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Before discussing the design of monitoring surveys, I will consider some 
background information that will influence our design decisions.  Then I will offer 
some suggestions for the design, illustrated by a simple example.  The analysis 
will also be illustrated using that example.  These suggestions are based on my 
interpretation of the discussions at a workshop (Fancy 2000) organized by 
Steven Fancy (National Park Service) on February 23-24, 2000 to develop some 
recommendations for designing a sampling program.  The panel members were 
Paul Geissler, Douglas Johnson, and John Sauer (U. S. Geological Survey); 
Lyman McDonald and Trent McDonald (West, Inc.); and Anthony Olsen (US 
Environmental Protection Agency). 
 

Sampling on a Gradient  
 
There are many gradients and environmental differences that influence the 
distribution and abundance of plants and animals, including elevation and 
moisture gradients and differences in soil type and prior land use.  What animals 
and plants you find depends to a great extent on where you put your plot or 
transect.  I will illustrative the effect of a gradient on a simple random sample, a 
compact cluster sample and a systematic sample, using a simple example.  The 
population consists of the numbers 1 through 9, and we want a sample of 3 
numbers. 
 
Population: 1 2 3 4 5 6 7 8 9     True Mean = 5 
 
Simple Random Sampling (SRS) 
There are 84 Possible Samples:  
{1,2,3} ȳ  =2.00, v(ȳ  )=0.222 
{1,2,4} ȳ  =2.33, v(ȳ  )=0.519 
… 
{7,8,9} ȳ  =8.00, v(ȳ  )=0.222



 2 

 
 
 
 
 
 
 
 
 

Here yi is the number in the sample, ȳ   is the mean, v(ȳ  ) is the variance of the 
mean, n=3 is the sample size, N=9 is the population size, (1-n/N) is the finite 
population correction factor and i∈S indicates that point i is in the sample S.  The 
expected value of the estimated mean is the mean of estimates from the 84 
possible samples:  mean (2.00, 2.33, …, 8.00) = 5.00. This equals the true mean 
of the population, so the estimate of the mean is unbiased.  The true variance of 
estimated mean is the variance of the estimated means from the 84 possible 
samples around the population mean (5.00): [(2.00-5.00)2+(2.33-
5.00)2+…+(8.00-5.00)2]/84 = 1.67 .  The expected value of the estimated 
variance is the mean of the variance estimates from 84 possible samples: 
mean (0.222, 0.519, …, 0.222) = 1.67.  The variance estimate is unbiased, 
because the expected value equals the true value.  The intraclass correlation is 
0.00. 
 
Compact Cluster Sampling 
Population: 1 2 3 4 5 6 7 8 9  True Mean=5 
Cluster samples are used to reduce travel times between points.  Often sample 
points are located along a transect or subplots selected near a randomly selected 
point.  For our example, there are 3 possible samples:  
{1,2,3} ȳ   =2.00, v(ȳ  )=0.222 
{4,5,6} ȳ  =5.00, v(ȳ  )=0.222 
{7,8,9} ȳ  =8.00, v(ȳ  )=0.222 
The expected value of the estimated mean is mean (2.00, 5.00, 8.00) = 5.00.  
This equals the true mean of the population, so the estimate of the mean is 
unbiased.  The true variance of the estimated means is [(2.00-5.00)2+(5.00-
5.00)2+(8.00-5.00)2]/3 = 6.00 .  The expected value of estimated variance is 
mean (0.222, 0.222, 0.222)= 0.222.  Thus the actual variance (6.00) is larger 
than SRS variance (1.67), but the estimated variance is a biased underestimate 
(0.222). The intraclass correlation (0.85) is positive (Lohr 1999: 138-143). 
 
Systematic Cluster Sampling 
Population: 1 2 3 4 5 6 7 8 9  True Mean=5 
 
There are 3 possible samples:  
{1,4,7} ȳ  =4.00, v(ȳ  )=2.00 
{2,5,8} ȳ  =5.00, v(ȳ  )=2.00 
{3,6,9} ȳ  =6.00, v(ȳ  )=2.00 
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The expected value of the estimated mean of y is mean (4.00, 5.00, 6.00) = 5.00.  
This equals the true mean of the population, so the estimate of the mean is 
unbiased.  The true variance of the estimated means [(4.00-5.00)2+(5.00-
5.00)2+(6.00-5.00)2]/3 = 0.67.  The expected value of estimated variance is mean 
(2.00, 2.00, 2.00) = 2.00.  Thus the actual variance (0.67) is smaller than SRS 
variance (1.67), but the estimated variance is a biased overestimate (2.00).  The 
intraclass correlation (-0.35) is negative. 
 
Conclusions 
These results are summarized in the following table. 
 Simple Random 

Sample (SRS) 
Compact Cluster 
Sample 

Systematic 
Cluster Sample 

Mean estimate unbiased unbiased unbiased 
Variance estimate unbiased biased   

too small 
biased  
too large 

Actual variance  larger than SRS smaller than SRS 
Correlation 0 positive negative 
Advantages frequently used saves travel time variance smaller 

than SRS 
Disadvantages inefficient  - variance greater 

than SRS 
- variance is 
biased unless 
cluster considered 

- variance is a 
conservative 
overestimate 

 
Simple random sampling provides unbiased estimates of the mean and variance.  
A park can be stratified into more homogeneous areas to assure an adequate 
sample size in rarer habitats and to increase the precision of the estimates.  
Within a stratum, simple random sampling, compact cluster sampling, or 
systematic cluster sampling can be 
used.  Often it is advantageous to use 
both compact cluster sampling and 
systematic cluster sampling within a 
stratum.  Sample points are selected 
systematically with a random start to 
reduce the variance relative to SRS 
and to spread the sample points out 
evenly over the park.  The pattern to 
the right shows the locations of 100 
(uniformly distributed) random points.  
Note that the points tend to clump 
and leave gaps.  A cluster sample (a 
transect or subplots) can be taken at 
each of these systematically selected 
points to reduce the travel time 
between points.  For example, if it 
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takes three days to get to a point, it does not make sense to only spend 15 
minutes collecting data once you get there.  However, the data should be 
summarized (e.g. take the mean) for each cluster, and the variance should be 
calculated among clusters to avoid underestimating the variance.  If a regression 
or other analysis needs to use the observations from each point of a cluster (e.g., 
to relate bird counts at each point to the vegetation along the transect), the 
variance can be calculated using the jackknife procedure (Lohr 1999: 347-368).  
Using a standard statistical package without modifications will give the WRONG 
answers. 
 

Survey Design 
 
For a simple example, consider two habitat types 
(green and blue). 
 
 
 
 
 
 
 
 
 
 
Define a dense base grid (dots) that covers the entire 
park.  Select an initial systematic sample with a 
random start (triangles) with a sampling intensity that 
is appropriate for common habitats in inaccessible 
areas (the minimum sampling intensity).  A 
systematic sample is recommended because it is 
more precise than a simple random sample.  
However, both unstratified systematic and simple 
random samples frequently miss or under sample 
rarer habitats (blue).  Riparian areas are especially 
difficult to sample because they occupy a very small part of the area of the park. 
In addition, a systematic (or simple random) sample does not consider the 
differing costs of sampling in accessible and inaccessible areas. 
 
Roger Hoffman developed the following map of Olympic National Park that 
shows the travel times to areas of the park from the nearest trail or road.  Note 
that it takes three 8-hour days of hiking to get to some areas from the nearest 
trail.  Sample size and precision can be increased by selecting more points in 
accessible areas, but some points should be selected in inaccessible areas to 
provide some information on those areas. 
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One could use stratification (Lohr 1999: 
95-118) to distribute the sample to rarer 
habitats and to put more sample points 
in accessible areas.  If there is equal 
interest in all habitat types, then the 
sample size should be about the same 
in each to give approximately equally 
precise estimates for each vegetation 
type.  You may wish to put more 
sample points in critical habitat types to 
increase the precision for these habitats.  To optimize the sample (minimize the 
variance of the estimates for the park), considering travel times (costs), the 
number of sample points in a stratum should be proportional to hhh cSN  where 
Nh is the size of the stratum, Sh is the standard deviation and ch is the cost of 
sampling (Lohr 1999: 106-113).  If information on the standard deviation is not 
available, and you think it is similar in all strata, make the number of sample 
points proportional to hh cN .  Note that the variance of counts is often 
proportional to the mean, so that the square root of the expected animal or plant 
density could be substituted for Sh in the planning, if substantial differences in 
density among strata is expected. 
 
Once drawn, the strata must remain fixed forever.  For that reason, it is a good 
idea to use unchanging features to define the strata and not a vegetation map, 
which is likely to change.  If for example, one defines a stratum to include oak 
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woodland, but when one arrives at a sample point, one finds an open meadow, 
the point must NOT be changed to another stratum.  A stratum is an area defined 
on a map for the purpose of distributing the sample, and making any changes will 
bias the estimation.  Although we try to define strata so that they have 
homogenous vegetation and often name them after vegetation types, strata are 
logically distinct from the vegetation.   Strata are a mechanism to control the 
selection of the sample with known probabilities and "mistakes" will not bias the 
estimates, but correcting the "mistakes" will.   Domains should be used to make 
estimates for habitat types, whenever the vegetation does not completely match 
the strata.  I will describe these later. 
 
The unequal probability sampling approach is an alternative to stratification that 
allows more flexibility and allows changes, although it is more complex.  I will 
illustrate this approach by selecting 2 sample points from the blue areas with 
probabilities inversely proportion to the square root of the distance from the road 
(cost).  
Point Dist. Wt. Cum.Wt. Prob. 
A1 4 0.50 0.50  0.12 
B1 3 0.58 1.08  0.14 
B3 3 0.58 1.65  0.14 Selected  
B4 3 0.58 2.23  0.14 
D1 1 1.00 3.23  0.24 
D2 1 1.00 4.23  0.24 Selected  
Total  4.23   1.00 
Weight per sample 4.23/2  2.12 
Random number a (0<a<1) 0.63 
First point = 2.12 * 0.63  1.33 
Second point = 1.33 + 2.12 3.45 
 

 
 
Think of the weights being laid out on a line 4.23 units long.  Divide the line into 
two equal segments 2.12 units long, one for each sample.  Use a table of random 
numbers to find a random point in the first segment by multiplying the random 
number (between 0 and 1) by the segment length 0.63(2.12)=1.33.  The 
probability that each point will be selected is proportional to its weight.  To find 
the locations of the other sample points, successively add the segment length 
(2.12) to the previously selected sample points.  This approach uses systematic 
sampling to increase the precision of the resulting estimates. 
 
If you are following the examples with a hand calculator, note that I did the 
calculations using a spreadsheet and then rounded the results to simplify the 
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presentation.  Consequently, you will see small rounding errors when you follow 
the examples with a hand calculator. 
 
For the analysis, we will need the probability of including each sample point in 
the sample.  There were two sampling steps.  In the first, we took a systematic 
sample of 16 possible points.  The probability of selecting each was 1/16 = 0.06.  
In the second step, the probability of selecting each point is given above. 
 Prob. Select   Prob. In Sample  π 
Point 1st step 2nd step 
A2 0.06  0.00  0.23 
A4 0.06  0.00  0.23 
B3 0.06  0.14  0.42 
C2 0.06  0.00  0.23 
C4 0.06  0.00  0.23 
D2 0.06  0.24  0.55 
The probability that a point is in sample = 1 – (probability it was not selected each 
time).  For example, 
P(B3 in sample)= 1 – (1- 1/16)4 (1-0.14)2 = 0.42 
It is important to sample with replacement to allow the calculation of these 
probabilities, but with a dense grid there is little chance of picking the same point 
twice.   
 

Estimation 
 
Using the unequal probability sampling approach, we need the probability that 

point i is in the sample.  As discussed above, it is ( ) cn
ci

C

c
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there are C sampling steps, and at each step point i has probability pci of being 
selected on each of nc draws with replacement.  An estimate of the park mean 
from a sample point i is iii Nvyy π=~  where v (≤n) is the number of distinct 
samples not counting duplicates, yi is an observation and N is the number of grid 
points in the park including those which were not selected for the sample 
(Thompson 1992: 50, 46-53, 67-71).  To motivate this transformation, consider 
simple random sampling without replacement, where πi = v/N: 
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For the example, N=16, v=6 and iy~  for point A2 is  [6(13)]/[16(0.23)] = 21. 
Point Stratum πi   yi  iy~  2)~( yyi −  
A2    green   0.23  13  21   82 
A4    green   0.23  12  20    115 
B3    blue    0.42  55  49    329 
C2    green   0.23  18  30      1 
C4    green  0.23  17  28      6 
D2    blue    0.55  52  35     25 
Sum    183  559 
Park mean = 183/6 = 31 
Variance of mean = [559/(6*5)][(1-6/16] = 12 
 
One can use stratification to increase the precision, making separate estimates 
for the green and blue areas and then combining these estimates (Lohr 1999: 95-
118).  Redefine ihihi Nyvy π=~ to estimate the stratum mean instead of the park 
mean.  For example, ỹ  i for point A2 is [(4)(13)]/[(10)(0.23)] = 23. Then a stratum 

mean and its variance are ( ) 
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the sample units in stratum h.  The park mean and variance are 

2

11

222

11
  








== ∑∑∑∑

====

L

h
h

L

h
hh

L

h
h

L

h
hh NsNsNyNy .  For the example: 

Point Stratum πi   yi  iy~  2)~( hi yy −  
A2    green  0.23  13  23    12 
A4    green  0.23  12  21   28 
C2    green  0.23  18  32     28 
C4    green 0.23  17  30     12 
Sum   105 80 
Stratum mean = 105/4 = 26, variance = [80/(4*3)](1-4/10) = 4 
B3    blue   0.42  55  32  34 
D2    blue   0.55  52  43    34 
Sum   75 68 
Stratum mean = 75/2 = 37, variance = [68/(2*1)](1-2/6) = 23 
Park mean = [10(26) + 6(37)]  / 16 = 31, same as unstratified. 
Park variance = [102(4) + 62(23)] / 162 = 5, compared to 12 for the unstratified. 
 
Domains - estimates for a habitat types 
 
Say you want an estimate for the blue vegetation type.  This includes points B3 
and D2 that are in the blue stratum and point C4 that is in the green stratum, but 
which was discovered to have blue vegetation when visited on the ground.  This 
is an estimate of a domain or subpopulation (Lohr 1999: 77-81, 60-71).  Because 
the number of points in the domain is a random variable (unknown before the 
sample was selected), we estimate the domain mean as the ratio of the 
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estimated park total for the observations to the estimated number of points in the 
domain, using the transformation to account for the unequal probability of 
selection.  Here Sd refers to the sample points that are in the domain and S 
refers to all sample points, and vd is the number of distinct sample points in the 
domain without counting duplicates. 
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For the example: 
Point Domain πi   yi  ui ti 2)~~( idi xyy −  
A2     No  0.23  13  0    0 
A4     No  0.23  12  0   0 
B3     Yes   0.42  55  49   0.88 317 
C2     No  0.23  18  0     0 
C4     Yes 0.23  17  28    1.65 869 
D2     Yes   0.55  52  35    0.68 136 
Sum    112 3.22 1322 
Mean    19 0.54 
The estimated domain mean ȳ  d = 112/3.22 = 35.  Its variance  

51
16
61

54.0)5(6
1322)( =






 −=yv  and the 95% confidence interval is  

35 ± 4.303√51 = 35 ± 31.  The large confidence interval in this example results 
from point C4 being very different from the other points. 
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