for the hypothe-

sis that the cutblock is NSR is 1/0.36 = 2.78, which,

while still low, suggests that the evidence is more

supportive of the hypothesis that the cutblock is SR

than NSR. The Bayes factor can be used similarly to

the P-values in hypothesis testing. An advantage of

Bayes factor is that it is not sensitive to sample sizes,

whereas frequentist P-values can be dramatically af-

fected by unusually large or small sample sizes (Cox

and Hinkley 1974, Table 10.2; Ellison 1996).

7.4 Bayesian Decision Theory

Both the inferential problems of estimation and hy-

pothesis testing can be viewed as problems in

decision theory, for which a complete Bayesian theo-

ry has been developed. However, Bayesian decision

theory can also be used in applied problems of deci-

sion-making when information is obtained through

experience and experimentation. For instance, the

natural regeneration example previously discussed

could be formulated as a Bayesian decision theory

problem, as could many other questions relating to

forest management.

The basic framework of decision theory assumes 

a set of possible, but unknown, “states of nature,” 

Θ = {θ1, θ2, …}, and a set of possible actions 

A = {a1, a2, …} available to the decision-maker.7 If the

decision-maker chooses an action, a1, when the state

of nature is θ1 then an incurred loss can be calculated

by a function denoted by L(θ1, a1). This loss could

also be written as a gain G(θ1, a1) = – L(θ1, a1). For the

natural regeneration example, the set has two states

of nature: Θ = {θ1= NSR, θ2= SR}. The two possible

actions under consideration are A = {a1= plant, a2 =

not plant}. For illustration purposes,8 some arbitrary

numbers will be used for the gain function and are

presented in Table 7.5 and Figure 7.4. This figure

shows a simple decision-tree diagram often used in

decision analysis. This example will be used to illus-

trate the basic concepts in decision analysis, which

are developed in more detail by Peterman and Peters

(this volume, Chap. 8).

The decision-maker wants to keep losses as small

as possible or, alternately, the gains as high as possi-

ble. The difficulty lies in the fact that there is usually

not a unique action, a*, for which  the gain is maxi-

mized for all states of nature, θ. For some states of

nature one action maximizes the gain, while for oth-

ers a different action will provide a maximum. In

such cases, since the state of nature is unknown, an

unambiguously “best” action cannot be chosen. For

example, planting a site when it is sufficiently regen-

erated is a waste of resources and may require further

resources later, if, for instance, the stand is too dense

7 Θ and A are names used to represent sets of things, which consist of the possible states of nature: θ1, θ2,..., and the possible actions a1, a2 ...,
respectively.

8 Although we have used the gain function when writing this section because of its more positive point of view, the literature mostly uses the
loss function.
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and thinning is required. On the other hand, not

planting the site when needed may mean that, at ro-

tation (harvest), the stand produces much less

volume than it could have, resulting in a significant

loss in revenue. 

The best action, called the Bayes action, minimizes

the expected loss, or Bayes loss, over all possible ac-

tions, a, with respect to the prior distribution. This

action is equivalent to maximizing the expected gain.

Table 7.5 shows some hypothetical gains for each ac-

tion under each state of nature. Using the prior

probability, p(θ), to model the probability of a par-

ticular state of nature, we can calculate the expected

gains (or losses) for each combination of θ and a.  

The Bayes gain (BG) for the first action (a1 = plant)

can be calculated by:

BG(a1) = π0G(θ1,a1) + (1–π0)G(θ2, a1)

= 0.84 × $200 + 0.16 × (-$1200) = -$24/ha,

and for the second action (a2 = not plant): 

BG(a2) = π0G(θ1,a2) + (1–π0)G(θ2, a2)

= 0.84 × (-$1800) + 0.16 × $500 = -$1432/ha.

Since the Bayes gain is greatest (-$24/ha) for the ac-

tion a1 (plant), then the recommended Bayes action

is to plant the cutblock.

So far, the decision has been based on the prior

distribution. We can use data to update the Bayes

gain to obtain a Bayes posterior gain. We can maxi-

mize this gain to choose the action, a*(X), from all

the possible actions A calculated for every possible

value of the data. Thus we would have an optimal de-

cision rule (or policy) prescribing the optimal action

for any observed data value. This policy is known as

the Bayes decision rule, and can be shown to mini-

mize what is known as the Bayes risk over all decision

rules that assign an action to every possible value of

the data, X. 

Continuing the example, the Bayes posterior gain

can be calculated using the posterior probability, 

p(θ = NSR|X), whose values are presented in Table 7.6.

 . Hypothetical gains for each combination of action and state of nature

Possible action
State of nature a1 =  plant a2 =  not plant   

θ1 = NSR G(θ1,a1) = $200/ha G(θ1,a2) = -$1800/ha
θ2 = SR G(θ2,a1) = -$1200/ha G(θ2,a2) =   $500/ha

Management action State of nature

θ1= cutblock is NSR

θ2 = cutblock is SR

θ1 = cutblock is NSR

θ2 = cutblock is SR

Gain

π0

1– π0

π0

1– π0

G (θ1,a1) = $200/ha

G (θ2,a1) = –$1200/ha

G (θ1,a2) = –$1800/ha

G (θ2,a2) = $500/ha

a1

a2

 . Decision tree for the silviculture example.
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Because this notation is cumbersome, we will use 

πp = p(θ = NSR|X) for the rest of the section. For the

observed data of 7 US plots out of 12, the Bayes poste-

rior gain for the first action (a1 = plant) can be

calculated by 

BG(a1) = πpG(θ1, a1) + (1–πp)G(θ2, a1)

= 0.652 x $200 + 0.348 x (-$1200) = -$287/ha,

and for the second action (a2 = not plant):

BG(a2) = πpG(θ1, a2) + (1–πp)G(θ2, a2)

= 0.652 × (-$1800) + 0.348 × $500

= -$1000/ha.

Given this data, the best action would be to plant

the cutblock if 7 out of 12 plots were observed to be

US. Bayes posterior gains have been calculated for

each value of X and the resulting Bayes decisions 

presented in Table 7.6.

The action with the higher Bayes posterior gain

would be optimal, that is, it would be optimal to

plant (a1) if 

πp × G(θ1,a1) + (1–πp ) × G(θ2,a1) > πp × G(θ1,a2)

+ (1–πp ) × G(θ2,a2),  

or after rearranging:

πp–––
1–πp

=  
π0–––

1–π0 

×
P(X |
––––
P(X |

θ1)–––θ2)
>  

G(θ2, a2) – G(θ2,a1)
(4)

G(θ1, a1) – G(θ1, a2).

The left-hand side is the posterior odds (see equa-

tion (2)). If it is greater than the ratio of gain

differences on the right-hand side, then planting will

be the Bayes decision. If this odds is less, then not

planting would be the Bayes decision. Thus the con-

dition (equation (4)) can be expressed as:  plant if

and only if the evidence for an NSR cutblock is suffi-

ciently high. How high it has to be depends on the

prior odds, and on the anticipated gains under all

scenarios (via the right-hand side of equation(4)).

For our example, the ratio of gains is:

G(θ2, a2) – G(θ2, a1) 
=

500 – (-1200) 
=

1700
—–
2000

= 0.85.
G(θ1, a1) – G(θ1, a2)     200 – (-1900) 

When the posterior odds are greater than 0.85 then

the decision is to plant. For the example, this occurs

for all X greater than 6. If the posterior odds is less

than 0.85 then the decision is to not plant. Note that

the posterior decision depends on the data while the

prior decision does not (because the prior odds was

5.25 > 0.85, the prior decision was to plant). Recall

that the prior Bayes decision was calculated previous

to any data collection and thus is constant for all pos-

sible data values.

This basic framework can be extended in many

ways. For example, in a sequential decision problem,

the decision-maker can decide at each step, either to:

(1) collect more data and defer choosing an action a

from A, or (2) stop data collection and choose an 

 . The Bayes posterior gain and posterior Bayes decision for all possible numbers of understocked plots

Number of Posterior Bayes
understocked probability Posterior gain posterior gain Posterior Prior

plots for θ = NSR for action: for action: Bayes Bayes
observed (πp = p(θ = NSR|X)) a1 = plant a2 = not plant decision decision

0 0.000 -1200 500 not plant plant
1 0.000 -1200 500 not plant plant
2 0.001 -1199 498 not plant plant
3 0.003 -1195 492 not plant plant
4 0.016 -1178 464 not plant plant
5 0.073 -1098 333 not plant plant
6 0.277 -812 -137 not plant plant
7 0.652 -287 -1000 plant plant
8 0.902 62 -1574 plant plant
9 0.978 169 -1750 plant plant

10 0.995 194 -1790 plant plant
11 0.999 199 -1798 plant plant
12 1.000 200 -1800 plant plant
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action a from A. Sequentially at each stage in the

sampling, the decision-maker can make a choice

based on current data, or decide to defer choice and

collect more data. Details of this and other problems

in Bayesian decision theory can be found in Berger

(1985). More discussions on decision analysis are pre-

sented in Peterman and Peters (this volume, Chap. 8).

7.5 Bayesian Model Building and Prediction

Modelling is a common tool for simulating the un-

derlying processes of a system. In forestry, for

example, models are developed to simulate tree

growth or timber and then predict tree volume in the

forests and timber supply. These predictions could be

one of the factors considered in setting forest man-

agement policy, so the reliability of these models is

very important. The development of models involves

statistical analysis to decide which factors are impor-

tant, to choose how these factors should be

represented, and to validate the output of a model

against observed behaviour. 

In classical statistics, given a certain set of data

(e.g., for each experimental unit there is a response y

and a set of regressor variables x1, x2, …, xp) the first

step is usually to identify a plausible model, and then

use that model to answer the questions of interest to

the experimenter. For example, in a forestry study y

might be the volume of timber at a certain age, with

the x variables corresponding to species type, spacing

treatment, fertilization treatment, site index, site alti-

tude, and site aspect for various test plots. First, some

variable selection technique would be used to decide

which regressor variables, with what transformations

and what interaction terms, should be included in

the model. After a model had been satisfactorily

identified, the analyst would address such questions

as the efficacy of spacing and fertilization treatments.  

However, a possible weakness with this approach

is that the final inferences are all contingent on the

model selected. Several different models may all have

a similar degree of plausibility, which could yield

somewhat different predicted outcomes and lead to

different decisions about treatments. Which model

should you choose?  This situation can be handled

quite easily in the Bayesian framework. Essentially,

prior probabilities are assigned to possible models,

and via Bayes’ theorem the data are used to obtain

posterior probabilities. Then many possible models

are usually eliminated by restricting attention to a

few with relatively high posterior probabilities. 

Subsequent analysis can be carried out by averaging

(with posterior probability as weights) over the set of

plausible models. Thus the estimated effect of a cer-

tain silvicultural treatment would be obtained as a

weighted average of the estimated effect for a number

of different plausible models. Similarly, a predicted

volume for a certain combination of treatments and

site characteristics could be obtained using the poste-

rior distributions of regression coefficients in each

plausible model, and averaging with the posterior

weights for the various models. That is, instead of

using a single model, prediction would be based on a

number of highly probable models. With adaptive

management, managers can design management ac-

tions as experiments to distinguish between plausible

models, thus improving future predictions, manage-

ment decisions, and outcomes.

When the number of regressor variables is large,

numerous subset models may be generated, possibly

too many to handle even with modern computing

power. A number of methods have been proposed to

reject implausible models (described in Raftery 1994).

7.6 Conclusion

Bayesian methods provide an attractive alternative to

the frequentist methods of classical statistics. The

Bayesian approach systematically includes prior in-

formation in the analysis, thus better matching the

manner in which we learn. Another attraction is that

it permits direct computation of the probability of an

hypothesis being true, and the probability that an es-

timate of a parameter is reasonably close to the

unknown true value, hence aiding managers in deci-

sion-making. Bayesian methods also allow a

common-sense interpretation of statistical conclu-

sions, instead of the rather convoluted frequentist

explanations of confidence levels and P-values. In re-

cent years in applied statistics, interval estimation has

increasingly been emphasized over the use of hypoth-

esis tests. This shift provides a strong impetus for

using Bayesian methods, because it seems highly un-

likely that most users give confidence intervals

anything other than a common-sense Bayesian inter-

pretation. Furthermore, where learning and

experimentation take place sequentially—as occurs

in adaptive management—the Bayesian approach

seems the natural way to update knowledge.
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The basic steps in a Bayesian analysis are:

1. Setting up a full probability model—a distribution

of all observable quantities conditional on the 

parameters (unobservable quantities). The extra

specification that the Bayesian requires over the

frequentist is a prior distribution for the parame-

ters of the data probability model. The frequentist

regards these parameters as simply unknown

quantities, whereas the Bayesian regards them as

random variables, and uses a probability distribu-

tion to reflect the current state of knowledge

concerning their value.

2. Obtaining a posterior distribution of the parame-

ters by conditioning on the observed data (via

Bayes’ theorem). In other words, obtaining the

conditional probability distribution of the unob-

served parameters, given the observed data.

3. While not discussed in this chapter, the fit of the

model can be evaluated by answering questions

such as: Does the model fit the data?  and how do

the conclusions depend on the modelling assump-

tions in step 1?  If necessary the model can be

revised, and the three steps repeated.

One of the strongest objections to Bayesian statis-

tics is the requirement for a prior distribution.

However, with a sufficiently large amount of data,

the prior distribution becomes unimportant and the

posterior probability depends almost entirely on the

data. When data are scarce, all results, whether ob-

tained by the frequentist or Bayesian methods,

should be interpreted with caution.

One of the central features of the Bayesian ap-

proach is that it permits a direct quantification of

uncertainty. This means that there are no impedi-

ments to fitting models with many parameters and

complicated probability specifications, except for the

practical ones of computing complicated multidi-

mensional posterior distributions. However, recent

advances in computing power have greatly expanded

the possibilities in this area, leading to a remarkable

renaissance in Bayesian statistics.  The recent book by

Gelman et al. (1995) provides an up-to-date exposi-

tion of the theoretical and practical aspects of

modern Bayesian methodology.

Forest managers must make sound management

decisions based on their knowledge of the system

being managed (the system may include the forest

ecosystem as well as economic and social elements)

and existing data. Bayesian methods provide a way of

explicitly integrating a manager’s accumulated

knowledge with experimental data in a statistical

analysis or decision-making process.
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Appendix 1: Demonstration of Bayes’ Theorem

using the silviculture example

This appendix uses the example described in Section

7.3 to demonstrate the validity of Bayes’ Theorem.

The relevant numbers for that example are summa-

rized in Table A1.1

The data in Table A1.1 were previously used to cal-

culate interesting probabilities such as the prior

probability that the cutblock is NSR:

p(θ=NSR) = π0 =
840
––––
1000

= 0.84 ;

the probability of observing an understocked plot

when the cutblock is NSR:

p(X=US|θ=NSR) = π1 = 
672
–––
840

= 0.80 ;

and the probability of observing an understocked

plot when the cutblock is SR:

p(X=US|θ=SR) = π2 =
72

–––
160

= 0.45. 

Note that there are other interesting probabilities

to calculate from Table A1.1  For instance, the proba-

bility that both X = US and θ = NSR occur is known

as the joint probability and is denoted by 

p(θ=NSR, X=US) =
672
–––
1000

= 0.672. 

A general rule is that the joint probability is the prod-

uct of the prior probability (a marginal probability

because it is calculated from the margins of the table)

and the conditional probability of the data, X, given

the “true” state of nature, denoted, mathematically

by:

(A1.1)

p(θ=NSR, X=US) = p(θ =NSR) ×p(X=US|θ=NSR).

From Table A1.1, p(θ = NSR) = π0 = 0.84 and

p(X=US|θ =NSR) = π1 = 0.80 so that their product is: 

p(θ=NSR, X=US) =  0.840 × 0.80 = π0 × π1 = 0.672.

Because the order does not matter, equation (A1.1)

can be rewritten as:

(A1.2)

p(θ=NSR, X =US) = p(X =US) × p(θ =NSR |X =US),

where p(X = US) is the probability that the one plot

will be found to be US, and p(θ =NSR|X=US) is the

probability that the cutblock is really NSR if the plot

is observed to be US. Notice that this last probability

is known as the posterior probability and is what we

want to determine from the sampling. It is the proba-

bility for a state of nature given our observed data.

Relation (A1.2) can be confirmed from Table A1.1 by

noting that p(X=US) = 744/1000 and that 

p(θ =NSR | X=US) = 672/744 so that:

p(θ =NSR, X=US) = 0.744 × 0.80 = 0.672.

Equations (A1.1) and (A1.2) can be set equal to

each other:

p(θ =NSR) × p(X=US | θ =NSR) 

= p(X= US) × p(θ=NSR | X=US).

This equation can be rearranged to obtain a rela-

tionship for the posterior probability:
(A1.3)

p(θ=NSR |X=US) = 
p(θ = NSR) ×p(X = US|θ = NSR)

.
p(X = US)

In more general (and more readable) terms this

equation can be written as:

p(θ|X) = 
p(θ) × p(X|θ)

. (A1.4)
p(X)

 . Numbers of previously sampled plots (observed as US or S) from both NSR and SR cutblocks. Parameters for the
prior probability distribution and the two probability models are also shown.

Probability parameters Joint distribution
(probability model parameters)

Prior probability:
Cutblock is p(θ) X = US X = S

θ = NSR 840 plots 672 plots 168 plots
(π0 = 0.84) (π1 = 0.80) (1–π1 = 0.20)

θ =  SR 160 plots 72 plots 88 plots
(1–π0 = 0.16) (π2 = 0.45) (1–π2 = 0.55)

Total 1000 744 256
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This relationship, known as Bayes’ theorem, forms

the core of the Bayesian statistics methodology. We

can confirm that this relationship is true for the ex-

ample by using the values from Table A1.1 to

calculate:

p(θ=NSR|X =US)

=
840/1000×672/840

=
672
–––
744

= 0.903.
744/1000

Note that this result agrees with that obtained di-

rectly from the first column of data in Table 1 and

discussed thereafter.

Equation (A1.3) can be written in words as:

(The posterior probability of a true state of nature

given the data) = (the prior probability of that true

state of nature) times (the likelihood of the observed

data given that true state of nature) divided by (the

probability of observing the data). 

Notice that this definition is a more detailed ver-

sion of equation (1) in Section 7.2. The relationship

between the components of Bayesian statistics was

presented pictorially in Figure 7.1.

In general, the denominator in equation (A1.3), the

marginal probability p(X= US), can be calculated by

summing all the possible values for the numerator of

equation (A1.3). For the example, this calculation is:

p(X = US) = p(θ = NSR) p(X=US|θ =NSR)

+ p(θ=SR) p(X=US|θ=SR)

or

p(X = US) = π0 × π1 + (1–π0) × π2,

so that numerically,

p(X = US) = 0.84 × 0.80 + 0.16 × 0.45 = 0.744.

Thus, for the example, equation (A1.3) can be writ-

ten as:

posterior probability = p(θ = NSR|X =US) 

=
π0 × π1

π0 × π1 + (1–π0) × π2.

Appendix 2:  Calculations using several sampling

plots for the cutblock

In this appendix we will calculate the posterior

probability that the cutblock is NSR (not satisfactori-

ly restocked) given that it has been sampled with

several plots. While the probabilities remain the same

(π0 =0.84, π1 = 0.80, and π2 = 0.45), the probability

models for the data [p(X = US|θ = NSR) and 

p(X = US|θ = SR)] are now more complicated.

The number of plots observed to be US will be de-

noted by X, with n representing the number of plots

sampled. The probability of observing X out of n

plots given a specific state of nature, θ, is given by the

binomial9 distribution:

p(X|θ = NSR) = (n
X ) π x

1 (1–π1)
(n–X) , and

p(X|θ = SR) = (n
X ) π2

x (1–π2)
(n–X). (A2.1)

Suppose that 12 plots were placed in the cutblock

and that 7 of them were found to be US. Then the

conditional probability for the observed data are:

p(X = 7|θ = NSR) = (12
7 ) 0.807 (1 – 0.80)5 =  0.053

and

p(X = 7|θ = SR) = (12
7 ) 0.457 (1 – 0.45)5=  0.149

We can use equation A1.4 (in Appendix 1) to cal-

culate the posterior probabilities. The denominator

now becomes 

p(X) = π0 × p(X= 7|θ=NSR) + (1–π0) × p(X =7|θ=SR), 

which is calculated by:

p(X) = 0.84 × 0.053 + 0.16 × 0.149 = 0.0685.

Thus the posterior probability that the cutblock is

NSR (θ = NSR) given that 7 of the 12 plots were US is:

p(θ = NSR|X = 7) = 
π0 × p(X = 7|θ)

(A2.2)
p(X)

=
0.84 × 0.053

= 0.652
0.0685

The posterior probability that the cutblock is SR is: 

p(θ = SR|X = 7) = 1 – 0.652 = 0.348.

The posterior probabilities, p(θ = NSR|X) for all pos-

sible values of X, are shown in Table 7.3.

9 This distribution is described in most standard introductory statistical textbooks. (n
X) is known as the binomial coefficient and  (n

X) =     n!——
X!(n

——
– X)! .

If X = 7 and n = 12 then this is equal to 792. When n = 1, the binomial distribution becomes the Bernouilli.
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Abstract

For forest resource managers, uncertainties are un-
avoidable because of natural ecological variability and
our imperfect knowledge of ecosystems. Nevertheless,
management decisions must be made and actions
must be taken. Decision analysis, a quantitative
method of evaluating management options, can
greatly assist that decision-making process because it
explicitly uses information on uncertainties. Although
widely used in business, decision analysis is particularly
useful for forest management because it accounts for
uncertainty about states of nature (e.g., current tim-
ber volume per hectare, the slope of the relationship
between survival rate of a rare bird species and size of
patches of mature stands of trees). Decision analysis,
in conjunction with Bayesian statistical methods, per-
mits calculation of the potential outcomes of
management actions, considering each hypothesized
state of nature weighted by its probability of occur-
rence. Given a clear objective, managers can then
rank their management options. A sensitivity analysis
can determine how sensitive this ranked order of man-
agement options is to different assumptions or
parameter values. Sensitivity analysis can also identify
research priorities and help resolve conflicts between
interest groups about objectives or beliefs about how
a forest ecosystem works. Decision analysis is particu-
larly appropriate for the planning stage of an active
adaptive management initiative because it can com-
pare the expected performance of different proposed
experimental plans, taking into account various uncer-
tainties. This procedure can help identify the best
experimental design for an adaptive management
plan, as well as its associated monitoring program.

8.1 Introduction

As noted in Nyberg (this volume, Chap. 1) uncertain-

ties are pervasive in natural resource management.

Our knowledge of ecosystems is incomplete and im-

perfect, which creates imprecision and bias in data

used to quantitatively describe the dynamics of these

systems. Despite the presence of these uncertainties,

decisions must be made and regulations must be de-

veloped. One purpose of this chapter is to discuss

why it is important for decision-makers to explicitly

consider uncertainties when evaluating possible

management actions, including different designs of

adaptive management plans or monitoring pro-

grams. Another purpose is to describe decision

analysis, a formal, quantitative method that helps de-

cision-makers take uncertainties into account in

analyses of options by breaking down the decision

problem into tractable components. Several examples

will illustrate the benefits and limitations of decision

analysis.

8.2 Sources of Uncertainty

Several sources of uncertainties exist in management

of forest ecosystems. First, natural variability over

space and time is inherent in ecological processes.

For example, growth rates of trees and animals may

differ among sites, years, and individuals. Such nat-

ural variability makes it difficult to forecast responses

of ecological systems to different management ac-

tions with accuracy or precision. Variability in

human behaviour also makes it difficult to forecast

how human harvesters and industry will respond to

management regulations. Second, further uncertainty

exists in data because sampling techniques imperfect-

ly estimate quantities such as density of a certain bird

species in a forest, volume of merchantable timber

present per hectare, or natural mortality and repro-

ductive rates of mammals. These methods thus create

further imprecision and bias in estimates of quanti-

ties that vary naturally. Therefore, managers will

forecast imperfectly, making it more difficult to

achieve a given management objective. Third, man-

agement objectives are frequently uncertain, either

because they are not well defined or because they

change over time. These uncertainties create compli-

cations for managers who try to choose the best

management option. The challenge for resource

managers is how to fully account for the type, direc-

tion, and magnitude of uncertainties when making

management decisions. One purpose of this chapter

is to address this challenge. 

Forest managers must recognize that they are not

alone in dealing with uncertain systems; uncertainties

are present in all natural systems, not just biological

ones. For example, we now take for granted the 

values of several fundamental physical constants such

8 DECISION ANALYSIS: TAKING UNCERTAINTIES INTO ACCOUNT IN FOREST RESOURCE MANAGEMENT

RANDALL M. PETERMAN AND CALVIN N. PETERS
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as the speed of light and the charge of an electron,

but their estimated values have changed dramatically

over time as new experimental techniques emerged

(Figure 8.1). It is unsettling to note that several esti-

mates of these physical constants even changed to

values well outside the confidence intervals of the

previous estimate!   Uncertainties due to such mea-

surement biases and errors are likely to be even more

pronounced in ecological systems that are relatively

variable and complex. Thus, scientists and managers

should expect to estimate with error quantities such

as the volume of merchantable timber per hectare,

abundance of a particular species of cavity-nesting

bird, proportion of seedlings surviving per hectare

per year, or offspring produced per female mule deer

per year. Even if scientists and managers recognize

and admit that uncertainties exist, they should not be

overconfident about the accuracy or precision of esti-

mated quantities. Because of uncertainties, they

cannot expect to know the “right” answer, but should

be prepared to use the best estimates along with ex-

plicit measures of their uncertainty.

Ecological uncertainties create the potential for

making incorrect decisions because they prevent

managers from exactly predicting the outcome of a

particular management action. When incorrect deci-

sions are made, losses result. In decision theory, a

loss is defined as an undesirable outcome of a deci-

sion. Losses can be direct losses, such as the

elimination of some rare or important species of bird

or mammal.  Incorrect decisions can also result in

opportunity losses when the outcome of the decision

is worse than what could have been obtained if the

correct decision had been made. For example, an op-

portunity loss is incurred when a particular thinning

regime results in lower net timber revenues than

those that could have been generated if a different

thinning regime had been implemented. The proba-

bility of incurring such losses depends on the degree

and type of uncertainty arising from the sources dis-

cussed above. Decision theorists define the term

“risk” as “expected loss,” which is the weighted aver-

age loss. This quantity is calculated by multiplying

each possible magnitude of loss by a weighting term,

which is its probability of occurrence (Morgan and

Henrion 1990). To minimize such risks for users as

well as management agencies, both scientists and de-

cision-makers should systematically and

comprehensively take uncertainties into account.

However, this approach is not often taken, as we 

discuss next.

8.3 Approaches to Making Decisions in the Pres-

ence of Uncertainty

Management agencies have historically used several,

often ineffective, approaches to making decisions in

the presence of uncertainties.

8.3.1 Best estimate approach

One common approach to managing wildlife, forests,

and fisheries is to ignore the uncertainties and base

management decisions only on the best estimates of

all parameters and other quantities. For example,

into the 1970s, allowable annual cut (AAC) in British

Columbia was calculated with a formula using only

the best estimates of parameters, without taking un-

certainties into account (Pearse 1976).  The problem

with this approach is that incorrect estimates can lead

managers to make incorrect or suboptimal decisions.

Nevertheless, this focus on using the best point esti-

mates is very common, especially where admitting

uncertainty would provide user groups with leverage

to argue for increased harvests or decreased protec-

tion of non-timber values such as wildlife. To avoid

such debates, managers sometimes request that sci-

entists only provide them with their best point

estimates, even though everyone is aware that uncer-

tainties exist.

8.3.2 Qualitative approach

A second approach to making decisions takes uncer-

tainties into account, but only qualitatively or

crudely, rather than rigorously. This approach is

manifested in four ways:

1. First are cases where managers use ecological un-

certainties to justify maintaining the status quo.

For instance, in 1991 the Forest Resources Com-

mission recommended that “the Allowable Annual

Cut of Timber Supply Areas or Tree Farm Licenses

not be raised or lowered until and unless new tim-

ber inventory data and subsequent yield analysis

clearly justify an adjustment, except in those obvi-

ous cases where current information strongly

support a change” (Peel 1991, p. 84, recommenda-

tion #87). In other words, the default is to

maintain the status quo until uncertainties are

clarified to the point where a change in AAC is

clearly indicated.

2. Some people have used a qualitative approach to

justify extreme pessimism about the response to a

management action. For example, the public 
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 . Changes in estimates of various physical constants as new experimental or measurement methods were
developed. Data points are mean estimates of physical constants and vertical bars represent standard errors of
the mean estimates. All values are in units of deviations from their 1973 estimates, in parts per million (ppm).
(Adapted from Henrion and Fischhoff 1986.)
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opposition to plans for spraying for gypsy moth in

New Westminster, B.C., arose partly because the

effects of spraying on public health were uncertain.

3. Uncertainties can also be used qualitatively to jus-

tify a moderately pessimistic outlook and to

implement a conservative approach to manage-

ment. For example, when choosing the density of

lodgepole pine seedlings to replant, the density is

often increased by some arbitrary amount to allow

for uncertainty in tree mortality due to attack by

pests (Errico 1989).

4. Finally, resource users or managers may use uncer-

tainties qualitatively to justify an optimistic view of

how systems will respond to management. Many

cases in forestry and in fisheries indicate that in-

dustry has used uncertainties in this way to

promote increased harvests or reduced protection

of the resource. For example, harvest rates of

forests have been increased in some areas in part

based on optimistic predictions about the future

effects of thinning and other enhanced silvicultural

activities on timber supply.

These four qualitative approaches to considering

uncertainty in decision-making may result in either

unnecessarily restrictive or excessively lenient policies

because the effects of uncertainties on the outcomes

of management actions are not considered quantita-

tively and explicitly.

8.3.3 Quantitative approach

A third and better approach to making decisions is to

take uncertainties into account quantitatively by con-

sidering a range of possible responses of an ecological

system to each management action. In doing so,

managers can select the option that minimizes the

risk. For example, several possible growth responses

of trees to specific amounts of thinning could be 

explicitly considered to reflect uncertainty in that 

response, rather than choosing just one of those 

responses as the sole basis for the decision. 

Several methods are available for taking uncertain-

ties into account quantitatively, including decision

analysis, Monte Carlo simulation, and formal opti-

mization techniques. Decision analysis was developed

in the 1960s in business (Raiffa 1968) to help deci-

sion-making in the presence of economic

uncertainties, which is directly analogous to making

decisions in the presence of ecological uncertainties.

Decision analysis is becoming a popular tool in re-

source management (e.g., Lord 1976; Walters 1981,

1986; Cohan et al. 1984; Parkhurst 1984; Bergh and

Butterworth 1987; Holbert and Johnson 1989; Parma

and Deriso 1990; McAllister and Peterman 1992a; Mc-

Daniels 1992; Thompson 1992; Hilborn et al. 1994;

Maguire and Boiney 1994; Reckhow 1994; Adkison

and Peterman 1996). This popularity is due to several

reasons.

First, most problems in resource management are

too complex (with lags, nonlinearities, threshold

phenomena, and cumulative effects) to permit the

use of formal optimization techniques (see Clark

1990 for some exceptions). Second, decision analysis

can help managers rank proposed management ac-

tions based on quantitative assessments of

probabilities of uncertain events and the desirability

of possible outcomes (Keeney 1982; Howard 1988;

Clemen 1996). Decision analysis can be thought of as

one type of risk assessment in that it considers the

uncertainties that create risks. Although decision

analysis cannot guarantee that a correct decision will

be made each time, it will improve the quality of sev-

eral similar decisions over the long term because it

explicitly takes uncertainties into account quantita-

tively (Von Winterfeldt and Edwards 1986). Similarly,

taking the optimal action identified by a decision

analysis does not guarantee a certain desired out-

come, but it increases the probability of a desirable

outcome occurring. Finally, decision analysis can

combine Bayesian statistical analysis and stochastic

models (Monte Carlo simulations) into a structured,

systematic approach to making decisions. Complex

decision problems are broken down into smaller and

more manageable components; these components

are then recombined to determine the optimal ac-

tion. This process makes decision analysis a useful

tool for decisions involving complex ecological and

human responses to management actions, which cer-

tainly characterize forest management.

8.4 Eight Components of Decision Analysis

To make a complex decision problem in forestry

more tractable, decision analysis breaks the problem

down into eight components:

1. management objectives;

2. management options;

3. uncertain states of nature;

4. probabilities on the uncertain states of nature;
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5. model to calculate the outcome of each manage-

ment action for each state of nature;

6. decision tree or decision table;

7. ranking of management actions; and

8. sensitivity analyses.

A generalized decision table (e.g., Table 8.1) can be

used to structure the decision analysis of simple

problems. In this table, two alternative management

actions are listed across columns and alternative hy-

potheses or uncertain states of nature, with their

associated probabilities (P1 and P2), are placed in

rows. For each combination of action and hypothesis,

the consequences or outcomes (C11, C12, etc.) are cal-

culated using a model. The “expected” value of the

consequence for a particular management action

(last row) is then calculated from the weighted aver-

age of all possible consequences for that action,

where the  weighting is the probability of the hypoth-

esis that gives rise to each consequence. 

For more complex problems, a decision tree can be

used to structure the analysis (Render and Stair 1988;

Clemen 1996). The generalized decision tree in Figure

8.2 corresponds to the decision table in Table 8.1. Al-

ternative management actions in Figure 8.2 are

represented by branches emerging from a square 

 . A generalized decision table showing calculation of expected outcomes for two potential management
actions, given two possible states of nature (Hypothesis 1 and 2) with their associated probabilities (P1 and
P2). Compare with Figure 8.2.

Hypotheses or uncertain Potential Potential management
states of nature Probabilities management action #1 action #2

Hypothesis 1 Probability that Consequence of action 1 Consequence of action 2
Hypothesis 1 is if Hypothesis 1 is if Hypothesis 1 is

correct (P1) correct (C11) correct (C21) 

Hypothesis 2 Probability that Consequence of action 1 Consequence of action 2
Hypothesis 2 is if Hypothesis 2 is if Hypothesis 2 is

correct (P2) correct (C12) correct (C22)

Expected consequence Expected consequence
of action 1 = of action 2 =

(P1 × C11)+(P2 × C12) (P1 × C21)+(P2 × C22)

Management actions

Action 1

P1

P2

P1

C11

C12

C21

C22
P2

Action 2

Probabilities of 
states of nature

States of nature 
or hypotheses

Hypothesis 1

Hypothesis 2

Hypothesis 1

Hypothesis 2

Outcomes or
consequences

 . A simple example of a generalized decision tree showing two different management actions and two possible
states of nature (Hypothesis 1 and 2) with their associated probabilities (P1 and P2). The square at the left is the
“decision node” and the circles are “chance nodes.” The consequences associated with each combination of
management action, i, and state of nature, j, are designated Cij. This decision tree is the graphical equivalent of
the general decision table shown in Table 8.1.
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decision node, and uncertain states of nature or hy-

potheses are represented as branches coming from

the circular chance nodes. The probability of each

uncertain state of nature is shown explicitly for each

state-of-nature branch. Outcomes or consequences

of each management action, given each state of na-

ture, are shown on the right. Decision trees can

accommodate much more complexity than a deci-

sion table by including numerous branches and

uncertainty nodes.

We will use an application of decision analysis to

forest management in Tahoe National Forest, Cali-

fornia (Cohan et al. 1984) to illustrate the eight

components of this method. The purpose of Cohan

et al.’s particular decision analysis (referred to as the

“Tahoe example”) was to determine what treatment

should be applied before a prescribed burn on a 

recently harvested forest site. Figure 8.3 shows the 

decision tree for this problem; its components are 

explained below.  

8.4.1 Management objectives

Decision analysis requires a clearly defined manage-

ment objective or goal so that the different

management actions can be ranked by how well they

are expected to attain the objective. The objective is

usually stated explicitly in terms of maximizing (or

minimizing) one or more quantitative measures of

performance (such as expected value of future timber

harvests). However, decision analysis can also accom-

modate situations in which the objective is to choose

an action that produces a performance measure, such

as abundance of some rare bird species, that is within

an acceptable range of values. In this case, actions

that do not lead to outcomes within this range can be

discarded, and some secondary criterion (such as

minimizing cost) can be used to choose from the re-

maining actions. As emphasized by Keeney (1992),

identifying objectives requires carefully applying var-

ious procedures to ensure, for instance, that

“fundamental” objectives are not confused with the

means needed to attain them.

In the Tahoe example (Figure 8.3), the manage-

ment objective was to maximize the expected net

resource value of the forest following the prescribed

burn. That value took into account the value of the

timber harvested, as well as the cost of carrying out

the pre-burn treatment (if any), the cost of the pre-

scribed broadcast burn, and the cost incurred from

an escaped fire (if one escaped).

In the case of British Columbia’s forests, manage-

ment objectives can involve timber value, recreation-

al use, wildlife habitat, and quality of “viewscapes” in

various combinations and with various relative im-

portances. For example, a primary management

objective in Clayoquot Sound is to maintain long-

term productivity and natural diversity of the area.

Subgoals include maintaining watershed integrity, bi-

ological diversity, and cultural, scenic, recreational,

and tourism values (Scientific Panel for Sustainable

Forest Practices in Clayoquot Sound 1995). 

8.4.2 Management options

Managers need to define a list of alternative actions

from which to choose the best option. Considerable

thought should be put into developing innovative

options, as well as into identifying feasible ones

(Keeney 1982).

The Tahoe prescribed burn problem has two alter-

native management actions. These alternatives are

shown in Figure 8.3 as two branches emerging from

the square “decision node.”  One choice was to con-

duct the prescribed broadcast burn without any

pre-burn treatment of the site (“burn only”). The

other alternative was to pile up timber slash from the

clearcut harvest before the broadcast burn (“YUM

and burn”). This latter treatment, referred to as yard-

ing unmerchantable material (YUM), incurs

additional costs but reduces the probability of fire es-

caping and increases the chances of a successful burn.

Cohan et al.’s (1984) question was, “Is YUM worth

the additional cost?”  

8.4.3 Uncertain states of nature

Uncertain states of nature are parameters or quanti-

tative hypotheses that are treated explicitly as

uncertainties in an analysis, usually by considering a

range of values for one or more parameters in a

model (see Section 8.4.5). Such uncertain parameters

lead to a corresponding range of forecasts of out-

comes of management actions. For instance, it may

be difficult to estimate the effect of different sizes of

“leave patches” in a retention harvesting strategy on

abundance of a bird population because of uncer-

tainty about how the probability of blowdown is

affected by patch size (i.e., whether that probability is

a steeply rising function of patch size or a relatively

flat one). There is also considerable uncertainty

about the benefits of some requirements in the

British Columbia Forest Practices Code for meeting

objectives related to biodiversity or recreational use.

For example, it is unclear whether the survival rate of



111

juvenile coho salmon is greatly or only slightly affect-

ed by the width of riparian forest that the Code

requires to be left along stream banks. 

Two major uncertainties in the Tahoe example

(Figure 8.3) involved the fire behaviour and the mag-

nitude of costs associated with what Cohan et al.

(1984) referred to generally as “problem” fires. 

Uncertainty in fire behaviour was represented by

defining three types of fires: a successful burn, a

“problem” burn, and an escaped fire. The second un-

certainty was the cost of a “problem” burn (high,

intermediate, or low cost). These uncertain states of

nature are shown as branches emerging from circular

“chance nodes” in Figure 8.3.

8.4.4 Probabilities on the uncertain states of nature

In forest management, considerable uncertainty usu-

ally exists about states of nature such as those listed

in Section 8.4.3 because of short data series, natural

variability, and measurement error and bias. Howev-

er, scientists and decision-makers need to state a

relative “degree of belief,” or probability, for these

different states of nature so that they can forecast the

expected outcome of each possible management ac-

tion and determine its ranking. For example, wide

confidence limits on the slope of a relationship be-

tween survival rate of trees to a given age and initial

stocking (density of seedlings) can produce a range of

forecasts about future harvests from stands that are

Management actions

Treatments Fire behaviour

Successful burn
0.899

Problems
0.100

Escaped fire
0.001

Successful burn
0.8485

Problems
0.150

Escaped fire
0.0015

Cost of problems
Resource

value
Treatment

cost
Problem/

escape cost
Net

value

States of nature and their associated probabilities Outcomes

High cost

Int. cost

Low cost

0.25

0.25

0.50

High cost

Int. cost

Low cost

0.25

0.25

0.50

YUM and
burn

Burn only

$1 559

$1 713

6 620 4 858 0 1 762

6 620 4 858 3 010 -1 248

6 620 4 858 1 400 362

6 620 4 858 700 1 062

6 620 4 858 40 000 -38 238

6 620 4 550 0 2 070

6 620 4 550 3 360 -1 290

6 620 4 550 1 750 320

6 620 4 550 1 050 1 020

6 620 4 550 40 000 -37 930

 . Decision tree for the example described in the text for the Tahoe National Forest. The management options
(treatments) are to “burn only” or “YUM and burn”; the latter refers to “yarding unmerchantable material,”
where the slash material from the logging operation is piled up before burning. Outcomes are costs in dollars for
a 14-acre site. The resulting expected net resource values for each management option are indicated next to the
option. See text for details. (Adapted from Cohan et al. 1984.)
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replanted at a specific density. In this case, managers

need a probability for various slopes of that relation-

ship to estimate the expected harvest levels for

different stocking densities.

Unfortunately, classical statistics do not provide

such probabilities. Most ecologists describe uncer-

tainty in estimates of states of nature (e.g., slopes or

other parameters) with standard errors, confidence

limits, and coefficients of variation. They also rou-

tinely apply classical statistical inference methods to

test point null hypotheses. However, such procedures

are inadequate for decision-making for the following

reasons. 

First, hypothesis tests are too restrictive for making

decisions in the presence of uncertainties because

they only provide information relevant to two states

of nature: the null hypothesis and a specified alterna-

tive. In hypothesis testing, a point null hypothesis,

HO, (e.g., the slope of the relationship between aver-

age volume per tree at a given age and initial density

= 0) is tested with data by some classical method

such as a t-test. The null hypothesis is either rejected

in favour of the alternative hypothesis,  HA, or it is

not, based on a comparison of the computed P-value

with the pre-determined α. For two reasons, this di-

chotomous approach to describing the state of nature

(HO versus HA) is inappropriate to describe ecological

uncertainty in decision analyses. First, managers need

to consider several different HA estimates of the slope

as possible states of nature, not just H0 and a single

HA, because different slopes may have very different

implications for the selection of an initial density of

seedlings to replant (e.g., Figure 8.4). Second, the P-

value resulting from a standard hypothesis test refers

to the probability of obtaining the test-statistic by

chance alone if the HO were true and does not state

the probability that HO or any other possible hypoth-

esis is correct. Therefore, P-values do not provide the

decision analyst with the required probability for

even one state of nature (Berger and Berry 1988), let

alone several. Thus, the classical statistical approach

to hypothesis testing is not a useful framework for

characterizing ecological uncertainties as input to de-

cision analyses as described here.
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 . Possible models for hypothetical data on average volume per tree at age 100 years as a function of initial
density. The solid line is the best-fit regression line; dashed lines represent other possible, but less likely,
hypotheses about the true underlying relationship, including the null hypothesis, HO , of no relationship.
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For similar reasons, standard errors of parameter

estimates and 95% confidence limits are also not use-

ful characterizations of uncertainties for making

decisions. Specifically, they do not indicate the 

probability to be placed on different possible states of

nature, even though scientists commonly make this

misinterpretation about confidence intervals (e.g.,

see Sokal and Rohlf 1969, p. 142; Bergerud and Reed,

this volume, Chap. 7). Some readers might consider

using statistical power analysis for this purpose,

which is the probability of correctly rejecting HO

(using a particular method such as a t-test) when a

specific alternative hypothesis is true. While power

analysis is indeed useful for designing experiments

and monitoring programs that will reduce uncertain-

ty (e.g., Peterman 1990a, 1990b; Osenberg et al. 1994;

Mapstone 1995), statistical power does not indicate

the probability that a given HA might be true in na-

ture. Thus, statistical power analysis does not provide

sufficient information to decision-makers about the

relative degree of belief in alternative states of nature.

Instead, quantifying uncertainties in states of na-

ture requires an assessment of “the relative merits of

rival hypotheses in the light of observational or exper-

imental data that bear upon them...” (Edwards 1992,

p. 1; emphasis ours). Three techniques are available

to do this. First, long and detailed historical data sets

can provide information about the relative frequency

of events. For example, historical data on forest fires

can provide probabilities for different intensities and

sizes of forest fires in a specific region. Similarly, data

from stream gauges can quantify the probability of

different heights of streams. Unfortunately, such

lengthy continuous records are not common. Sec-

ond, where data are inadequate, estimates of

probabilities for different states of nature can be

elicited from experts using various techniques, based

on their knowledge of the system under study (Mor-

gan and Henrion 1990). Third, Bayesian statistical

analysis is appropriate where some but not enough

data are available to generate frequency distributions

as discussed in the first technique. Bayesian statistical

methods use these data to generate probabilities rep-

resenting degrees of belief for different values of

parameters (see Bergerud and Reed, this volume,

Chap. 7). This approach uses Bayes’ theorem to cal-

culate the posterior probability that a particular

hypothesis is correct, given the data and some prior

probability distribution of the hypotheses based ei-

ther on other, independent data (when available) or

on expert opinion (Box and Tiao 1973; Press 1989).

For example, rather than merely considering the two

possibilities that the slope of the relationship between

volume per tree and initial density in Figure 8.4 is ei-

ther significantly different from zero or not, a

Bayesian statistical analysis would use the observed

data to calculate probabilities for a wide range of 

different slopes (Figure 8.5), each of which has differ-

ent implications for the management decision of how

many seedlings to replant. Thus, the output of

Bayesian analyses provides exactly the information

required for a decision analysis: the probabilities as-

sociated with each of several uncertain states of

nature. Ellison (1996) presents an easy-to-read intro-

duction to use of Bayesian statistics in applied

ecology; the Crome et al. (1996) paper in the same

issue applies Bayesian statistics to the problem of de-

tecting effects of logging on forest-dwelling birds. 

In the Tahoe example in Figure 8.3, forestry staff

provided estimates of probabilities of the three types

of burns and the three levels of costs associated with

problem fires. These probabilities appear on the

branches corresponding to the appropriate uncertain

state of nature (Figure 8.3). The probabilities placed

on the three types of burns were different for the two

management options (“YUM and burn,” or “burn

only,” because treating the site before burning in-

creased the probability of a successful burn and

reduced the probability of either a problem burn or

an escaped fire. Managers estimated that the proba-

bilities of high, intermediate, and low costs of a

problem burn (if one occurred) would be the same

for both management actions.

8.4.5 Model to calculate outcomes

Another key element of decision analysis is the model

used to calculate the consequences of each combina-

tion of a particular management action and each

possible state of nature. The bounds, assumptions,

and complexity of the model will depend on the

availability of data. Whatever type of model is used, 

it must produce quantitative indicators of the conse-

quences of each alternative management action, such

as revenue from timber or an index of bird diversity.

Those indicators must relate directly to the manage-

ment objective stated in the first component of

decision analysis.

In the Tahoe example, the relative costs and tim-

ber revenues resulting from different treatments were

estimated using models of fire behaviour, fire effects,

and economics developed by timber management

staff in Tahoe National Forest. The forecast outcomes
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of these models for each alternative management ac-

tion and for each uncertain state of nature are shown

on the right side of Figure 8.3. The net resource value

is the resource value minus the treatment cost and

the cost of a problem fire or escaped fire. For exam-

ple, the simulated net resource value of the “YUM

and burn” option, if a “successful burn” resulted, was

$1762 on this 14-acre site. For the same action, but as-

suming that a problem fire recurred that had high

costs, their simulated net resource value was -$1248.

8.4.6 Decision tree or decision table

A decision tree or decision table provides a logical

framework for ranking the different management ac-

tions by combining the states of nature, their

probabilities of occurrence, and their outcomes.

These rankings are based on “expected values” of

outcomes, or weighted average outcomes, for each

action. That is, each outcome is weighted by the

probability assigned to the associated state of nature

(parameter value or hypothesis). Summing these

weighted outcomes for each management action

gives the expected value of that action. Thus, the ex-

pected value as defined by decision theorists

represents the weighted average quantity, not neces-

sarily the specific value that you would expect to see

in the short term (Lindley 1985). The latter is in 

principle unknowable, given the uncertainty.

The decision tree for the Tahoe problem 

(Figure 8.3) illustrates this structure. For each man-

agement action (type of pre-burn treatment), each

possible behaviour of fire, and each possible level of

cost of problem fires, there is a resulting value of the

timber resource, a treatment cost, and a cost result-

ing from problem or escaped fires. The expected

value of each alternative action is the sum of the net

resource value for each state of nature, multiplied by

the probability of that state occurring. Thus the

“YUM and burn” alternative has an expected value 

EV = (0.899 × 1762) + (0.1 × 0.25 × (-1248))

+ (0.1 × 0.5 × 362)

+ (0.1 × 0.25 × 1062)

+ (0.001 × (-38 238))

=  $1559.

By similar calculation, the expected value of the

option without a pre-burn treatment is $1713.

Although the probability of an escaped fire is very

low (0.001 or 0.0015), its cost could contribute signif-

icantly to the total expected net resource value of each

management option. This example shows how even

low-probability events may affect which action is op-

timal, if the costs of such events are large enough.
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 . Posterior probabilities for different slopes of a linear model for the hypothetical data shown in Figure 8.4.
Posterior probabilities were calculated using Bayesian statistics. The best-fit line shown in Figure 8.4 has the
highest posterior probability, but other lines with different slopes also have reasonably high probabilities. These
probabilities can be used in a decision analysis to represent the relative degree of belief in the different slopes.
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8.4.7 Ranking of management options

The management actions are ranked by applying the

management objectives identified in the first compo-

nent of decision analysis. For instance, if the

objective is to maximize the expected value of out-

comes, each management action can be ranked using

the calculations from the decision tree. In the Tahoe

example in Figure 8.3, the optimal action is to “burn

only” without treating the site beforehand; its expect-

ed value of $1713 was greater than the $1559 for the

other option. This “burn only” option maximizes the

expected net resource value, even though the proba-

bilities of a problem fire or escaped fire are higher

with this alternative than with the “YUM and burn.”  

By ranking management options in this way, deci-

sion analysis explicitly considers uncertainties by

taking into account the probability that different

states of nature may exist, as well as their effect on

the expected outcomes of each management action.

The optimal decision identified when uncertainties

are used in this manner is referred to as the Bayes 

decision (Morgan and Henrion 1990).

8.4.8 Sensitivity analyses

Decision analysis provides only one possible answer

to a decision problem because the optimal decision

may depend on the assumptions made, the value of

various parameters in the model, the structural form

of relationships in the model, or the probabilities

placed on the states of nature. Therefore, managers

must also be given results of sensitivity analyses,

which directly show how the rank order of manage-

ment actions (i.e., the best decision) is affected by

these assumptions. If such analyses show that a given

action is still optimal over a wide range of assump-

tions, then such assumptions can be deemed relative-

ly unimportant and managers will be confident that

the recommended action is indeed the best one.

However, if the rank order of management actions is

sensitive to different assumptions, then more data

must be collected for that particular parameter or as-

sumption. In this manner, a sensitivity analysis of a

decision analysis can identify future research priorities. 

Although Cohan et al. (1984) did not conduct a

formal sensitivity analysis of their Tahoe example

shown in Figure 8.3, several parameters could affect

the optimal decision, including the additional costs

of performing the YUM treatment, the costs associat-

ed with an escaped fire, and the probability of an

escaped fire if the YUM treatment is not used. 

To demonstrate sensitivity analysis, we calculated the

effect of the last parameter on the optimal decision

by repeating the decision analysis using several possi-

ble values of the probability of the fire escaping for

the “burn only” option. The parameter values inves-

tigated ranged from 0.001 to 0.009 (Figure 8.6).

Results show that the “burn only” option remained

the best option (i.e., generated the largest expected

dollar value of the resource) as long as the probability

of having an escaped fire was less than 0.0055. How-

ever, if that probability was actually 0.0055 or greater,

then the “YUM and burn” option became the one

with the largest expected dollar value of the resource.

Thus, over a certain range of  this parameter value,

the decision that was optimal in the original baseline

case (“burn only”) remained optimal, but, outside of

that range, the optimal decision switched to “YUM

and burn.”  Such results should be presented to ex-

perts to determine whether a value greater than or

equal to 0.0055 for the probability of an escaped fire

without YUM is within the realm of possibility. If

this range is not plausible, decision-makers can be

confident that uncertainty in this parameter does not

affect their decision. However, if a value in this range

is plausible, the value of this parameter in nature be-

comes important for decision-making, and high

priority should be placed on obtaining a better esti-

mate of this probability.

Sensitivity analyses can also be used to show how

different management objectives may or may not af-

fect the choice of the optimal decision. This is

particularly important when objectives include more

than just maximizing the expected value of timber

harvested. Diverse objectives of various stakeholder

groups are currently commonplace in forest manage-

ment in British Columbia. For example, objectives in

the Kamloops Land and Resource Management Plan

also include protection of habitat, maintenance of 

diverse recreational fishing opportunities, and con-

servation of Pacific salmon (Westland Resource

Group 1995). In this type of situation, a quantitative

sensitivity analysis using the method of decision

analysis can show how similar to one another objec-

tives would have to be lead to the same management

option being chosen (e.g., Maguire and Boiney 1994).

In some cases, relatively little change in the objectives

of one or more interest groups may lead them to rec-

ommend the same action, thereby resolving a

conflict. 
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8.5 Application of Decision Analysis to Adaptive

Management

Because management of forests is an uncertain sci-

ence, Walters (1986) argued that resource managers

should manage in an active adaptive manner. In

other words, they should carefully design manage-

ment actions as experiments, just as laboratory

experiments or monitoring programs would be 

designed before their implementation (Hairston [ed-

itor] 1989). Well-designed experiments generate

rigorous new information about the relative effec-

tiveness of each action or about the different

hypotheses about biological processes. Acting adap-

tively will tend to reduce future uncertainties and

thereby improve future management (Peterman and

McAllister 1993).

If decision-makers take this approach, they must

 . An example sensitivity analysis of Cohan et al.’s (1984) decision analysis on the Tahoe burning example (Figure
8.3). Lines show the expected net dollar value of the resource for different probabilities of an escaped fire under
the “burn only” option (i.e., without YUM). The solid line represents the “YUM and burn” option; the dashed
line is for the “burn only” option. The best estimate provided by forestry staff of the probability of having a fire
escape under the “burn only” option was 0.0015 (i.e., 1.5 chances out of 1000), but there is uncertainty in this
estimate. The sensitivity analysis shows that the “burn only” option had the highest expected dollar value as
long as this probability was less than 0.0055. Above that value, the expected value of the “YUM and burn”
option was greater than that of the “burn only” option.
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be able to evaluate alternative management actions,

including different adaptive management plans,

based on the plans’ abilities to generate timely and

cost-effective information. The key question is,

which experimental design is the most appropriate?

Dozens of possible experimental designs could be

implemented, not all of which are going to be equally

informative, let alone feasible. If a suboptimal design

is chosen, the information may be too costly or may

not reduce uncertainties. Therefore, decision-makers

need some way to compare different experimental

designs and identify the one that is expected to maxi-

mize the benefits of adaptive management. Decision

analysis is an appropriate method to do this.

For instance, suppose that we are planning an ex-

periment such as the ones currently investigating

silviculture techniques in British Columbia. Assume

that an objective is to maximize timber value. Differ-

ent randomly selected plots can be thinned to

different densities 20 years after replanting to stimu-

late growth of remaining trees. However, many

possible arrangements of treatments exist (Table 8.2

shows only a few examples). The question is, which

of these arrangements should be used? Decision

analysis can help answer these questions by compar-

ing the expected outcomes of different options,

taking uncertainties into account about the amount

of release to be experienced by trees in different den-

sities at age 20. In this sense, decision analysis can

integrate several of the methods described in previ-

ous chapters (e.g., power analysis, sampling,

experimental design) and provides a structured way

to choose among many possible arrangements of ex-

periments or adaptive management plans.

8.6 Other Examples of Decision Analysis

Many examples are available from fields within re-

source management where decision analysis or

similar methods of accounting for uncertainty have

been used to help structure a resource management

problem and to identify an optimal action. For in-

stance, in addition to the Tahoe example of pre-burn

treatments previously described, Cohan et al. (1984)

presented several other cases that applied decision

analysis to fire management in U.S. National Forests.

In all cases, useful insights into prescribed burning

resulted from taking uncertainties into account and

breaking the complex problems into understandable

components. The authors also noted that using deci-

sion analysis to document the rationale for decisions

improved the rate of learning by management agen-

cies. Managers involved with silviculture experiments

have also used decision analysis to compare the ex-

pected performance of different planting, thinning,

and fertilization strategies. 

Stahl et al. (1994) evaluated different but very im-

portant questions for forest managers: what is the

optimal method for conducting forest inventories,

given that more precise methods cost more, and how

often should an inventory be done on a stand?

While the researchers used formal optimization

methods, their approach was structured much like a

decision analysis; they identified uncertainties about

the state of nature (current timber volume) when

comparing the effects of different inventories on the

expected value of  net timber revenue (value of tim-

ber minus costs of harvesting and conducting

inventories). This analysis considered such uncer-

tainties explicitly by assuming that each of three

 . Some possible arrangements that could be considered for a thinning experiment. Each arrangement
consists of a different number of replicates at various densities of trees, which might be necessary because
of logistical constraints.

Number of replicate plots at each density

Density (stems/ha) Option 1 Option 2 Option 3

250 3 3 4
500 2 3 4
750 3 2 0

Control (unthinned) 2 2 2
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inventory methods would produce a probability dis-

tribution of estimates of timber volumes at any given

time. The inventory methods differed in cost (high,

medium, or low) and precision (high, medium, or

low).

Stahl et al. (1994) found that, in general, several in-

expensive and less precise inventories taken only a

few times during the life of a stand resulted in a high-

er expected net income than a single, expensive but

very precise inventory. In addition, the authors con-

cluded that precise inventory information was more

valuable when the potential losses in income due to

incorrect decisions were large. This conclusion is per-

haps intuitive, but Stahl et al. were able to

quantitatively estimate the relative value of different

methods of doing forest inventories by explicitly con-

sidering uncertainties in information.

In wildlife management, Maguire (1986) used 

decision analysis to recommend an appropriate con-

servation strategy for Whooping Crane populations

to minimize their probability of extinction. Maguire

evaluated whether it is better from a biodiversity

standpoint to create a single large population or 

several small ones, given that random catastrophic

events can occur (a common debate in conservation

biology; see Simberloff and Abele 1976). In the

Whooping Crane situation, when Maguire (1986)

took the uncertainties associated with severe storms

into account, the optimal action was to move some

of the Whooping Cranes and create two separate

populations. This approach was better than keeping

them as a single population that had a higher proba-

bility of extinction if a rare severe storm occurred in

that one location. 

Decision analysis has also been applied to complex

land use issues, such as the decision whether to pre-

serve and/or mine in the Tatshenshini area of

wilderness in northwestern British Columbia (Mc-

Daniels 1992). There, the major uncertainties

included the environmental values associated with

preserving the area, the tax revenue to be generated

by mining, the question of whether mining would 

actually go ahead given the regulatory process, and

other uncertainties. The analysis suggested that

preservation of the entire area as a park would have

the greatest expected value, taking into account the

“nonmarket” value of the wilderness. 

Within the field of natural resources, decision

analysis has been used most widely in fisheries man-

agement. For instance, several authors have used

decision analysis to identify optimal management ac-

tions for Pacific salmon (e.g., Lord 1976; Walters 1981,

1986). Decision analysis was also able to identify the

optimal precautionary safety margin to apply to har-

vest rates of other marine fish species, given

uncertainties in stock abundance and productivity

(Frederick and Peterman 1995).

A final fisheries example from the northwestern

shelf of Australia (Sainsbury 1988, 1991; Sainsbury et

al. 1997) demonstrates particularly well how decision

analysis can be used in the design phase of an experi-

mental, or active adaptive management program.

Foresters can learn considerably from this case study

because it is one of the few large-scale active adaptive

management experiments ever implemented, as well

as one of the few to use formal decision analysis in

the planning stage (also see Walters 1986; McAllister

and Peterman 1992b). This case study is therefore

worth discussing in detail.

The objectives of this experiment were to deter-

mine why the abundances of two economically

valuable groups of groundfish species were declining

relative to less valuable species and to take appropri-

ate management action (Sainsbury 1988). In 1985,

Sainsbury proposed four different hypotheses, or

“states of nature,” that could potentially explain the

historical decrease in abundance of the valuable

species relative to the less valuable ones. These hy-

potheses were an intraspecific mechanism that

inhibited the valuable species, two different interspe-

cific interactions between the valuable and

less-valuable species that kept the former at low

abundances, and a mechanism in which the existing

trawl fishery disrupted the preferred ocean floor

habitat of the valuable species. Sainsbury proposed

five experimental, or active adaptive, management

regimes to distinguish among these hypotheses (see

WA to WE in Figure 8.7, which shows the major ele-

ments of Sainsbury’s decision analysis). These

experimental management strategies ranged from

continuing the existing trawl fishery, to stopping the

trawl fishery for some period and using a trap fishery

only, to several activities in various spatial areas (in-

cluding no fishing, trap fishing only, trawl fishing

only, or both). Sainsbury’s decision analysis forecast-

ed the expected economic value of the fish catch for

each of these management strategies for each of the

four possible “states of nature.” These states of na-

ture were weighted by their probability of occurrence

(P1 to P4), as derived from historical data and
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 . Decision tree for the analysis of various management actions in Sainsbury’s (1988) large-scale fishing
experiment. Management strategies (WA to WE), time periods, hypotheses, and outcomes are described in the
text and Table 8.3. Only a subset of the complex branches is shown.
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Bayesian statistical analysis. Several management

strategies, implemented from 5 to 20 years, were sim-

ulated under various scenarios, starting in 1985. After

this simulated learning period, the model then deter-

mined which of the four hypotheses was the most

likely, which in turn would suggest a long-term man-

agement plan. Thus, Sainsbury’s expected value of

the catch included the value during both the learning

period and the subsequent period of implementing

the derived optimal action. 

Sainsbury (1991) found that the expected value of

the catch was maximized at AUS $40.6 million by ap-

plying strategy WE for 5 years. This experimental

strategy had some replicate areas open to trawling

and others closed. The other adaptive management

regimes had lower expected values (Table 8.3), which

illustrates the benefits of applying decision analysis to

compare different designs of experimental manage-

ment plans. Without this type of rigorous analysis, 

a suboptimal experimental design might have been

chosen. The value of collecting information was in-

cluded in the calculated economic value of the catch

because a management strategy that produced high-

quality data during the learning period led to 

improved understanding of which of the four hy-

potheses was responsible for the decline in

abundance of the valuable species. This approach al-

lowed a more accurate decision to be made about

which long-term harvesting strategy was most likely

to reverse the problem and increase the value of the

catch. (Incidentally, Sainsbury et al. 1997 reported

that the experimental management strategy WE gen-

erated data by 1991 that strongly supported the fourth

hypothesis—that trawling detrimentally affected the

habitat of the more valuable groundfish species.

Trawling was subsequently reduced.)

8.7 Value of Information

By taking uncertainty into account quantitatively in

decision analyses, analysts can quantify the effects of

considering or reducing uncertainties when making

decisions. Several types of analyses are possible: ex-

pected value of including uncertainty (EVIU),

expected value of sample information (EVSI), ex-

pected value of perfect information (EVPI), and

expected value of experimental or adaptive manage-

ment. (See Morgan and Henrion 1990 for more

details.)  

 . Results of Sainsbury’s (1991) calculations of the benefits of different designs for an active adaptive management
experiment on groundfish in Australia. Management strategies WA to WE are defined in the text; they differed in
how much fishing occurred and when, what type of gear was used, and whether the strategies were based only
on existing information as of 1985 (WA and WB) or on information resulting from the active adaptive experiment
(WC, WD , WE). WB ,1 to WB ,4 refer to four different long-term harvesting strategies; time period, t, is the duration
of the experiment in years. Expected values of catch are in millions of Australian dollars. See text for details.
(Adapted from Sainsbury 1991.)

Strategy Expected Value of catch (millions $)

WA 9.96
WB,1 27.2
WB,2 35.4
WB,3 31.8
WB,4 9.96
WC,t = 5 35.6
WC,t = 10 29.7
WC,t = 20 21.2
WD,t = 5 37.4
WD,t = 10 37.2
WD,t = 20 36.3
WE,t = 5 40.6
WE,t = 10 40.5
WE,t = 20 38.6
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The expected value of including uncertainty

(EVIU) provides a measure of how much better the

expected value of some decision will be if analysts

consider uncertainty through a decision analysis, as

opposed to the common approach of using only the

best point estimates of parameters to make decisions.

EVIU is calculated as the difference between the ex-

pected outcome of a decision based on a probabilistic

decision analysis (the Bayes decision) and a decision

based only on using the best point estimates of un-

certain parameters (the deterministic decision).

Therefore, EVIU represents the increase in expected

benefits or reduction in expected losses that results

from using decision analysis and can be used to de-

termine whether to spend the additional time

necessary to gather the data and complete a decision

analysis. Note that EVIU is always ≥ 0 because the

Bayes decision accounts for the potentially useful in-

formation (contained in the uncertainties) that is lost

if these uncertainties are ignored. 

Another measure, the expected value of sample in-

formation (EVSI), estimates the benefits of reducing

uncertainties by collecting additional data through a

monitoring program or adaptive management exper-

iment. EVSI requires calculating the expected value

of a decision made with improved information, com-

pared to the current level of uncertainty. In practice,

this value is estimated by adjusting the probabilities

placed on the states of nature to reflect more certain-

ty (i.e., making the probability distribution more

precise or more accurate) and then repeating the de-

cision analysis using this adjusted distribution. EVSI

is then the difference between this value and the ex-

pected value of the Bayes decision. The effect of

additional information on the probabilities for the

states of nature can sometimes be estimated using

sampling theory. If the cost of carrying out the sam-

pling program can be estimated, the ratio of the

benefits (EVSI) to the costs provides one way to eval-

uate the effectiveness and efficiency of planned

sampling programs and to allocate research budgets

among different sampling programs.

The expected value of perfect information (EVPI)

is a measure of  the increase in expected benefits or

decrease in expected losses if we could forecast the

outcomes of management actions with complete cer-

tainty. Consequently, this value is the maximum

amount that we should be willing to pay for research

that will generate information and reduce uncertain-

ties. Although this value is hypothetical because

uncertainties are always present, it is often instructive

to compute it because this value provides an upper

bound on EVIU and EVSI.

These general concepts of value of information are

directly relevant to adaptive or experimental manage-

ment because the expected value of an experiment

can be calculated explicitly using decision analysis.

For instance, Table 8.3 shows Sainsbury’s (1991) esti-

mates of the expected value of various management

plans as calculated before the experiment began in

1985. For example, the expected value of the catch

from allowing the existing trawl fishery to continue

(Strategy WB,4) was $9.96 million, given the 

uncertainty that existed in 1985. Immediate imple-

mentation of long-term harvesting strategy WB,2

(moderate-intensity trap fishery) in 1985, without

collecting any additional information, would have in-

creased the expected value of the catch to $35.4

million. This maximum expected value of the catch

represents what could have been realized given the

level of uncertainty in 1985. However, several of the

proposed experimental management strategies (WC,

WD, and WE) produced even larger expected values of

catch (Table 8.3) because of the value of the informa-

tion about the uncertain biological hypotheses that

were generated by the experiment. For example, as

noted previously, the experimental strategy WE with

a learning period of 5 years maximized the expected

value of the catch at $40.6 million. This amount was

$5.2 million more than the next best strategy that

could have been implemented in 1985 without doing

experimental management (WB,2).

8.8 Quantifying Management Objectives

For a decision analysis to rank the management op-

tions, one or more management objectives must be

identified. However, disagreement about what the

management objective should be is common, as in

the land use issue in the Tatshenshini described pre-

viously (McDaniels 1992). Disagreement often occurs

when management objectives are based on consulta-

tion with a wide range of managers and stakeholders

(Bell et al. [editors] 1977). These disagreements can

be resolved by repeating the decision analysis using

several different management objectives, each repre-

senting a different viewpoint. The key question in

such analyses is how much the optimal decision

changes when different management objectives are

used. As noted previously in the sensitivity analysis

section, addressing this issue can help resolve con-

flicts by identifying which assumptions or elements
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of the objectives lead to different recommended

management actions. In some cases, participants may

not disagree once the quantitative decision analysis is

done. 

Conflicting management objectives can be treated

more formally using multi-attribute utility theory

(Keeney and Raiffa 1976). Utility is a unitless measure

of satisfaction obtained from different quantitative

outcomes of decisions. Utility analysis converts into

common units (utilities) different kinds of outcomes,

or attributes, such as dollar value of timber and an

index of biodiversity. Utility functions permit this

conversion and the shapes of these functions reflect

the degree of risk aversion of the stakeholder. Once

converted to utilities, these attributes can be com-

bined into a weighted average utility, where

weightings placed on different attributes reflect their

relative importance to different interest groups.

Multi-attribute utility analysis thus provides a

quantitative method for incorporating multiple and

conflicting management objectives into the decision-

making process. The disadvantage of combining

these objectives into a single weighted average utility

is that the trade-offs implicit in combining multiple

objectives are hidden from the decision-maker. For

that reason, it is often preferable to show the separate

attributes as functions of the management decision

along with the results of the multi-attribute utility

analysis. This explicitly shows decision-makers the

trade-offs that are inherent in particular decisions.

8.9 Communicating Uncertainty and Results of

Decision Analyses 

To establish confidence in the analysis, all users of

the results of a decision analysis must be informed

not only of the optimal decision, but also of the as-

sumptions for which that action is optimal. This

approach is necessary because, as noted under sensi-

tivity analysis, different parameter values, model

structures, or management objectives can sometimes

lead to a different optimal decision. One of the 

advantages of decision analysis is that these assump-

tions are made explicit, and consequently the effects

of these assumptions on the optimal decision can be

explored quantitatively. However, these advantages

are lost unless the decision analyst communicates

these results clearly and effectively to decision-mak-

ers. Several steps can be taken to ensure good

communication.

First, the decision-making process used to identify

the optimal decision must be adequately document-

ed. This information includes full documentation of

the data, key assumptions, and methods; a list of

which factors were considered uncertain and why;

the results and implications of sensitivity analyses for

the decision-maker; and limitations of the decision

analysis. Such documentation shows the decision-

maker exactly how an optimal decision was derived

and provides an indication of how robust that deci-

sion is to the assumptions. The documentation also

allows decisions to be made consistently when the

same decision must be made by different people at a

different time or place. As well, good documentation

allows decisions to be subjected to an iterative

process of external peer review and evaluation. 

In doing so, analysts and decision-makers can learn

from successes and failures, leading to progressive

improvements in decision-making.

The second step toward good communication is to

choose appropriate methods for presenting results of

decision analyses and sensitivity analyses. What

seems most appropriate for technical analysts may be

confusing for non-specialists. For instance, Ibrekk

and Morgan (1987) showed that the conventional way

for scientists to express uncertainty in some quantity,

a probability distribution, is not the most effective

way to convey understanding of that uncertainty to

others (i.e., they found a cumulative probability 

distribution to be best). In some cases, a computer-

based hierarchical information system has been used

to present and explain results of analyses (e.g., Gobas

1993). Such information systems allow the user to se-

lect the level of detail, ranging from summary graphs

to complete, detailed numerical tables.

A final measure to ensure good communication

between various individuals is to involve decision-

makers and other interested parties in the analysis

from the beginning. This step can be done through

workshops and by allowing users to conduct “what-

if” runs with simulation models. Early participation

by decision-makers and stakeholders avoids 

misunderstandings and misinterpretations of key 

assumptions, data, methods, and results. It also in-

creases the chance that these important groups will

accept the results and will support the analysis by

providing necessary information.
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8.10 Benefits and Limitations of Decision Analysis

8.10.1 Benefits

To summarize, several key benefits of decision analy-

sis have made it an increasingly popular method for

quantitatively considering uncertainties when mak-

ing decisions in resource management. 

1. By systematically accounting for complexities and

uncertainties, decision analysis can improve the

quality of decisions made, resulting in more

favourable outcomes over the long term.

2. Using a decision tree to structure a problem helps

identify what specific data and assumptions are

needed to perform the analysis. 

3. Going through a formal decision analysis requires

explicit statements of the assumptions, parameter

values, and management objectives, including

views about risk aversion.

4. Decision analysis allows explicit comparison and

ranking of alternative management actions.

5. Sensitivity analyses help to set priorities for future

research and establish confidence in the analysis by

identifying the robustness of a recommended ac-

tion.

6. Explicitly taking uncertainties into account per-

mits calculation of the benefits of considering

uncertainty compared to only using the best point

estimates (EVIU), and the value of reducing these

uncertainties through the implementation of a re-

search sampling program (EVSI).

7. A systematic approach documents the method by

which decisions were reached and thus indicates

which methods of analysis and management ac-

tions work and why.

8. Decision analysis can be used for conflict resolu-

tion between interest groups.

8.10.2 Limitations

As with any method that assists decision-making, 

decision analysis also has its limitations. A major lim-

itation is that the amount of data required to conduct

a decision analysis of a complex problem can be

large. States of nature, probabilities on those states,

and outcomes of management actions must all be

quantified to apply decision analysis. In many cases,

these data may not be available in sufficient quantity

or quality to allow formal decision analysis. Another

limitation of decision analysis is that quantifying

management objectives is sometimes difficult. This

situation is especially problematic when diverse user

groups or stakeholders are part of the decision-mak-

ing body or are involved in consultations with

managers. Under these circumstances, identifying

quantitative indicators of management objectives can

be difficult even if multiattribute utility analysis is

applied.

These limitations can, in some cases, make 

application of decision analysis impossible or unwar-

ranted. When this happens, management actions

should be taken cautiously, given the inevitable pres-

ence of uncertainties. 

Another limitation of decision analysis stems not

so much from the method itself as from the way in

which results are used. As described previously, deci-

sion theorists define “risk” as “expected loss.”  Thus,

when decision analysis compares the expected values

of outcomes for various possible management ac-

tions, it essentially calculates the risk associated with

each action. However, when managers or scientists

present such results to stakeholders, they may inter-

pret them quite differently. Substantial research

shows that such people often perceive risks quite 

differently from the amount of risk estimated from

quantitative analyses (Slovic 1987). The magnitude of

this difference depends on factors such as the amount

of control over the risk, the level of trust in the ex-

perts, and the immediacy of the effect (Slovic 1987).

8.10.3 Evaluation of quality of decisions

The benefits and limitations of decision analysis lead

to two important points about how decisions should

be evaluated. First, the quality of decisions should be

evaluated based on the process used to make them, not

on their short-term outcome. This view is based on the

observation that, because of the complexity of forest

ecosystems and the number of factors influencing

them, favourable outcomes might arise as much from

fortuitous events as from good decisions. Thus, for

instance, if chance events happened to lead to a good

outcome in some situation, in spite of an incorrect

decision, managers might unjustifiably conclude that

the decision they made was correct and they might

repeat it in similar circumstances. However, the

chance events might not occur again in the managers’

favour. Similarly, a correct decision might lead to

some detrimental effect because of an unfavourable

chance event that coincided with the decision. For

this reason, conclusions about the quality of a 
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decision should not be based on short-term outcomes;

they should be based on how systematically, rigor-

ously, and comprehensively the decision options

were evaluated before making the decision. Studies

show that decisions based on rigorous analyses that

quantitatively account for uncertainties will, in the

long term, produce better results than decisions made

using other approaches (Von Winterfeldt and Ed-

wards 1986). Thus, decisions that are based on a

rigorous approach to analyzing options and uncer-

tainties should be labelled “good” decisions, whereas

others should be described as unacceptable, regardless

of the short-term outcomes of any particular decision. 

The second point is that the decision-making

process should be judged not on an absolute scale,

but relative to other methods available. Decision

analysis has some potentially serious limitations, but

few alternative methods have been demonstrated to

provide a better approach to using information on

the uncertainties and complexities inherent in re-

source management decisions. Because of this, deci-

sion analysis is being increasingly applied to a wide

range of problems in toxicology, water quality,

forestry, fisheries, and wildlife management. 

However, methods for quantitative policy analysis

are continually being improved, and analysts should

be aware of developments in the field so that they use

the best methods available to make decisions.

8.11 Final Recommendations for Decision Analysts

and Decision-makers

• Do not push scientists to “state their best estimate

despite the uncertainties” because this effectively

ignores uncertainties and will often lead to man-

agement actions with undesirable results. Instead,

for choosing among options, use a systematic

method such as decision analysis, which takes un-

certainties into account explicitly. 

• Do not forget the caveats and limitations of the

various components of a decision analysis. For ex-

ample, recognize the trade-offs between the

complexity of models and their reliability. Ac-

knowledge the assumptions behind formulation

and parameterization of models, and use sensitivi-

ty analyses to explore how these factors affect the

optimal decision.

• When doing a decision analysis, adhere to the 

following guidelines to ensure that the decision-

making process is the best available:

1. Clearly identify the main goal of the decision

analysis. 

2. Ensure that interaction occurs early and 

periodically among scientists, analysts, deci-

sion-makers, the public, user groups, and other

stakeholders.

3. Document all steps in the analysis.

4. Do not assume that everyone will agree with

your methods (e.g., Bayesian statistics), esti-

mates of parameters, or interpretation of data. 

5. State the assumptions and data used, carefully

qualify the conclusions, and clearly define the

limits of the analysis.

6. Present extensive sensitivity analyses that focus

on:

a) how the rank order of management options

changes with different assumptions; and

b) research priorities—the most important

areas for getting more data.

7. Be cautious: not only could the analysis be in-

complete but it will almost certainly be missing

components. These factors may affect your re-

sults.

8. When communicating information about risks

or uncertainties, think about what it is like not

to know the material. 

9. The entire process of decision analysis and

communication should be iterative, continually

moving toward improving decisions.

10. Insist on objective science and rigorous external

peer review of analyses.

11. When decision analysis is used to evaluate dif-

ferent proposed adaptive management actions,

implement a monitoring program in conjunc-

tion with the chosen action to ensure that the

maximum amount of information is obtained. 

12. Recognize that decision analysis is only one part

of the whole process for making decisions—it is

NOT the entire process. However, if decision

analysis is one component, it can help improve

environmental decision-making.
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•  Not all circumstances warrant a full, formal quanti-

tative decision analysis—justifiable usage of

decision analysis is case-specific. For example, de-

cision analysis is more feasible if at least some

reliable data are available and clear management

objectives are stated. Furthermore, decision analy-

sis is more appropriate when costs of incorrect

decisions are potentially large. First-time users of

this approach are encouraged to use the references

here and to discuss the approach with experts who

have previously used decision analysis. Regardless

of the specific situation, it is always worth at least

thinking about a decision-making problem in

terms of the components of decision analysis as

described, even if final calculations are never car-

ried out due to limitations in data or other

problems. The mere process of describing each

component helps to clarify and organize the deci-

sion-making process and to identify research

needs.
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Abstract

In this chapter, I synthesize statistical approaches and
considerations for adaptive management studies. I re-
view approaches to learning from management
actions and address questions of space and time. I also
present a set of guidelines for asking the right ques-
tions about statistical reliability, for selecting the
appropriate adaptive management study, and for
guiding how different types of information can con-
tribute at different stages in adaptive management.
These guidelines are presented in a table, which can
be used as a decision tree to determine the best kinds
of studies for each step in the adaptive management
process, and the most appropriate use of exisiting 
information.

9.1 Introduction

How should managers and researchers select an ap-

proach for designing an adaptive management study

and analyzing the results?  The chapters in this report

provide some guidance; for example, Nemec (this

volume, Chap. 2), summarizes principles of experi-

mental design, and Schwarz (this volume, Chap. 3)

lists types of nonexperimental and experimental de-

signs. Other publications (e.g., Green 1979), while not

specific to adaptive management as defined in this

volume, also provide guidance on designing ecologi-

cal studies. This chapter reviews issues to consider in

designing adaptive management studies, synthesizes

the methods discussed in preceding chapters of this

report, and summarizes the roles different types of

information can play in adaptive management.

Statistical approaches and study designs can be se-

lected only when the management question is first

well articulated. In the first section of this chapter, 

I review three types of monitoring, differentiated by

the types of question they each address, and then ad-

dress how the spatial and temporal elements of a

management question can influence study design. 

In the second section, I review the characteristics of

powerful studies and the principles of experimental

design. The third section summarizes various types of

information (including existing data, retrospective

studies, and nonexperimental studies) and experi-

mental studies, and how they can contribute to

adaptive management. In the final section, I discuss

some points to consider in interpreting and commu-

nicating the results from adaptive management

studies, and in particular the difficulty in “unravel-

ling the causal web.”  Throughout this chapter, I use

the oversimplistic labels “researcher” and “manager,”

fully realizing that in the real world many resource

professionals don both hats.

9.2 Types of  Questions Addressed in Adaptive

Management 

A little experience often upsets a lot of theory.

– Cadman

The B.C. Ministry of Forests defines adaptive man-

agement as a formal process entailing problem

assessment, study design, implementation, monitor-

ing, evaluation, and feedback (B.C. Ministry of

Forests 1996). In this approach, management activi-

ties are crafted as experiments to fill critical gaps in

knowledge. The key questions are: (1) To what extent

did the managment action lead to the measured out-

come? and (2) Are our assumptions valid about how

the system works?  

Other institutions use the term “adaptive manage-

ment” differently. For example, the USDA Forest

Service incorporates the general concepts of adaptive

management into its planning, but not as a formal

process. Regardless of the definition of adaptive man-

agement and how it is institutionalized, monitoring

activities and evaluation of data are key steps in 

adaptive management. The statistical approaches 

discussed in this report can help in both the design of

monitoring activities and in the interpretation of

data.

9.2.1 Types of monitoring

There are three types of monitoring: implementation

monitoring, effectiveness monitoring, and validation

monitoring. Each type of monitoring serves a unique

function in an adaptive management study.

Implementation monitoring

Implementation monitoring (or compliance moni-

toring) essentially asks: Have the management guide-

lines been implemented correctly (Collopy et al. 1993)?

9 SELECTING APPROPRIATE STATISTICAL PROCEDURES AND ASKING THE RIGHT QUESTIONS:  A SYNTHESIS

BRUCE G. MARCOT
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Correct implementation can be determined by a

complete census of all activities or by sampling activ-

ities stratified by administrative unit or location. Ob-

viously, asking more detailed questions of the effects

and validity of particular management activities

should proceed only when they have been correctly

implemented. Implementation monitoring, however,

does not teach us about effects of management ac-

tions. Thus, the focus of adaptive management is ef-

fectiveness and validation monitoring.

Effectiveness monitoring

Effectiveness monitoring asks: Are the management

guidelines and activities producing the desired ef-

fects?  Do the management activities really alter the

biophysical conditions as expected? Many questions

can be asked of the effects of management guidelines.

Highest priority should be directed to potential ef-

fects that have the most serious economic, biological,

or ecological ramifications, and those carrying the

greatest uncertainty. 

Validation monitoring

Validation monitoring, technically the most difficult

of the three kinds of monitoring, asks: Are the ulti-

mate expectations for the guidelines being met?  Are

the basic assumptions about how the biophysical sys-

tem operates really correct, or does it operate in a

very different way that would invalidate the selected

management approach?  If so, how?  

Validation monitoring may be used to validate

ecosystem models (Gentiol and Blake 1981), which is

vital to ensuring the models’ successful and appropri-

ate use. In adaptive management, validation moni-

toring should focus on the ecosystem elements that

have the greatest implications on the decision about

the best course of action. Problem assessment—iden-

tifying which relationships to validate—is the first

step of adaptive management.  

9.2.2 Issues of space and time

Issues of space and time will in part determine the

type of study design that is possible. For example,

studies of large geographic areas may preclude repli-

cation, suggesting before-after-control-impact paired

(BACI-P) study (Schwarz, this volume, Chap. 3).

Similarly, long response times may suggest retrospec-

tive analysis of past actions to provide a preliminary

assessment of the impact of a proposed action.

Issues of space

The five kinds of spatial effects to consider can influ-

ence the design of a study as well as the interpretation

of its results.

1. What is the influence of on-site management 

activities on off-site conditions?  That is, local

management may influence remote conditions,

both directly and indirectly (Loehle 1990). An ex-

ample is the downstream effect of stream

temperature or sedimentation on fish populations

due to local reduction, removal, or restoration of

riparian vegetation cover.

2. What is the relative influence of off-site manage-

ment activities on on-site (desired) conditions?

On-site conditions can be influenced by other off-

site activities. For example, despite protection of

old-growth forest groves, some arboreal lichens

might nonetheless decline because of degraded air

quality from industrial pollutants originating else-

where in the airshed. The potential influence of

downstream dams and fish harvesting on the

abundance of local fish populations is another 

example.

3. To what degree do local management activities in-

fluence the on-site (desired) conditions?  That is,

to what extent do background noise and other en-

vironmental factors affect on-site conditions?

Local management may influence only a portion

of the total variation in local conditions. For ex-

ample, providing local breeding habitat only

partially succeeds in conserving populations of

neotropical migratory birds, whose numbers may

still decline due to pesticide loads or habitat loss

encountered during wintering in the neotropics. 

4. What is the relative influence of conditions and ac-

tivities from different spatial scales, particularly the

effects on local stand-level conditions from broad-

er landscape-level factors?  That is, desired

conditions and management actions are best ad-

dressed at appropriate scales of geography. As

examples, effects of forest management on abun-

dance of coarse woody debris are best assessed at

the stand level; effects of forest management on

vegetation conditions that affect visual quality or

goshawk (Accipiter gentilis) habitat are best as-

sessed at the landscape level; and effects of overall

management policy and ownership patterns on

grizzly bear (Ursus arctos) populations are best 

assessed at subregional or regional levels.



131

5. What are the cumulative effects of stand-level

treatments as they spread across the landscape?

For example, wind fetch and thus wind speed may

increase as clearcuts become wider with sequential,

adjacent cuts. Thus, the windthrow hazard in one

cutblock may increase as adjacent areas are cut,

and the windthrow hazard in those cutblocks 

cannot simply be extrapolated from the hazard

measured in a single cutblock surrounded by trees. 

For each of these five kinds of spatial effects, 

adaptive management monitoring studies would be

designed and implemented differently. Where this is

not possible, spatial influences should at least be ac-

knowledged as potential sources of variation and

included in the analysis.

Issues of time

Answering questions about time effects can help dis-

tinguish true cause from non-causal correlation, and

treatment effects from natural variation. Three typi-

cal time scale issues follow.

1. What are the response times of variables?  For

some variables, response may be apparent in a rel-

atively short period of time; others may respond

more slowly. Examples are the relatively short and

quick response time of seedling survival compared

with the long and slow response times associated

with many biodiversity indices (e.g., changes in

grizzly bear populations).

2. What are the lag times of variables?  Some vari-

ables may not immediately respond to a treatment

or may depend greatly on site history. For exam-

ple, because acorn woodpeckers (Melanerpes

formicivorous) show high fidelity to particular sites,

a lag will exist before they respond to the removal

of granary trees (Ligon and Stacey 1996). This lack

of short-term response should not lead one to con-

clude that management actions—in this example,

the reduction or removal of granary trees—have

no effect. Sometimes these lags in response result

when conditions from prior time periods over-

whelm or influence responses from current

actions. For example, the intensity of a fire will be

influenced by site history, in addition to current

management actions. Thus short-term changes in

a response variable may reflect both the manage-

ment action and past site history. Some time-lag

effects can be quite variable and manifest as non-

monotonic (up and down) trends over the long

term. For example, annual non-monotonic varia-

tions in bird populations—both increases and

decreases—may belie truer long-term declines in

some population counts (Thomas and Martin

1996).

3. What are the cumulative effects of a variable over

time?  Some variables do not make a mark except

over time or until a particular threshold has been

exceeded. An example is the adverse effect of cer-

tain pesticides on wildlife reproduction. The

detrimental effect may not be apparent until the

pesticide concentrations reach a particular level of

toxicity (Tiebout and Brugger 1995).

The design of adaptive management studies and

selection of analysis methods are guided in part by

these considerations of space and time. For example,

replication is one major consideration  in designing

studies. Given a large geographic area, as tends to be

the focus in ecosystem management, or a rare condi-

tion, such as a threatened species population, are

spatial replicates possible?  That is, can landscapes or

threatened populations be replicated at all, or in 

adequate numbers?  If the conditions cannot be repli-

cated, then pseudoreplication (e.g., dividing a single

area into smaller blocks) may be the only recourse

(Hurlbert 1984). Alternatively, other kinds of studies

(e.g., analytical surveys, expert testimony) might help

in assessing the impact of the treatments, although

they do not allow strong inference about cause. 

Similarly, long response times and time lags make

temporal replication difficult. Retrospective studies

(see Smith, this volume, Chap. 4) provide one alter-

native for gaining insight into the long-term effects

of management actions. In cases where either spatial

or temporal replication is severely limited, a higher

probability of  Type I and II errors might need to be

tolerated (see Anderson, this volume, Chap. 6).

In some cases, a powerful adaptive management

study may be possible but managers, decision-mak-

ers, industries, or other interested bodies may not be

willing to bear the cost, duration, and tight controls

on management activities. The consequences of not

using an optimum study must be explicitly consid-

ered and understood by all.
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9.3 Considerations in Designing an Adaptive Man-

agement Study

9.3.1 Characteristics of a powerful adaptive man-

agement study

To help in evaluating management actions and vali-

dating functional and causal relationships, an

adaptive management study should be consistent

(i.e., should represent the system of interest), accu-

rate, precise, and unbiased (see Routledge, this

volume, Chap. 5). Managers and researchers should

work together in designing an adaptive management

study that represents the real system and provides in-

formation within acceptable limits of Type I and

Type II errors (Anderson, this volume, Chap. 6).

They may also want to consider the trade-offs inher-

ent in relaxing any of the conditions, such as

accepting a lower but still acceptable level of preci-

sion in exchange for lower cost or more rapid results.

The study design should also be independently re-

viewed to assess its capability to meet the desired

(and often conflicting) criteria of high consistency,

high accuracy, high precision, and low bias.

9.3.2 What managers need to ask of reliability

Managers should ask four general questions regard-

ing the reliability of adaptive management studies

and their results.

1. What confidence can I have in the results of this

adaptive management study, particularly for

avoiding false positives?  Statistically, this question

can be answered by calculating the probability of a

Type I error (Anderson, this volume, Chap. 6).

2. What power do the results provide for avoiding

false negatives (Anderson, this volume, Chap. 6)?

Statistically, this can be answered by calculating

the probability of a Type II error (although

Bayesian approaches differ significantly in not

dealing with questions of confidence and power).

Type I and Type II errors hold different implica-

tions for managers (Marcot 1986; Anderson, this

volume, Chap. 6). For example, if the adaptive

management study is aimed at determining ad-

verse effects of some management activity on a

wildlife species that is threatened, then managers

may be more tolerant of a Type I error than of  a

Type II error. However, if the species is not threat-

ened and the activity results in important

commodity production and economic return, 

then they may be more tolerant of a Type II error.

3. What is the relevance of the results?  How repre-

sentative is the study of other sites or conditions?

Some studies may reveal only local conditions and

the chance effects of unique site histories, rather

than overall effects, or they may pertain to only

one vegetation type or climatic condition. The

manager should know the contexts under which

results apply. For example, results of a forest thin-

ning operation may apply to only a particular

initial stand density or forest type.

4. Were the effects truly a result of the management

activity?  This question cuts to the heart of separat-

ing cause from noise, and determining what really

influenced the outcome. The experimental studies

that are central to adaptive management are de-

signed to determine causality. Researchers and

managers should not assume that demonstration

of pattern and correlation constitutes valid evi-

dence of causation. 

9.3.3 Principles of experimental design

To help ensure success in evaluating management 

actions, researchers should review adaptive manage-

ment studies for the four main principles of

experimentation:  randomization, replication, block-

ing, and representation (see Nemec, this volume,

Chap. 2). Randomization reduces bias. Replication

allows an estimation of variance, which is vital for

confirming observed differences. Blocking increases

precision and reduces cost and sample size. Represen-

tation helps to ensure study of the correct universe of

interest.

In the real world, these four principles cannot al-

ways be met and compromises are necessary. It is

often impossible to fully randomly allocate treat-

ments, such as forest clearcuts or fire locations. In

such cases, study sites may be randomly selected

from existing clearcuts or fire locations, resulting in

nonexperimental studies (e.g., observational studies,

analytical surveys, retrospective studies, or impact

studies; see Schwarz, this volume, Chap. 3). When in-

terpreting study results, researchers should account

for the site-specific characteristics leading to the ini-

tial nonrandom assignment of the treatment.

Furthermore, the researcher should recognize that

the altered study can no longer provide reliable

knowledge of cause, but only generates hypotheses

for validation when future management actions are

implemented.

When replication is not possible, suspected causal

effects can be masked by confounding hidden causes
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or by spurious correlations. Researchers may be

tempted to resolve the problem by taking multiple

samples as pseudoreplications. The drawback of this

solution is that study results apply to study areas 

only and cannot be generalized to the entire system

of interest. 

When blocking is not feasible, precision suffers.

Larger sample sizes, hence increased cost, are neces-

sary to achieve desired levels of confidence and

power. Finally, when a study considers only a portion

of the system of interest (due to lack of randomiza-

tion, replication, or funding), generalization of the

results to the entire system could be inappropriate

and misleading. In this case, researchers and man-

agers together must re-evaluate the study objectives

and scope. 

Even though researchers are responsible for 

designing studies, managers and decision-makers

should be aware of these issues and possible limita-

tions. Other useful aspects of measurement errors are

reviewed by Routledge (this volume, Chap. 5), who

presents a useful set of criteria for selecting indices.

9.4 Types of Information and Study Designs

Study the past if you would divine the future.

– Confucius

Information from sources other than management

experiments can play important roles in adaptive

management. For example, expert judgement, anec-

dotes, existing data, and literature can help in

building simulation models used to explore alterna-

tive scenarios and identify key uncertainties.

Information from these sources can also provide sup-

porting evidence, which becomes important when

real world limitations prevent the design of “ideal”

management experiments. Each source of informa-

tion provides different levels of reliability.

9.4.1 Learning from existing data, expertise, and

expert testimony

Using existing data and literature

In the initial stages of adaptive management, existing

data and literature can be used to evaluate scenarios,

project effects, or devise guidelines. However, the

ability to determine treatment effects from existing

data is often limited because such data may not cover

the range of environments or treatments proposed,

or  may be knitted from disparate databases. In addi-

tion, the spatial, temporal, or ecological scope and

the degree of reliability of such data may be poorly

documented. Perhaps a good reminder of the poten-

tial weaknesses of using existing information is to

remember the acronym for “best available data.”

When existing data are used, how well they can ad-

dress the critical management question should be

assessed honestly and accurately.

Gathering expertise and expert testimony

Another source of information is expert judgement,

review, and testimony. Broad-scale assessments of

wildlife population viability conducted recently by

federal resource management agencies of the western

United States have relied on panels of experts and

contracted technical reports to fill in many gaps left

by existing databases and publications (e.g., Schuster

et al. 1985). In my own work using  expert-panel 

approaches, I have modified1 the Delphi technique

(Zuboy 1981; Richey, Horner, and Mar 1985) to col-

lect expert knowledge and judgement (Marcot et al.

1997). However, expert judgement cannot replace

statistically sound experiments.

9.4.2 Learning from management actions

Probably the most reliable means of gathering infor-

mation for assessing the impact of management

actions is to conduct field studies. But, like publica-

tions and expert opinion, empirical evidence comes

in many forms and levels of usefulness. A few key

sources of evidence for the manager to know about—

listed here in increasing order of reliability—include

anecdotes and expert judgement, retrospective stud-

ies, nonexperimental (observational) studies, and

experimental manipulation. 

Anecdotes and expert judgement

The results of management actions are often evaluat-

ed informally by simple observations with no mea-

surements. Such opportunistic observations are 

a two-edged foil:  while the collective expertise from

field experts can constitute a valuable and irreplace-

able pool of wisdom, individual anecdotes can prove

strikingly misleading. As a whole, anecdotal informa-

tion should be used with a great deal of caution—or

at least with rigorous peer review—to help avoid

problems such as motivational bias (Marcot et al. 1997).

1 Modifications addressed the need to adhere to the U.S. Federal Advisory Committee Act, by polling individual experts for basic ecological in-
formation and not reaching group consensus on specific management actions.



134

Anecdotes and expert judgement alone are not rec-

ommended for evaluating management actions be-

cause of their low reliability and unknown bias. 

In the BC Forest Service, use of this source of infor-

mation alone to evaluate management actions is not

considered adaptive management.

Retrospective studies

Sometimes the results of management actions are

provided by measuring the outcomes of future ac-

tions taken in the past. Retrospective studies (evalu-

ating the outcomes of actions taken in the past) are

valuable for helping to predict the outcomes of future

actions. These studies can provide some insights to

support or refute proposed hypotheses, and are par-

ticularly valuable for problems where some indica-

tors take a long time to respond. However, because

the treatments might not have been randomly as-

signed, and the initial conditions and the details of

the treatments are often unknown, teasing out causal

factors may be challenging at best and misleading at

worst.

Nonexperimental (observational) studies

Nonexperimental studies (called observational 

studies by some authors) are the most common kind

of field studies reported in wildlife journals. Like ret-

rospective studies, nonexperimental studies are not

based on experimental manipulations. Although it

may be debatable whether nonexperimental studies

should entail hypothesis testing, they should

nonetheless meet statistical assumptions, including

adequacy of samples sizes and selection of study sites,

to ensure reliable results. Much can be learned from

taking advantage of existing conditions and un-

planned disturbances (Carpenter 1990; Schwarz, this

volume, Chap. 3).

Nonexperimental studies usually entail analysis of

correlations among environmental and organism pa-

rameters, such as studying the correlations between

clearcutting and wildlife response. Causes are 

inferred and corroborated through repeated observa-

tions under different conditions. Because results may

be confounded by uncontrolled (and unknown) fac-

tors, nonexperimental studies are best interpreted as

providing only insights to cause. These insights can

be valuable in predicting outcomes of actions, but

again, the veracity of such predictions and the effects

of management actions are best evaluated through

controlled experiments (McKinlay 1975, 1985). Of

nonexperimental studies, BACI-P designs allow the

strongest inferences about causes (Schwarz, this vol-

ume, Chap. 3).

Inventories and surveys are not the same as nonex-

perimental studies; they display patterns but do not

reveal correlates. Nevertheless, inventories and sur-

veys can be useful in adaptive management. They

provide information from which to select random

samples, or a baseline of conditions from which to

monitor changes over time. Inventories and surveys

should still adhere to strict sampling protocols and

can use more advanced statistical methods to stream-

line efficiencies (Schwarz, this volume, Chap. 3). For

example, Max et al. (1990) presented an inventory

method of random sampling of Northern Spotted

Owl (Strix occidentalis caurina) territories with par-

tial, annual replacement of samples to increase

accuracy and reduce bias in estimates of site occu-

pancy.

One particularly terse version of inventories is

rapid assessment procedure (RAP) or rapid survey,

used by some conservation groups “running ahead of

the bulldozers” to survey biota of tropical forests

(Oliver and Beattie 1993, 1996). Rapid surveys may

prove useful in some temperate ecosystems as well,

but should be used only to provide quick, initial,

mostly qualitative or categorical information from

which to design more formal adaptive management

studies.

Experimental manipulation

Management actions can best be evaluated

through experimentation (Nemec, this volume,

Chap. 2). Experimental manipulations can be used 

to quantify the contributions from each suspected

causal factor, and ultimately to develop, refine, and

validate prediction models. The kind of experimenta-

tion referred to here involves deliberate, planned

alterations of one or more sites, one of which may be

an unaltered control. 

Finally, demonstrations are not adaptive manage-

ment per se, but often appear in the adaptive

management literature (e.g., Yaffee et al. 1996).

Demonstrations are designed to showcase the execu-

tion of specific management activities such as

silvicultural techniques but they do not provide the

evidence that controlled, replicated experiments do.

When faced with a proposal for a demonstration

“study,” the manager might first ask if they need evi-

dence of cause and effect, and, if so, if a management
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experiment with controls and replicated treatments

would better provide evidence as well as the opportu-

nity to demonstrate the activities.

9.4.3 Information for improving study designs

Study designs can be improved by using prior knowl-

edge of the system of interest gained through

retrospective analysis of past events, existing litera-

ture, and expert testimony. This information can aid

in blocking samples to increase study efficiency, and

in ensuring correct spatial and temporal representa-

tion of samples. 

Study design can also benefit from initial field 

sampling. This sampling can provide preliminary 

estimates of variance of parameters that can be used

to calculate sample size necessary to meet desired 

levels of precision. Initial field sampling also gives 

information on stratification or blocking strategy 

and helps to reveal conditions not originally consid-

ered in a study. 

The relative merit of alternative study designs can

be assessed using the tools of quantitative decision

analysis, including Bayesian statistics (see Bergerud

and Reed, this volume, Chap. 7; Peterman and Peters,

this volume, Chap. 8). Such analysis may suggest, for

example, the sampling period, sampling frequency,

and sample size necessary for providing reliable 

information in a suitable time frame and at an ac-

ceptable cost.

The past several sections have discussed character-

istics of AM study designs and use of information

sources. I turn next to the topic of integrating study

results into statements of risk. The topic of risk is also

addressed by Peterman and Peters (this volume,

Chap. 8).

9.5 Risk Analysis and Risk Management

Lots of folks confuse bad management with destiny.

– Kin Hubbard

9.5.1 Risk:  speaking the same language between

analysis and management

The concept of risk has pervaded much of the adap-

tive management literature and much of land

management planning. However, researchers and

managers often use the term “risk” in vastly different

ways. This use can lead to, at best, confusion in inter-

preting results, or, at worst, misrepresentation of

study results. For adaptive management, risk is 

defined as the expected value of adverse outcomes of

a management action.

It is useful in adaptive management to differentiate

risk analysis from risk management. In risk analysis,

the researcher lists possible outcomes, estimates their

likelihoods under one or more alternative future sce-

narios, and calculates their individual “utilities” by

weighting outcome likelihoods by outcome values.

These values are usually derived by managers and

may pertain to social, economic, or political interests,

as well as to legal regulations and objectives for re-

source management. Weighting outcome values with

outcome likelihoods helps the manager to determine

the overall risk of a management action. Then, in risk

management, the manager defines and applies their

risk attitude (their degree of risk-seeking, risk-neu-

tral, or risk-avoidance behaviour) and then decides

on the best course of action. In separating risk analy-

sis from risk management, the onus of articulating

outcome values, describing personal attitudes to risk,

and defining personal decision criteria is correctly

placed on the manager, not the researcher.

Formal decision analysis (Peterman and Peters,

this volume, Chap. 8) is a method for assessing the

risk of alternative outcomes of actions, taking uncer-

tainty into account. Most managers do weigh the

relative values or outcomes, their likelihoods, and a

host of other factors that limit the decision space,

such as political acceptability, effects on career, and

effects on potential future decisions. However, deci-

sion analysis “in your head” is a poor substitute for

quantitative decision analysis. At a minimum, man-

agers should explicitly reveal their own outcome

values, risk attidudes, and decision criteria. 

9.5.2 Expressing uncertainties and unknowns

Uncertainty is a hallmark of science. However, man-

agers—as well as politicians, the media, the public,

and courts—typically view the issue of uncertainty

differently than do researchers. To the researcher,

uncertainty in adaptive management may represent

error of measurement, confounding effects of natural

variation, or other unstudied causes; such uncertain-

ty is to be expected and results are to be treated with

due care (Kodrick-Brown and Brown 1993). In some

sense, the researcher may be certain of a particular

level of variance, and may still view adaptive manage-

ment study results as strong evidence of some effect

of a management activity within some range of out-

come. To the manager and others, however, such
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variance may be seen as lack of evidence of effects, or

even as strong evidence of little or no effect, if the re-

searcher cannot be “certain” of the outcome. 

Scientific unknowns should be treated as a qualita-

tively different beast than scientific uncertainty. For

the researcher, uncertain outcomes can be quantified

as some measure of variation  (such as variance or

confidence interval), but unknowns cannot be quan-

tified at all. The influence of unknowns may be

deterministic, stochastic, strong, weak, or nonexis-

tent; the researcher often simply cannot say. Again,

however, the manager might erroneously view un-

knowns as lack of evidence of effect and thus as

justification to proceed unless some contrary “proof”

is provided. 

Managers also need to understand how to inter-

pret results of adaptive management studies,

particularly in the context of a risk analysis. If adap-

tive management studies are designed as good

statistical investigations, then results can serve to ei-

ther falsify, or fail to falsify, the null hypothesis being

tested; results can never “prove” a hypothesis.2 Fail-

ing to falsify the null hypothesis of no effect lends

only incremental credence to the management hy-

pothesis. One of the ways to lend greater credence is

through replicate findings that would further corrob-

orate results.

Therefore, researchers and managers (as well as

courts, media, and the public) must come to a com-

mon understanding of the concepts and implications

of scientific uncertainty, unknowns, risk and associ-

ated concepts of proof, errors, and statistical

falsification. Otherwise, results of adaptive manage-

ment studies can be severely misrepresented,

misunderstood, and misapplied.

9.5.3 Unravelling the causal web:  when is it our

fault and what can be done?

One of the main reasons for conducting adaptive

management studies of resource use or ecosystem el-

ements is to determine not just patterns and trends

but also their causes. The manager should ask:  What

is the true cause?  Do our management activities di-

rectly affect the outcome, or merely set the stage for

other, more direct factors?  To what degree do our

management activities influence the outcome? 

Untangling the causal web in field situations can

be a great challenge. Seldom are causal factors affect-

ing ecosystems single, simple, or easily quantified.

Most often, factors interact in complex ways, such as

with indirect and secondary effects, and through

feedback relations (Figure 9.1). Even in the simplest

model (Figure 9.1a), the relative contributions of

known and unknown causes must be estimated. In

simple models, the contribution from linear associa-

tions—which may or may not be causal—is indicated

by the value of the coefficient of determination R2 (or

adjusted R2), with the contribution from unknown

associations being 1–R2. In more complex models,

(Figures 9.1b, c, d), estimating relative contributions

can be more involved. In real-world cases, it is not al-

ways evident which factors act as proximate causes,

which act as less direct causes, which are mere corre-

lates with no causal relation, and which participate in

obligate feedback relations. 

Of course, some relations are obvious, such as re-

moval of forest canopy causing the local elimination

of obligate canopy-dwelling organisms. But less obvi-

ous effects or gradations, though  difficult to unravel,

may be of great interest to the manager. For example,

what degree of effect does partial removal of the for-

est canopy have on local plant or animal populations

that are only facultatively associated with canopy en-

vironments?  Might there be compounding, cumula-

tive effects that exacerbate or ameliorate such effects,

such as wider regional loss of forest canopies, or

restoration of canopy conditions in adjacent stands?

To determine the relative influence of specific

management activities, the researcher may turn to

statistical techniques using estimation of partial 

correlations. These methods help determine the 

contribution of one factor, such as a management ac-

tivity, given the effects of all other factors (e.g., other

activities, natural changes in environments, unknown

causes). Traditional analyses such as step-wise multi-

ple regression help identify such partial influences.

Other, less well-known techniques such as regression

trees and path regression analysis (e.g., Schemske and

Horvitz 1988) can also be used. 

Determining the relative influence of management

actions is vital for setting realistic expectations for

management results. For example, determining that

fragmentation of local forests affects breeding habitat

for migrating songbirds (Wilcove 1985) is only part of

the puzzle; loss of habitat on neotropical wintering

grounds is also a significant cause of declines in song-

bird populations. Therefore, changing local

management to reduce fragmentation should be ex-

pected to have only a partial impact on songbird

populations. 

2 Some authors suggest that Bayesian analyses also can be interpreted as the testing of null hypotheses, that is, the prior probabilities.
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9.5.4 A dilemma for managers:  when samples are

few and crises are many

One bane of adaptive management is that, in many

cases, the unique field conditions make it difficult to

correctly design statistical studies to identify and

quantify causes. Especially when studying landscapes,

ecosystems, rare or threatened species, and infre-

quent events, the major problems in the design of

such studies are small sample size and inability to

replicate conditions. In such circumstances, what can

the researcher do, and how should the manager in-

terpret results?  The answer may be found in several

courses of action:  selecting correct indicators, merg-

ing disparate lines of evidence, and using statistical

procedures that take advantage of prior knowledge or

that function adequately with small sample sizes.

Selecting correct indicators

Indicators that are objective, repeatable measure-

ments, whose quality is documented quantitatively

should be selected. For adaptive management studies,

an indicator should (1) respond rapidly to changes,

(2) signal changes in other variables of interest, (3) be

monitored efficiently, and (4) be causally linked to

E S

E1 S

E2

E1

S2

E2

S1

E1 S1

E2 S2

Ei Sj

?

?

?

(a)

(b)

(c)

(d)

?

 . Causes and correlates:  four examples. In all figures, S = wildlife species response; ? = unexplained variation due
to measurement error, experimental error, or effects of other environmental or species factors; solid arrows =
causal relations; dotted arrows = correlational relations that may or may not be causal. (a) In this simplest case,
some wildlife species response S, such as population presence or abundance, is assumed to be explained and
caused by some environmental factor E. (b) In a more complex case, we may be measuring one environmental
factor E1 when the real cause is another environmental factor E2. (c) Getting closer to the real world, a second
species response S2 may be part of the cause. (d) Most like the real world, with feedback relations among the
dependent (response) variables S.  (Adapted from Morrison et al. 1998, Fig. 10.2.)
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changes in stressors. Most “ecological indicators”

purported to fit these criteria usually fail (Block et al.

1987; Patton 1987; Landres et al. 1988). For example,

the Northern Spotted Owl, often selected by USDA

Forest Service as an “old-growth indicator,” may

serve criterion (4), but fails with the other three crite-

ria:  spotted owls have low reproductive rates and

long life spans, so they respond slowly to changes;

changes in their populations may not necessarily cor-

relate well with other desired facets of old-growth

forests  (e.g., habitat for anadromous fish); and their

population trends are terribly costly to monitor.

Indicators that do meet these criteria include soil

arthropods as indicators of soil productivity (McIver

et al. 1990; Moldenke and Lattin 1990; Pankhurst et

al. [editors] 1997); butterfly diversity as an indicator

of overall ecosystem diversity (Kremen 1994); and

some arboreal lichens as indicators of  air quality

(Stolte et al. 1993; Geiser et al. 1994) or persistence of

old forests (Tibell 1992). See Murtaugh (1996) for a

review of the statistical basis of ecological indicators.

Merging disparate lines of evidence

Merging different study results is a second tactic that

can help in identifying causal relations when good

experimental design is impossible or impractical.  In

statistics, this process is called “combining informa-

tion” (CI). Draper et al. (1992) provide a useful

overview of various CI techniques, including meth-

ods of meta-analysis (Hedges and Olkin 1985) that

can be useful in conservation research (Fernandez-

Duque and Valeggia 1994). For example,

meta-analysis was used by Burnham et al. (1996) to

determine overall trends of Northern Spotted Owls

by combining results from individual population 

demography studies.

CI is not a panacea, as it can be fraught with 

difficulties such as matching consistency and repre-

sentativeness among studies designed for different

initial objectives. Still, the researcher may wish to use

CI methods to merge lines of evidence taken from

available information. This available information

could include anecdotes and local experience, retro-

spective studies, observational studies, experimental

manipulations, and  demonstrations. The reliability

of each source for inferring causes should be judged

very carefully.

In contrast to formal meta-analysis, simply pool-

ing data from different studies could lead to spurious

and misleading conclusions. For example, to assess

the impact of clearcutting on grizzly bear popula-

tions, the data from several studies might be com-

bined into an overall regression. This regression

might suggest a significant correlation between

clearcutting and grizzly bear populations. However,

grizzly bears within individual study areas might re-

spond differently to clearcutting because they come

from different geographic areas, latitudes, or forest

types. Thus the correlation may reflect these differ-

ences between populations, rather than any

treatment effect. The incorrect conclusion of correla-

tion would arise because such an analysis violates an

assumption underlying regression: that the data

come from the same statistical population with the

same causal mechanisms. On the other hand, a for-

mal meta-analysis approach would analyze results

from each study with differences among studies as an

explanatory factor. CI has great utility, especially

where powerful experimental studies are difficult.

However, managers and researchers must be careful

in its use, ensuring that studies are truly from the

same causal web.

Using statistical procedures that take advantage of

prior knowledge

Bayesian statistics were developed specifically for

using prior knowledge and incrementally gathered

field data (Ver Hoef 1996). Bayesian statistical tech-

niques include empirical Bayes and sequential Bayes

procedures, in which initial estimates of the likeli-

hood of conditions become incrementally adjusted

and refined over time as new evidence is gathered

(e.g., Gazey and Staley 1986; Link and Hahn 1996).

Expert opinion, existing literature and data, retro-

spective studies, and non-experimental studies can all

be used to establish preliminary values of prior prob-

abilities in a Bayesian analysis. Bayesian methods

were reviewed by Bergerud and Reed (this volume,

Chap. 7), who advocate their use to incorporate accu-

mulated knowledge of experts.

9.6 Conclusions and Recommendations

Knowledge is the small part of ignorance that we

arrange and classify.
– Ambrose Bierce

9.6.1  A decision tree for managers

The six stages of adaptive management and sources

of information appropriate for each stage are pre-

sented in Table 9.1. This table can be used by

managers as a decision tree to guide the choice of
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study for each stage of adaptive management, as well

as to guide the use of existing information.

At the problem assessment stage, existing informa-

tion is valuable for identifying potential impacts of

management actions. At the project design stage,

pilot studies (experimental or nonexperimental) are

recommended for fine tuning the study methodolo-

gy. Pilots can be used to estimate variability in the

response variables; these estimates can then be used

to determine sample size, effect size, and power for

the study. Controlled experiments allow the strongest

inference about the actual impacts of management

actions. Once a study has been implemented, rele-

vant data are collected through a monitoring process.

The data are then analyzed using appropriate statisti-

cal methods to answer questions set out at the

beginning of the adaptive management project. In

the evaluation stage, existing knowledge (based on

literature, expert judgement, and retrospective analy-

sis) is updated using data collected from the

management experiment to assess the effect or out-

come of an action. Using Bayesian analysis, existing

knowledge together with collected data can also be

used to determine the relative plausibility of suspect-

ed causes. Management actions are then adjusted

based on this updated knowledge. During the course

of the management experiment, new questions may

arise that then lead to further problem assessment,

project design, implementation, and so on, in a con-

tinuous cycle of learning.

9.6.2 Is there a “best” statistical approach to adap-

tive management?

The answer to this question is an unqualified “yes.”

The best approach for answering the questions “Did

this action have the desired effect?” and “Are the

basic assumptions underlying management decisions

correct?” is to use controlled, randomized experi-

ments with sufficient sample sizes and duration. This

approach provides the best understanding of causal

relations and the best basis for validating predictive

models—assuming that the models can provide

testable predictions.3 Nevertheless, the informative-

ness of a statistical approach must also be weighed

against its costs (ecological, social, and economic).

Ultimately, designing management actions as con-

trolled, randomized experiments will provide the best

evidence for managers who face the difficult task of

making management decisions  and defending such

decisions legally, politically, and scientifically.

Short of this ideal, both researchers and managers

have their work cut out for them. They should maxi-

mize the use of available information, but not draw

undue conclusions about causes. It may be useful to

explicitly array the various available lines of evidence

and to articulate the confidence in identifying causes

from each. Managers and researchers must look for

similarities and disparities among lines of evidence

and investigate reasons for the differences. Moreover,

they should seek peer review to ensure appropriate

and rigorous use of various sources of information.

Repeatability of findings and suspected causes is the

basis for true scientific understanding and predict-

ability.

Real-world adaptive management problems are

often complicated by time exigencies or finite fund-

ing so that powerful experiments are not possible. 

If the study design must be compromised, then the

ramifications of drawing incorrect conclusions

should be thought out. When turning to field experts

for their professional opinions, managers should be

aware of  potential problems such as motivational

and personal bias. 

Managers should weigh the benefits and cost of a

more or less rigorous approach. For, in the end, reli-

able knowledge is a hard-won but essential

commodity for ensuring successful conservation

practices for future generations.
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A posteriori: Referred to after the data have been col-

lected and examined.

A priori: Referred to before the data are collected and

examined.

Accuracy: The nearness of a measurement to the 

actual value of the variable being measured. 

Active adaptive management: Management is de-

signed as an experiment to compare alternative

actions (treatments) or discriminate among alter-

native hypotheses about how the system responds

to actions. Active adaptive management can in-

volve deliberate “probing” of the system to

identify thresholds in response and clarify the

shape of the functional relationship between ac-

tions and response variables.

Alternative hypothesis: A claim or research hypothe-

sis that is compared with another (usually null)

hypothesis.

Analysis of variance (ANOVA): A group of statisti-

cal procedures for analyzing continuous data

sampled from two or more populations, or from

experiments in which two or more treatments are

used. ANOVA procedures partition the variation

observable in a response variable into two basic

components: (1) variation due to assignable causes

and (2) uncontrolled or random variation. Assign-

able causes refer to known or suspected sources of

variation from variates that are controlled (experi-

mental factors) or measured (covariates) during

an experiment. Random variation includes the ef-

fects of all other sources not controlled or

measured during the experiment.

Analytical survey: A type of nonexperimental study

where groups sampled from a population of units

are compared.

Autocorrelation: Occurrence when consecutive mea-

surements in a series are not independent of one

another. Also called serial correlation.

Bayes decision: The optimal decision identified

when uncertainties are considered using a formal

decision analysis.

Bias: The deviation of a statistical estimate from the

quantity it estimates. Bias can be a systematic

error introduced into sampling or testing. Positive

bias will overestimate the parameter; negative bias

will underestimate it.

Blocking: A design technique where experimental

units are grouped into homogeneous blocks, ac-

cording to some identifiable characteristic(s).

Successful blocking reduces the experimental error

that results from variation among heterogeneous

units.

Conditional probability, P(A|B): The probability of

the event A given that a related event B has taken

place.

Confidence limits: Confidence limits indicate the

precision of a parameter estimate. If samples of

size n were repeatedly obtained from the popula-

tion and constructed (1–α)%  confidence limits

for each, the expected result would be that

100(1–α) out of 100 confidence limits would 

contain the true parameter.

Confounding: Confounding occurs when one or

more effects cannot be unambiguously attributed

to a single factor or interaction.

Control: A treatment level included in an experiment

to show what would have happened if no treat-

ments had been applied to the experimental

material.

Controlled experiment: An experiment in which the

experimenter controls the treatments to be com-

pared, and can randomly assign experimental

units to the treatments. Also called a designed ex-

periment.

Correlation: A measure of the strength of the linear

relationship between two random variables. A

strong correlation between two random variables

does not necessary signify a causal relationship be-

tween them.

Covariate: A variable that influences the response

but is unaffected by any other experimental fac-

tors. Including a covariate in the analysis may

increase the power of the analysis to detect treat-

ment effects.

Decision analysis: A structured, formalized method

for ranking management actions that are being

considered. It quantitatively takes into account

uncertainties.

Delphi technique: A procedure for interviewing ex-

perts and capturing their expertise by striving to

reach consensus in an expert panel or group set-

ting.
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Effect size: The treatment effect the experimenter

wants to be able to detect. Effect size influences

the statistical power of an analysis: larger effect

size yields greater statistical power.

Expected value of an outcome: The weighted average

outcome, where each outcome is weighted by the

probability assigned to its branch on the decision

tree. Summing these weighted outcomes for each

management action gives the “expected value” of

that action.

Experimental design: A plan for assigning treat-

ments to experimental units and the statistical

analysis associated with the plan. It includes for-

mulation of statistical hypotheses, choice of

experimental conditions, specification of the

number of experimental units required and the

population from which they are to be sampled, as-

signment of treatments to experimental units,

determination of the dependent variables to be

measured, and the statistical analysis to be per-

formed. 

Experimental error: Any variation, including sam-

pling (measurement) error and natural variation

error, that cannot be explained by the experimen-

tal factors.

Experimental factor: Any treatment or variable that

is controlled in an experiment, either by physically

applying a treatment to an experimental unit or by

deliberately selecting a unit with a particular char-

acteristic.

Experimental unit: The entity to which one treat-

ment (level of one or more factors) is applied.

Also called a treatment unit.

Explanatory variable: A variable that is thought to

provide information on the value of the response

variable.

Homogeneous: Experimental units are homoge-

neous when they do not differ from one another

in any systematic fashion and are as alike as possi-

ble on all characteristics that might affect the

response.

Hypothesis: A tentative assumption, adopted to ac-

count for certain facts that can be tested. 

Hypothesis testing: A type of statistical inference for

assessing the validity of a hypothesis by determin-

ing whether it is consistent with the sample data.

Impact survey: A type of nonexperimental study

where one site affected by some planned or un-

planned event is compared with a control site not

affected by the event. Impact surveys are typically

used to investigate the effects of large-scale, un-

replicated events. Types of impact surveys include

BACI (Before-After-Control-Impact) where vari-

ables in both an impact (treatment) and control

site are compared before and after some event,

and BACI-P (Before-After-Control-Impact-

paired)—an extension of BACI where control and

impact sites are sampled at the same points in

time, both before and after the event.

Null hypothesis: A statistical hypothesis that states

that there is “no difference” between the true

value of a parameter and the hypothesized value,

or that there is “no effect” of a treatment. 

Observational survey: A type of nonexperimental

study where results from two units or sites are

compared. Results are applicable only to the units

sampled, and cannot be extrapolated to other

units or sites.

Parameter: A numerical characteristic of a popula-

tion. It is often estimated by a sample statistic.

Passive adaptive management: Managers implement

what they assume, based on existing information,

is the “best” action (i.e., the action most likely to

produce the desired outcome). Adjustments are

made when actual outcomes deviate from predic-

tions. The limitation of passive adaptive

management is that it can be difficult to determine

why actual outcomes deviate from predictions. 

Power (1–β): The probability of correctly rejecting a

null hypothesis when it is actually false. Also called

statistical power, or the power of a test. 

Precision: The closeness to each other of repeated

measurements of the same quantity. Precision

should not be confused with accuracy. Imagine a

dart board: accuracy refers to the distance of the

dart from the bull’s-eye; precision refers to how

tightly grouped repeated dart throws are.

Prospective study: A study where actions (treat-

ments) have not yet been applied, and data have

not yet been collected. Prospective studies may be

either experimental or nonexperimental. Contrast

with retrospective study.

Pseudoreplication: Refers to various violations of the

assumption that replicated treatments are inde-

pendent. A common form of pseudoreplication

occurs when multiple subsamples from one treat-
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ment unit, rather than samples from multiple

(replicated) treatment units, are used to calculate

the statistical probability of a treatment effect.

P-value: Probability of obtaining a value for a test

statistic that is as extreme as or more extreme than

the observed value, assuming the null hypothesis

is true. In classical hypothesis testing, the null hy-

pothesis is rejected when the P-value is less than

the chosen significance level (α).

R2: A statistic that assesses how well a regression
model describes the relationship between the de-
pendent and independent variables. For
comparisons of several models using the same
data, it is more appropriate to use the adjusted
R2—R2 adjusted by the model degrees of freedom.

Randomization: Treatments are randomly assigned

to the experimental units, so that each unit has a

known and independent chance of being allocated

a particular treatment. Randomization protects

against possible bias (systematic error) by ensur-

ing that all unmeasured factors are more or less

evenly distributed among treatments. 

Random sampling: A scheme for choosing subjects

from a population, so that each member of the

population has a known (often equal) and inde-

pendent  chance of being selected. Random

sampling allows you to generalize the results of the

experiment to the population from which the

sample was drawn. 

Regression: A relationship where the magnitude of

one variable (the dependent variable) is deter-

mined in part by the magnitude of another

variable (the independent variable).

Replication: Replication involves applying the same

combination of factors to more than one experi-

mental unit. Replication is a means of assessing

the variability that is not attributable to the treat-

ment.

Response variable: A variable measured to assess the

outcome of an experiment. In regression, the re-

sponse variable is referred to as the dependent

variable.

Retrospective study: A study that uses data already

collected for other purposes or actions (treat-

ments) that have already been implemented. A

retrospective study is a type of uncontrolled (non-

experimental) study. Contrast with prospective

study.

Risk: The expected loss associated with an outcome

or decision. Risk is the product of the possible

magnitude of a loss and the probability of it oc-

curring.

Sample: A subset of measurements or observations

taken from a population. Conclusions about the

characteristics of the population can be drawn

from the characteristics of the sample. 

Sampling design: A plan that describes the nature of

the sampling units, the number of sampling units,

the method of selection, and the variables to be

measured. 

Sampling unit: A  basic unit selected for sampling.

Scientific (research) hypothesis: A testable proposi-

tion that is tentatively adopted to account for

observed facts and to guide investigation. 

Sensitivity analysis: A procedure for assessing the

degree to which predicted outcomes vary with

changes in assumptions about parameter values.

Significance level (α): The probability of making a

Type I error (i.e., rejecting a true null hypothesis).

In hypothesis testing,  indicates the maximum

amount of Type I error the experimenter is willing

to tolerate.

Standard deviation: A measure of the dispersion

(variability) of the data. The deviations of individ-

ual observations from the sample mean are

squared, the squares are averaged, and the square

root of the result is calculated.

Standard error: The standard deviation of a sample

statistic. Standard deviation is a measure of the

dispersion of the individual observations from

their mean; standard error is a measure of the dis-

persion of repeated sample statistics from their

mean.  

Statistic: A numerical characteristic that is computed

from a sample of observations and that estimates a

population parameter.

Statistical hypothesis: It states the scientific hypoth-

esis in precise, quantitative terms, often as a

variable whose sampling distribution can be de-

scribed statistically. 

Statistical independence: Observations are statisti-

cally independent if the value of one of the

observations does not influence the value of any

other observations. Simple random sampling pro-

duces independent observations.
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Statistical inference: The act of drawing a conclusion

about the characteristics of a population by ana-

lyzing the characteristics of a sample (i.e.,

generalizing about the whole, based on informa-

tion from a part of the whole).

Stochastic process: A process that is not completely

predictable.

Stratification: Survey units are grouped into homo-

geneous groups, according to some identifiable

characteristic(s). Each stratum is then surveyed.

Stratification in sampling is analogous to blocking

in experimental design.

Systematic sampling: A sampling scheme where

every kth unit in a population is sampled (with the

result that sampling points are a fixed distance

apart).

Type I error: The error of rejecting a null hypothesis

that is true.

Type II error: The error of not rejecting a null hy-

pothesis that is false.

Uncontrolled experiment: An experiment in which

the investigator does not control the selection of

treatments or the assignment of treatments to the

experimental units.

Variance: A measure of the dispersion (variability) of

the data. The variance is the square of the standard

deviation.
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