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ABSTRACT 
 

 
The National Park Service (NPS) Inventory and Monitoring (I&M) Program is designed 
to collect baseline data on “vital sign” indicators across the entire NPS system.  The 
project presented in this thesis was designed to supplement to efforts of the Artic 
Network (ARCN) to catalogue the physical, chemical and biological metrics associated 
with the Stream Communities and Ecosystems vital sign and to foster a better 
understanding of the basic structure and function of these remote systems.  This data is 
essential to assess the impacts of current and future environmental change in the ARCN 
parks.   
 
The primary objective of this project was to quantify the genetic diversity of microbial 
communities of selected arctic stream ecosystems.  Microbes are a fundamentally 
important but poorly understood component of arctic stream ecosystems.  They are 
responsible for recycling organic matter and regenerating nutrients that are essential to 
the food webs of aquatic ecosystems.  Recent research (Jorgenson et al. 2002) in the 
ARCN parks has shown that two fundamentally different lithologies – ultramafic and 
non-carbonate – influence terrestrial productivity and impart different geochemical 
characteristics to stream water.  Microbes are found in different stream habitats – 
sediment (epipssamon) and rock (epilithon) biofilms.  In this work we test the hypothesis 
that these differences in lithology and stream habitat influence the genetic diversity of 
bacterial biofilm communities in arctic streams and whether these patterns can be 
correlated to stream biogeochemistry.  A microbial community fingerprinting method, T-
RFLP, as well as 16S rRNA gene sequencing were used to explore the genetic diversity 
of microbial communities in sediment and epilithic biofilms in stream reaches that drain 
watersheds with contrasting lithologies in the Noatak National Preserve, Alaska.   
 
Differing patterns in bacterial community composition at both the large-scale (lithology) 
and small-scale (stream habitat) were observed.  Non-metric multidimensional scaling 
(NMDS) ordination of T-RFLP peaks and Analysis of Similarity (ANOSIM) showed a 
high degree of separation (ANOSIM P < 0.001) between the non-carbonate and 
ultramafic lithologies, as well as the two habitats, sediment and epilithon.  Significant (P 
< 0.005, Bonferroni corrected) positive correlations were detected between particular 
nutrients, base cations, and dissolved organic carbon and bacterial community structure 
unique to each lithology.  Although clone libraries indicated high bacterial OTU diversity 
within and across stream sites, biogeographical patterns were observed depending on 
locality type.  Rarefaction analyses indicated that streams arising from the non-carbonate 
lithology may be more diverse than streams arising from the ultramafic lithology.  
Analysis of MOlecular VAriance (AMOVA) indicated that sediment and epilithon 
samples had genetically different microbial communities (P = 0.01) and taxonomic 
identifications revealed markedly different bacterial residents between sediment and 
epilithon habitats.  Our results show relationships at large- and small-scales at the 
landscape level and in ecological niches within a single stream.    
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CHAPTER 1: COMPREHENSIVE LITERATURE REVIEW 

 

1.1 Introduction 

 The purpose of this chapter is to provide background for this study.  The 

following topics will be reviewed: (1) the National Park Service (NPS) Inventory and 

Monitoring (I & M) Program, (2) Noatak National Preserve, Alaska, (3) the importance 

of microbial communities to ecosystem function and a description of typical freshwater 

bacteria including their habitat and role in aquatic ecosystems, (4) the concept of 

microbial biogeography, (5) the patterns in distribution and function of bacterial 

communities in aquatic environments, (6) the molecular methods and approaches 

available to characterize microbial communities in their natural environment, focusing on 

the methods employed in this study, (7) the linkages between biogeochemical 

constituents in the environment and microbial community composition, and (8) the 

microbial community observations by previous studies in arctic aquatic ecosystems.  This 

study investigates a microbial component of stream ecosystems in the Noatak National 

Preserve and explores the feasibility of using a microbial fingerprint as a metric in the 

Stream Communities and Ecosystems vital sign as part of the NPS Inventory and 

Monitoring Program to provide information about landscape and ecosystem-level 

functioning.      

 



1.2 The National Park Service Inventory and Monitoring Program 

 In 1992, the NPS established an Inventory and Monitoring Program as a strategy 

to improve park management through greater reliance on scientific information, in 

particular, “to develop scientifically sound information on the current status and long-

term trends in the composition, structure, and function of park ecosystems and to 

determine how well current management practices are sustaining those ecosystems” (NPS 

2005).  Nationwide, 270 national parks have been grouped into 32 ecosystem-based 

networks, Vital Sign Networks, linked by geographic similarities, common natural 

resources, and resource protection challenges (Figure 1.1) (NPS 2005a).  The network 

approach allows for collaboration, information sharing, and economies of scale in 

monitoring of natural resources that park managers are directed to preserve “unimpaired 

for future generations”.  

 The Arctic Network (ARCN) is one of the largest of these Vital Sign Networks, 

consisting of five contiguous NPS units encompassing 19.3 million acres (7.8 million 

hectares), or roughly 25 percent of all NPS acreage in the United States (Figure 1.2).  

These five NPS units are Gates of the Arctic National Park and Preserve, Noatak 

National Preserve, Kobuk Valley National Park, Cape Krusenstern National Monument, 

and Bering Land Bridge National Preserve.  The Noatak National Preserve is outlined in 

Figure 1.3.  These Arctic Parks harbor some of the most unique and relatively 

undisturbed freshwater ecosystems in North America.  

 “Vital signs” are measurable indicators of ecosystem health.  As used by the 

National Park Service, vital signs are “a subset of physical, chemical and biological 
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elements and processes of park ecosystems that are selected to represent the overall 

health or condition of park resources, known or hypothesized effects of stressors, or 

elements that have important human values.  Vital signs may occur at any level of 

organization including landscape, community, populations, or genetic level, and may be 

compositional (referring to the variety of elements in the system), structural (referring to 

the organization or pattern of the system), or functional (referring to ecological 

processes)” (Sanzone et al. 2006).   ARCN has chosen 28 candidate vital signs to monitor 

within their parklands (e.g. Lake/Stream Communities and Ecosystems, Permafrost and 

Thermokarsting, Climate and Weather, and Air Contaminants, etc.).     

 The monitoring objectives for the freshwater ecosystems set forth by ARCN are: 

1) to collect baseline data on the physical, chemical, and biological parameters of 

streams, lakes, and surrounding watersheds within ARCN, 2) to determine long-term 

trends in the physical, chemical, and biological characteristics of streams, lakes, and 

surrounding watersheds within ARCN, and 3) to understand how the landscape 

components interact at various spatial and temporal scales to affect freshwater 

ecosystems.   

 Networks in the NPS Inventory and Monitoring Program develop their monitoring 

strategies through a three-phase approach (Figure 1.4).  Phase I includes gathering 

background information, developing conceptual ecological models, and formulating 

initial objectives, Phase II involves the selection of vital signs, and Phase III involves 

developing overall sample design, sampling protocols, and a data management plan.  The 

challenge remains in choosing appropriate metrics, or specific features, to quantify an 
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indicator (e.g. nutrients, chlorophyll a and algae, metals, benthic invertebrates, etc.) that 

will provide the most valuable information towards understanding the dynamics of 

stream ecosystems. 

 The primary objective of this project was to test the value of using measures of 

microbial community diversity as metrics within the Stream Communities and 

Ecosystems vital sign for the ARCN parks.  In addition to its potential value in measuring 

a vital sign indicator, microbial diversity provides fundamentally important information 

about the structure of arctic stream ecosystems that may ultimately be useful in 

understanding associated biogeochemical processes that drive stream ecosystem function 

in this environment. 

 

1.3 The Noatak National Preserve, Alaska 

 The Noatak River and its watershed occupy 6.6 million acres and extend from the 

Kotzebue Sound through the Arctic foothills of the Brooks Range located in northern 

Alaska.  The headwaters of the Noatak River arise in the Gates of the Arctic Park within 

the central Brooks Range, a granitic northern extension of the Rocky Mountains, and are 

fed primarily by snowmelt, with some groundwater and glacial contribution (Elias et al. 

1999).  The Noatak River is the longest continuous river segment in the U.S. National 

Wild and Scenic system and the largest mountain-ringed river basin that is virtually 

unaffected by humans in the United States (Milner et al. 2005).   

 Due to its complex geology and variety of climate and landscape conditions, the 

Noatak River basin harbors a wider array of ecosystems than does any other watershed of 
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comparable size in the Arctic region (Jorgenson et al. 2002).  The vast and remote nature 

of the Noatak River basin has left the area and its ecosystems poorly documented from a 

scientific perspective.  Aside from a few isolated studies in soil and parent material 

(Binkley et al. 1994, Binkley et al. 1995, Stottlemyer et al. 2003), vegetation (Young 

1974, Oswald et al. 1999, Suarez et al. 1999), and lakes and rivers (Smith 1913, O'Brien 

et al. 1975), knowledge of the ecosystems of the Noatak River basin is limited, 

particularly for the freshwater environments.  A 1973 expedition led by Steve Young was 

the first “coordinated, interdisciplinary scientific inquiry into the natural environment of a 

piece of Arctic terrain considerably larger than a number of states in the northeastern 

United States” (Young 1974).  Following the work by Young et al. (1974) the Noatak 

watershed was established as a Biosphere Reserve in 1976, a National Monument in 

1978, and a National Preserve in 1980 (Jorgenson et al. 2002). 

 The highest elevation in the Noatak River basin is Mount Igikpak (elevation = 

2594 m) in the Schwatka Mountains.  There are three distinct elevation gradients based 

on slope from the steeper headwater branches of the Noatak River to the medium-

gradient main stem to the estuarine lowland segments near the coast (Milner et al. 2005).  

The basin is characterized by six major regions.  These six regions were designated by 

P.S. Smith in 1913 as Headwater Mountains, Aniuk Lowlands, Cutler River Upland, 

Mission Lowland, Zigichuck Hills, and the Coastal Lowland (Young 1974). 

 The Noatak River basin has an arctic climate, with long cold winters and short 

cool summers.  Mean temperatures for July and February are approximately 11ºC and -

25ºC, respectively (Anderson et al. 1994).  The floor of the basin and the surrounding 
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uplands are essentially underlain by continuous permafrost.  Arctic streams vary 

according to the permafrost characteristics and duration of seasonal thaw periods.  The 

streams of the Noatak region begin to freeze in October, with no discharge from the 

upper basin later in winter.  River ice breakup occurs in early May and then rapid 

streamflow is observed in June due to spring snowmelt (Milner et al. 2005).  Ice 

extension to the substrate of the freshwaters during the Arctic winter creates a limited 

environment for the benthic macroinvertebrates in which adaptations and physiological 

tolerances to freezing are critical for survival (Milner et al. 2005).  

 Air temperatures over the last decade (1990-2000) were the warmest in the last 

400 years (Overpeck et al. 1997).  This warming event has triggered substantial tree 

growth in the Noatak Valley allowing for spruce forest to pervade the tundra landscape 

(Suarez et al. 1999).  Microbial growth and processing of organic matter should be 

strongly linked to temperature; however, the effect of increased temperature on microbial 

activity is unclear (Rouse et al. 1997).   

     

1.4 The Importance of Microbial Communities 

 Over the past four decades of molecular-phylogenetic studies, researchers have 

gradually built an impressive map of evolutionary diversification revealing that the 

primary diversity of life is microbial.  Microbial diversity was shown by Woese (1990) to 

be distributed across a three-domain classification system based on the differences in the 

sequences of the nucleotides in the cell’s ribosomal RNA (rRNA): Archaea, Bacteria, and 

Eucarya.  Characteristics across these three domains provide evidence that inorganic 
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material sustained earlier life and that photosynthesis and use of organic compounds for 

carbon and energy metabolism evolved later (Pace 1997).   

 Microbial life encompasses the vast majority of all metabolic and genetic 

diversity on Earth; microbes can survive and thrive in any environment where it is 

thermodynamically favorable (Gleeson 2007).  Bacteria act as geochemical agents in 

various environments by influencing primary mechanisms of mineral mobilization, redox 

activity, and elemental (C, N, S, and P) cycling (Ehrlich 1998).  The activity of bacteria 

and other microorganisms play numerous roles in regulating atmospheric composition, 

recycling inorganic and organic matter, and keeping the planet habitable for all forms of 

life (Ehrlich 1998). 

 Comparing the rRNA structure of bacteria is informative because rRNA 

molecules throughout nature perform the same functions with little structural change over 

time.  For this reason, similarities and differences in rRNA nucleotide sequences is 

indicative of the degree of relatedness between organisms.  The development of 

molecular-phylogenetic methods to study natural microbial ecosystems without the 

traditional culture-based techniques has resulted in the discovery of many microbial 

lineages (Pace 1997). 

 Our current understanding regarding the composition of the natural microbial 

world is rudimentary given the limited number of environments studied so far with 

modern molecular methods, however the progress observed in this field each day is 

substantial.  The rRNA genes isolated from the environment of organisms that represent 

different types of genomes can be targets for further characterization if they seem 
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interesting or useful towards systems processes (Pace 1997).  An inventory of the 

microbial diversity across ecosystems may provide further understanding of the 

mechanisms of our biosphere.  

1.4.1 Typical Freshwater Bacteria: Function, Biofilm Habitat, and Composition 

 Numerous studies confirm the importance of bacteria and their consumers to 

aquatic ecosystem function in terms of energy flow and biogeochemical cycling.  Cole et 

al. (1988) estimated that approximately 40% of the total primary productivity was 

consumed by bacteria in aquatic ecosystems in environments ranging from highly 

oligotrophic to highly eutrophic.  Peterson et al. (2001) showed the importance of 

bacteria to nitrogen cycling in headwater streams via bacterial assimilation of 

ammonium.   

 Bacteria also play an important role in the cycling and transformation of metals 

within the aquatic environment.  Bacteria can cause localized accumulation or association 

of metals around their cells as well as affect the solubility and availability of metals by 

promoting either the oxidation or reduction of certain elements (Bremer and Geesey 

1994).  Bacteria or reactions mediated by enzymes or metabolic products from bacteria 

influence the availability of metals to other aquatic organisms and the surrounding 

environment.    

 Bacteria in aquatic systems can adopt two different lifestyles: sessile (attached) or 

planktonic (free-floating).  A biofilm (Figure 1.5) provides a refuge for sessile bacteria 

and in this state they are defined as “polysaccharide-encased, surface-adherent microbial 

communities” (McLean 2002).  A sessile mode of life for bacteria within a biofilm offers 
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numerous advantages over the planktonic mode, including the ability to acquire and store 

nutrients from the water column in the biofilm matrix (Paul et al. 1991), symbiotic 

relationships with neighboring organisms (bacteria, algae, fungi) (Sigee 2005), resistance 

to toxic chemicals and environment stressors via enzymatic activity and structural 

protection (Costerton et al. 1987), and genetic resilience due to mechanisms of lateral 

gene transfer (Christensen et al. 1998, Hausner and Wuertz 1999).   

 The importance of sessile bacteria in aquatic environments has been recognized 

and explored for many years starting with early biofilm research largely focused on 

alpine streams (Geesey et al. 1978, McFeters et al. 1978).  Biofilm-associated microbes 

drive biogeochemical cycling due to their ubiquity, diverse metabolic capabilities, and 

high enzymatic activity (Moss et al. 2006).  Furthermore, biofilm organisms (photo- and 

heterotrophic) play a major role in ecosystem processes because of their high abundance 

and metabolic contribution.   

 Sessile bacteria adhere to rock and sediment surfaces through the excretion of 

polymeric fibers, anchoring the cell and allowing bacteria to take hold within the biofilm 

matrix.  Bacteria act as initial colonizers to submerged surfaces and prepare the substrate 

for subsequent colonization for other organisms (Geesey et al. 1978).  These 

heterotrophic bacteria are major players in biogeochemical cycles utilizing sediment and 

rocks as substrate for both biological and chemical reactions.  Organic matter and 

minerals (iron and manganese oxides) coat sediments at the bottom of streams or rock 

surfaces (Thurman 1985).  This coating is referred to as a ‘conditioning film’ and 

provides the first opportunity for bacterial adhesion and attachment for biofilm 
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development (Sigee 2005).  Suspended sediment particles also have organic matter and 

mineral coatings to form macro aggregates, sometimes referred to as “snow” or “floc” in 

aquatic systems (Wotton 2007).  These macroaggregates also act as substrate for bacterial 

adhesion.    

  Depending on available resources, only certain types of bacteria communities 

will thrive within the biofilm.  Competition, succession, and mutualism within the 

bacterial community enhances weathering processes (mineral dissolution and deposition), 

regulates uptake of both organic matter and inorganic nutrients, and even catalyzes the 

exchange of genetic material resulting in new evolutionary lineages (McLean 2002). 

 Freshwater bacterial communities have been shown to be characterized by the 

following classes: Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, 

Verrucomicrobia, and Planctomycetes (Glockner et al. 2000, Zwart et al. 2002).  Figure 

1.6 depicts a phylogenetic tree based on bacterial small subunit (SSU) rRNA sequences 

from freshwater environments. 

Microbial ecologists have only recently begun exploring linkages between 

microbial community structure and microbial community functioning in a variety of 

aquatic and aquatic-terrestrial interface environments, such as in soils (Dunbar et al. 

2002, Nemergut et al. 2005, Oline 2006), marine (Cottrell and Kirchman 2000, Fuhrman 

2002, Kirchman et al. 2007), glaciers (Skidmore et al. 2005), lakes (Zwart et al. 2002, 

Langenheder et al. 2005, Lindstrom et al. 2006), wetlands (Gutnecht et al. 2006) and 

rivers and streams (Crump and Hobbie 2005, Hullar et al. 2006, Fierer et al. 2007, 

Anderson-Glenna 2008).  Although the importance of bacterioplankton and sediment 
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bacteria in biogeochemical cycles of freshwater ecosystems is well known, our current 

knowledge on the functioning and phylogeny of stream microbial communities remains 

unclear, especially for streams at high altitudes and latitudes in which the ecological 

importance of cold ecosystems under a changing climate is evident. 

 

1.5 The Concept of Microbial Biogeography  

 Several studies support the conclusion that microorganisms are distributed 

ubiquitously in the biosphere, because they are abundant and easily transported by wind 

or water, suggesting that community composition within a habitat may be determined by 

local environmental conditions (Finlay 2002). This statement refers to one of the oldest 

concepts in microbiology that “everything is everywhere, but the environment selects” 

(Baas-Becking 1934).  The concept reflects that microbes are so small that their 

ecological niche is defined below a millimeter scale and as a result suitable habitats are 

widespread. 

 However, recent studies dispute the idea that ‘everything is everywhere’ and a 

growing body of evidence shows that microorganisms vary in abundance, distribution 

and diversity, over taxonomic and spatial scales (Whitfield 2005, Hughes-Martiny et al. 

2006, Anderson-Glenna et al. 2008). 

1.5.1 Microbial Community Composition and Function: The Environment Selects 

 Surveys of bacterial diversity in lakes and streams have identified many 

populations common to freshwater systems worldwide, but the processes by which these 

populations interact with their environments are poorly understood (Crump et al. 2003).  
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Many variables that directly influence stream microbiota have not been identified and the 

mechanisms of microbial community response to environmental controls are not clear.  

 Findlay (2003) showed changes in ecosystem functioning resulting from changes 

in the genetic structure in microbial communities.  Similarly, Franklin (2001) used batch 

culture experiments to assess microbial community structure and functional potential and 

found that structural differences between communities maintained in the same 

environment can exhibit differences in community organization and function. 

 Findlay (2003) showed that biofilm communities responded to nitrogen additions 

by changes in function with no apparent change in community composition.  Thus 

functional similarity under similar environmental conditions may not be a result of 

similar bacterial community composition.  Likewise, Langenheder (2005) found that 

communities of varying composition existed under similar conditions and noted that 

bacterial communities are comprised of “populations of generalists that can grow under 

most conditions as well as populations with the life strategy of specialists”.  Furthermore, 

Langenheder (2006) observed that differently composed communities were different with 

regard to specific enzyme activities, but maintained similar broad-scale functions, such as 

biomass production and respiration. 

1.5.2 Microbial Community Composition and Function: Geographical Patterns 

 Recent research suggests that at least some bacterial taxa can exhibit geographical 

patterns.  The strongest evidence to date for biogeographical patterns in prokaryotic 

organisms comes from a study by Whitaker (2003) in which a survey of the genetic 

diversity of hotspring archaen Sulfolobus isolates from five geographically distinct 
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regions was found to have significant correlation between genetic distance and 

geographical distance. 

 At the stream reach scale along a single riffle, Franken (2001) noted that there is a 

typical flow pattern in which surface water enters the hyporheic zone in a downwelling 

zone at the head of the riffle and hyporheic water returns to the stream surface in an 

upwelling zone at the tail of the riffle.  Boulton (1998) describes the system as upwelling 

subsurface water supplying stream organisms with nutrients while downwelling stream 

water provides dissolved oxygen and organic matter to microbes and invertebrates in the 

hyporheic zone.  Findlay and Sobczak (2000) noted that bacterial abundance in the 

hyporheic zone was greater in shallow hyporheic sediments than in deeper sediments and 

greater in sediments of downwelling zones than upwelling zones.  These observed 

microbial community dynamics in shallow hyporheic sediments may influence the 

composition of microbial communities in the stream channel at the habitat scale.    

 The studies reviewed above have attempted to differentiate the effects of 

geographic distance versus environment on microbial community composition.  There is 

a clear indication that microbial assemblages can exhibit both environmental isolation 

and biogeographical provincialism at a range of scales, which in some cases ‘the 

environment selects’, but it is not always the case that ‘everything is everywhere’. 

 

1.6 Methods of Microbial Community Characterization 

 Despite the importance of bacteria and their role in biogeochemical cycling, their 

taxonomy is poorly understood.  Conventional methods for taxonomic classification of 
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bacteria are contingent upon culture-based methods of bacterial strains.  However, less 

than 10% (and frequently less than 1%) of environmental bacteria are culturable 

(Handelsman 2004).  Due to the fact that traditional methods for the identification of 

bacteria rely on pure cultures, the majority of environmental bacteria are unidentifiable 

using conventional methods (Pusch et al. 1998). 

  The development of DNA based techniques has provided new methods for the 

identification and quantification of environmental microorganisms (Saylor and Layton 

1990).  There are numerous methodologies currently available to characterize microbial 

consortia, which are broadly classified as nucleic acid-based, biochemical-based, and 

microbiological-based methods.  Nucleic acid-based techniques are the optimal approach 

for providing definitive information on naturally occurring microbial communities 

(Spiegelman et al. 2005).  Nucleic acids-based studies have differentiated novel types of 

rRNA sequences in the environment that diverge more deeply in phylogenetic trees than 

those of cultivated organisms, suggesting that the divergent organisms recognized by 

rRNA sequence are potentially more different from known organisms in the lineage than 

the known organisms are from one another (Pace 1997).  

 Method development in the field of microbial ecology has made leaps and bounds 

since the 1960s when the most advanced studies focused on pure cultures but could not 

provide insight into interactions among microorganisms and between microorganisms 

and their natural environment.  It was not until the 1980s when researchers first 

considered factors such as density, diversity and function of overall microbial populations 

in their natural environment, rather than just a single cultured organism.  Thomas D. 
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Brock theorized and clarified that the characteristics of an organism cultivated in a 

laboratory setting may not reflect its true physiology or activity in their natural 

environment where resource competition, predation and other dynamic environmental 

variables persist (Brock et al. 1994).  Meanwhile, Pace (1985) found that microbial 

diversity could be studied using molecular applications without traditional cultivation, 

but by retrieving macromolecules (DNA, RNA, proteins) of different organisms in an 

environmental sample.   

 Many of these culture-independent techniques are possible because of the advent 

of the polymerase chain reaction (PCR), a method that detects microorganisms in a 

sample based on a target sequence in their rRNA genes, by amplifying the rRNA signal 

relative to the noise of other genes present in each organism’s DNA.  Amplification of 

the rRNA genes is valuable because these genes are ubiquitous and highly conserved in 

all cell-based organisms. 

 Ideally, a comprehensive study on the microbial communities of a stream 

ecosystem requires the following three approaches as suggested by (Pusch et al. 1998): 

1) overall analysis of the community giving a general overview of the diversity and 

identification of dominant species, 

2) identification of strains and physiological work on relevant species 

3) the single-cell approach (fluorescent antibodies or molecular probes) to study the 

functional niches of a specific species or a functional group situated in the habitat.  

 This study employed the first approach mentioned above to establish “who is 

there?” in the environment with the caveat that the next logical study would attempt to 
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answer “what are they [the microbes] doing?” in their particular environment.  In this 

study two methods were used – terminal restriction length polymorphism and 16S rRNA 

gene cloning and sequencing – to assess the genetic diversity and to infer the identity of 

dominant species of bacteria across the arctic streams studied. 

1.6.1 Microbial Community Fingerprinting: Terminal-Restriction Fragment 

Length Polymorphism (T-RFLP) 

 T-RFLP is a semi-quantitative, culture-independent approach developed for rapid 

analysis of microbial diversity from various environments (Liu et al. 1997).  T-RFLP is 

one of many molecular fingerprinting techniques that separate PCR products of 16S 

rRNA genes by nucleotide base pair size.  Bacterial DNA is amplified from the 

collective, extracted DNA using “universal” primers based on the conserved sequences in 

16S rRNA.  The PCR pool is digested with restriction enzymes that make cuts in the 

DNA at specific nucleotide sites.  Because each digestion could potentially yield multiple 

fragments per amplicon, generating complex patterns that are too difficult to resolve, the 

refined T-RFLP approach was developed.  T-RFLP uses fluorescently-labeled primers 

(one of the two primers used in the PCR amplification has a fluorophore) so that only one 

terminal-restriction fragment (T-RF) is visualized, resulting in a simplified restriction 

pattern for analysis (Avaniss-Aghajani et al. 1994).  The T-RFs are then separated 

according to length by agarose gel electrophoresis.  The gel banding patterns that result 

based on the positions of individual restriction sites varies between the different 

“ribotypes” detected.  The T-RFLP method assesses microbial communities and gives a 

qualitative estimation based on the number of unique PCR fragments and relative 
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frequencies of the various polymorphisms, or ribotypes, present in a given sample (Liu et 

al. 1997).  See Figure 1.7 for a schematic of T-RFLP analysis. 

 Advantages to T-RFLP include high-resolution, accurate sizing and fluorescence 

detection of the individual fragments by the use of internal size standards, and high 

sample throughput due to the use of automated fragment analyzer instrumentation.  Many 

studies have successfully applied T-RFLP in comparing the similarity of microbial 

communities from different ecosystem localities such as soils (Dunbar et al. 1999, 

Dunbar et al. 2000, Dunbar et al. 2002, Blackwood et al. 2003), glaciers (Bhatia et al. 

2006), and lakes (Langenheder and Ragnarsson 2007), as well as detecting seasonal shifts 

in stream microbial community composition in response to environmental factors (Hullar 

et al. 2006) and landscape-scale biogeography (Fierer et al. 2007). 

 Limitations of this method are that sequencing of the T-RFs is not possible and 

phylogenetic information can only be inferred indirectly by comparison of T-RF lengths 

of 16S rRNA databases of theoretical restriction enzymatic sites, resulting in a probable 

T-RF length (Kent et al. 2003).  However, T-RFs of the same size can be generated from 

microbial taxa that are distantly related, resulting in an underestimation of diversity 

(Blackwood et al. 2007).  There is considerable debate in the literature as to whether T-

RFLP analysis qualitatively reflects minimum differences in community composition or 

can be used to quantitatively describe community diversity (Blackwood et al. 2007, 

Fierer et al. 2007).  The current consensus is that T-RFLP is most appropriately 

considered as an assessment of diversity on a very coarse scale, not at the species scale of 

taxonomic resolution.  
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1.6.2 16S Ribosomal RNA (rRNA) Gene Cloning and Sequencing  

 Clone libraries are developed from sequences of phylogenetic genes from 

environmental nucleic acids.  The most common is the small subunit (SSU) ribosomal 

16S rRNA, an approach proposed by Carl Woese in the 1970s. The power of this 

approach is due to particular characteristics of the 16S rRNA gene: its ubiquity in 

prokaryotes, its three-dimensional structure is highly conserved among members with 

close phylogenetic differences, it contains both conserved and variable regions, and is 

resistant to lateral gene transfer.  

 The basics of building a 16S rRNA clone library from an environmental sample 

are as follows (see Figure 1.8): (1) extract DNA contained in the sample, (2) amplify the 

bacterial DNA from the collective DNA using “universal” primers based on the 

conserved sequences in 16S rRNA, (3) insert or “ligate” the PCR products (16S rRNA 

genes from various bacterial organisms present in the sample) into plasmids (small 

circular double-stranded DNA from natural bacteria) that act as vectors to form new 

recombinants with the foreign DNA that are then (4) introduced or “transformed” into 

bacterial cells that can produce many copies of the inserted DNA, which are (5) grown on 

plates for the isolation of individual environmental clones that can be prepared for 

sequence analysis.    

 Databases such as GenBank “BLAST” (Altschul et al. 1990) can be used to 

compare the obtained 16S rRNA sequences with other known sequences to identify 

microorganisms with the closest match.  This information can also be used to estimate 
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genetic distances between sequences and used to reconstruct phylogenetic trees that 

suggest evolutionary relationships.  

 The advantage of sequence-based techniques over fingerprinting methods is that 

clone libraries provide information for both the phylogenetic identity and to some extent, 

the relative abundance of community OTUs (operational taxonomic units) – a term used 

to describe the diversity, or species richness, of a sample (Stackebrandt 2006).  This 

information can be stored and compared to sequences obtained from other studies.  As 

long as sequences from multiple samples from one locality are retrieved, there is a higher 

probability of discovering novel phylogenetic groups.  Clone libraries also allow for a 

greater sampling coverage of phylotype diversity over T-RFLP (see Figure 1.9).   

 Fingerprinting and sequence-based methods are both subject to all of the biases of 

PCR in that the primers preferentially bind to the dominant template in a sample, thus 

masking minor populations and rare organisms.  Moreover, another major limitation of 

clone library characterization is that the high bacterial diversity in most environments, 

especially soils and sediments, is not a true reflection of the true microbial community 

present in the environment.  Unlike fingerprinting methods (T-RFLP), sequence-based 

analyses are laborious and expensive which makes it difficult to analyze multiple samples 

with replication.  However, recent technologies and private enterprises are facilitating the 

gathering of DNA data. 
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1.7 Linkages between Biogeochemistry and Microbial Community Composition 

 There is little understanding of microbial communities and their relationships with 

other organisms or their fluctuations with respect to environmental conditions and 

seasons.  Algae and bacteria are known to form symbiotic communities within biofilms, 

which provide an ecologically important source or organic nutrients for the growth of 

heterotrophic bacteria within aquatic environments (McFeters et al. 1978). 

 Various biotic and abiotic factors likely influence microbial community 

composition in aquatic ecosystems, some of which are physical variables (i.e. 

temperature variations, climate, topography, and light availability) and biogeochemical 

variables (i.e. underlying and surrounding lithology, terrestrial vegetation and solute 

composition including carbon sources, inorganic nutrients, and electron acceptors).     

 Microbes are capable of metabolizing via various metabolic pathways, each 

consisting of a different combination of redox reactions, and each producing a different 

net gain in energy (Figure 1.10).  Microbes fill niches covering all possible scenarios of 

the availability of electron acceptors.  Depending on the redox potential of a particular 

environment there are specific microbes that carry out redox reactions specific for 

differing geochemical environments (e.g oxic, anaerobic, sulfidic).  As the environmental 

conditions of an ecosystem become anoxic, microorganisms adapt and perform the 

appropriate redox reactions as their metabolic pathway.  The microbial and the 

geochemical environments in aquatic ecosystems exert feedback on each other through 

microbial metabolism and numerous naturogenic and anthropogenic environmental 

processes (e.g. mineral dissolution and nutrient cycling).  All the constituents, reducers 
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and oxidizers, are not only critical to microbial viability, activity and growth, but they are 

also critical components to geochemical cycling in aquatic ecosystems. 

 The availability of inorganic nutrients and the redox speciation in freshwater 

ecosystems affects bacterial abundance and activity.  For example, dissolved inorganic 

phosphorous is a common limiting factor of bacterial growth. Furthermore, the presence 

of energetically favorable terminal electron acceptors can exert strong control on the 

ability of bacteria to metabolize organic matter at redox surfaces in sediments, rocks and 

soils (Hedin et al. 1998, Kainanen et al. 2002). 

 Few researchers have investigated the effect of lithogical and biogeochemical 

variations on microbial community structure.  Takai (2003) found that archaeal 

organisms present in subsurface Cretaceous rock shifted over small scales to changes in 

the lithology and geochemical gradients.  Skidmore (2005) found that microbial 

community composition was correlated with chemical weathering products that were in 

turn controlled by bedrock mineralogy of two geographically distant glaciers. 

 Resolving the interactions between microbial communities and their geochemical 

environment remains a challenge for microbial ecologists and biogeochemists.  A circular 

cause and consequence question persists: Does microbial community composition drive 

biogeochemical processes or does biogeochemistry control the composition of particular 

microbial assemblages? 
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1.8 Microbial Communities of Arctic Aquatic Ecosystems 

 The literature on microbial communities in arctic freshwater ecosystems is 

limited.  Many studies of microbial community structure and functioning have been 

conducted in the sub-arctic region of Sweden primarily restricted to lakes (Lindstrom 

2001, Lindstrom and Bergstrom 2004, Langenheder et al. 2006) or arctic Norway in 

wetlands (Hoj et al. 2005).  Microbial research in arctic Alaska includes bacterial studies 

in Toolik Lake on the North Slope of Alaska, examined by Bahr (1996) and Crump 

(2003), surrounding lakes and inlet and outlet streams near Toolik Lake (Crump et al. 

2007) as well as archaea and bacteria studies in a river-influenced coastal arctic 

ecosystem in the Beaufort Sea (Galand et al. 2006, Garneau et al. 2006) and the Chukchi 

Sea and the Canada Basin (Kirchman et al. 2007) of the western Arctic Ocean. 

 Bahr (1996) cultured a variety of phyla potentially capable of metabolizing a wide 

range of compounds, suggesting that extreme arctic conditions do not prevent adaptation 

by species more commonly found in temperate freshwater environments.  Crump (2003) 

hypothesized that shifts in planktonic bacterial community composition would occur due 

to major seasonal changes in the source and quality of dissolved organic matter.  They 

observed that community composition shifts resulted from both changes in the relative 

abundance of autochthonous bacteria (native to the system) as well as advection of 

allochthonous bacteria (from outside the system) via the Toolik Lake inlet stream during 

the spring thaw.  This study poses a localized microbial biogeographical question 

regarding how inlet streams affect lake bacterial community compositions and 

consequently, how lake communities influence outlet stream communities.      
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 There have been few microbial sediment and rock biofilm investigations in stream 

ecosystems (Battin 2000, Hullar et al. 2006, Anderson-Glenna et al. 2008) and no 

epilithic examinations in Alaskan stream ecosystems.  One reason for the paucity of 

arctic biofilm studies may be due to the difficulty in attaining ample microbial biomass 

material for genetic DNA amplification from these ultraoligotrophic systems.  

 

1.9 Research Goals 

 The study described in Chapter 2 of this thesis was carried out within the context 

of a larger project supported by the Arctic Network (ARCN) of the National Park Service 

Inventory and Monitoring Program.  The goals of ARCN were to establish a baseline for 

the physical, biological, and chemical characteristics of stream ecosystems in their 

parklands and to monitor specific metrics pertaining to ecosystem function to assess 

spatial and temporal variability at the landscape scale and to predict responses to 

environmental change.  The goal of my research was to identify patterns in stream 

microbial community composition at the landscape and habitat scale and to correlate 

patterns with stream biogeochemistry.  This study contributes to the overarching goals of 

ARCN by providing insight into patterns of microbial taxonomic structure in arctic 

streams, in turn, making progress towards understanding the roles of microorganisms and 

their biogeochemical environment within local and global ecosystems.
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Figure 1.1. The 32 National Park Service (NPS) Inventory and Monitoring (I&M) 
Networks (taken from nps.gov). 
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Figure 1.2. The four NPS Inventory and Monitoring Networks in Alaska: Southeast 
Alaska, Southwest Alaska, Central Alaska and the Arctic (taken from nps.gov). 
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Figure 1.3. The Noatak National Preserve resides in the NPS Arctic Network, Alaska 
(taken from A. Balser).
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Figure 1.4. Conceptual diagram of the NPS three-phase approach to establish individual 
network I&M Programs (nps.gov). 
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Figure 1.5. A cross-sectional diagram of a microbial biofilm (taken from nps.gov). 
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Figure 1.6. Phylogenetic tree based on bacterial small subunit (SSU) rRNA sequences.  
Large drops indicate typical and dominant groups of freshwater bacteria and small drops 
represent other groups observed in, but not unique to freshwater (taken from Logue et al. 
2008). 
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Figure 1.7. Schematic of the terminal restriction fragment length polymorphism (T-
RFLP) methodology (taken from Crump, 2005). 
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Figure 1.8. Schematic of the 16S rRNA gene cloning from environmental samples (taken 
from Crump, 2005).

 40



 
  

 
 

 

 

 

 

 

 

 

Figure 1.9. Relationship between methodologies (dotted lines) and phylogenetic diversity 
coverage.  Rarefaction curves show theoretical depths of coverage (phylotypes of OTUs 
observed) for two microbial communities, indicating that the coverage achieved differs 
by methodology depending on the overall phylogenetic diversity (Stackebrandt 2006).  
The two methods employed in this study are community fingerprinting and clone 
libraries.

 41



 
 
 
     

H2O
H2

O2

H2O
NO3

-

N2 MnO2

Mn2+
Fe(OH)3

Fe2+
SO4

2-

H2S CO2

CH4

Oxic

Sub-oxic
anaerobic

Sulfidic

Methanic

Aerobes

Denitrifiers

Manganese reducers

Sulfate reducers

Methanogens

Iron reducers

H2O
H2

O2

H2O
NO3

-

N2 MnO2

Mn2+
Fe(OH)3

Fe2+
SO4

2-

H2S CO2

CH4

Oxic

Sub-oxic
anaerobic

Sulfidic

Methanic

Aerobes

Denitrifiers

Manganese reducers

Sulfate reducers

Methanogens

Iron reducers

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10.  The redox ladder showing environmental niches for microbial metabolism 
(taken from Drever 2002). 
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CHAPTER 2: MICROBIAL BIOGEOGRAPHY OF ARCTIC STREAMS: 
EXPLORING INFLUENCES OF LITHOLOGY AND HABITAT 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ABSTRACT 
 
 
Microbes are of critical importance but are a poorly understood component of arctic 
stream ecosystems.  They are responsible for recycling organic matter and regenerating 
nutrients that are essential to the food webs of aquatic ecosystems.  In this work we test 
the hypothesis that differences in highly contrasting lithologies (non-carbonate and 
ultramafic) and stream habitat (sediments and rocks) influence the structure of bacterial 
biofilm communities in arctic streams and whether these patterns can be correlated with 
stream biogeochemistry.  A microbial community fingerprinting method (T-RFLP) and 
16S rRNA gene sequencing were used to explore the genetic diversity of microbial 
communities in biofilms on sediments (epipssamon) and rocks (epilithon) in stream 
reaches that drain watersheds with contrasting lithologies in the Noatak National 
Preserve, Alaska.  We observed different patterns in bacterial community composition at 
both the macro-scale (lithology) and micro-scale (stream habitat).  Non-metric 
multidimensional scaling ordination of T-RFLP peaks showed significant separation 
between the two contrasting lithologies as well as the two habitats.  Positive correlations 
were detected between particular biogeochemical variables (e.g. nutrients, base cations, 
and dissolved organic carbon) and bacterial community structure unique to each 
lithology.  Although clone libraries indicated high bacterial OTU diversity within and 
across stream sites, biogeographical patterns were observed that depended on locality 
type.  Our results show relationships at macro- and micro-scales at the landscape level 
and in ecological niches within a single stream.    
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2.1 Introduction 

 The interpretation of results from microbial biogeographical studies in natural 

environments has become increasingly controversial in recent years (Hughes-Martiny et 

al. 2006).  Typing microbial communities has been acknowledged as an important, yet 

neglected area of ecological research, especially in reference to the interaction between 

bacteria, the characteristics of their ecosystems, and their response to environmental 

changes (Green et al. 2008).  The historical view of microbial biogeography as 

formalized by Baas-Becking (1934), states that “everything is everywhere, but the 

environment selects”. Or as otherwise stated, global microbial diversity is low, consisting 

of a relatively small number of cosmopolitan species with high dispersal capabilities, and 

relatively high local diversity shaped by contemporary environmental conditions that act 

as filters to maintain distinctive microbial assemblages.  The pattern emerging from 

recent molecular studies indicate that biogeographical patterns in microbial distribution 

and diversity (Fierer et al. 2007, Gray et al. 2007) correlate with taxonomic identity of 

bacterial taxa and environmental variables (Hughes-Martiny et al. 2006, Fierer et al. 

2007), as well as classic patterns of taxa-area relationships (Horner-Devine et al. 2004).   

 Knowledge of microbial community composition in freshwater and in particular 

arctic stream ecosystems, is limited compared to what is known about microbial structure 

and function in terrestrial or marine environments (Logue et al. 2008).  The importance of 

sessile bacteria in aquatic environments has been recognized; an example is the early 

biofilm research that focused on alpine streams (Geesey et al. 1978, McFeters et al. 
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1978).  Despite the likely importance of their role in arctic stream ecosystems, basic 

characteristics of the microbial community in arctic streams remain poorly understood.    

  The few studies that have sought to characterize microbial communities from 

aquatic ecosystems in arctic Alaska have focused on environments such as lakes (Crump 

et al. 2003, Crump et al. 2007), sub-arctic sub-glacial streams (Skidmore et al. 2005) and 

the coastal Arctic Ocean (Galand et al. 2006, Garneau et al. 2006).  However, the current 

understanding of the taxonomic relationships and genetic diversity of microbial 

communities in arctic Alaska environments and in particular stream ecosystems remains 

unclear.  If microbial communities and their biogeochemical environment influence each 

other, it is necessary to clearly understand this interaction especially in the arctic, an 

environment currently responding to a rapidly changing climate.  

 Microbial activity in stream ecosystems is primarily influenced by the degree of 

chemical and biological interactions between the terrestrial and aquatic interface 

(Stanford and Ward 1993, Ward and Stanford 1995, Palmer et al. 2000). Various biotic  

and abiotic factors likely influence microbial community composition in aquatic 

ecosystems, including physical variables (i.e. temperature variations, climate, 

topography, and light availability) (Autio 1998, Kaplan 1989) and biogeochemical 

variables (i.e. underlying and surrounding lithology, terrestrial vegetation and solute 

composition including the quality and quantity of carbon sources, inorganic nutrients, and 

electron acceptors) (Drever 2002, Crump et al. 2003, Eiler et al. 2003).   

Few studies have investigated the effect of lithogical and biogeochemical 

differences on microbial community structure (Takai et al. 2003, Skidmore et al. 2005, 
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Oline 2006) or the effect of habitat differences within a stream that may vary in terms of 

organic matter availability and exposure to hydrologic stressors (Hullar et al. 2006).  

Takai (2003) found that major archaeal organisms present in the groundwater and 

substratum associated with subsurface Cretaceous rock shifted over small scales (tens of 

centimeters) to changes in the lithology and geochemical gradients.  Skidmore (2005) 

suggests a reasonable assumption correlating microbial community composition with 

chemical weathering products controlled by bedrock mineralogy of two geographically 

distant glaciers.  The work of Hullar (2006) suggests the presence of stable seasonal 

oscillations in bacterial community structure of stream habitats, sediment and epilithon.  

Hullar’s work also determined that these two habitats were composed of both terrestrial 

and aquatic derived microorganisms, suggesting a close association between headwater 

streams and their watersheds.  

 The Noatak River is in the Noatak National Preserve in Alaska (USA). It is the 

longest continuous river in the U.S. National Wild and Scenic system and the largest 

mountain-ringed river basin, virtually unaffected by humans (Milner et al. 2005).  

Jorgenson et al. (2002) studied the relationship between lithology and vegetation 

composition in the Noatak Basin.  The lithology of this area is complex but includes three 

important and strongly contrasting types that were the focus of this study.  Ultramafic 

rocks (basalt, gabbro, peridotite, pyroxenite, dunite) of the Siniktanneyak mountains tend 

to be high in iron and magnesium with sparse vegetation.  Non-carbonate rocks 

(glaciolacustrine deposits, conglomerate, sandstone, shales) of the Avingyak Hills  

support acidic, organic-rich soils and host shrub birch, willow and ericaceous plants.  
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Complex sedimentary rocks (shale, basalt, limestone and mafic rocks) of the Aniuk 

mountains support vegetation similar to the non-carbonate lithology (Jorgenson et al. 

2002).  Conclusions by Jorgenson (2002) stated that vegetation composition differs with 

lithology type and that the relationship is a consequence of variations in soil pH and 

possible phytotoxic effects of soluble minerals  

 We hypothesized that these fundamentally different lithologies not only influence 

terrestrial productivity but also impart different biogeochemical characteristics to water, 

which in turn influences the structure and function of the biological communities in 

stream ecosystems, in particular, the microbial community.  Our objectives were to 

determine: (1) whether stream bacterial community composition differs among streams 

selected from the three contrasting lithologies, (2) whether these differences are 

influenced by the biogeochemical characteristics of the host stream ecosystem, and (3) 

whether microbial community composition differs by stream habitat (sediment vs. 

epilithon) within each individual stream locality.   

 We sampled two key habitats, sediment and epilithon, in streams embedded in the 

three aforementioned lithologies.  Two of which consist of starkly contrasting landscapes, 

the ultramafic (UM) and non-carbonate (NC), as well as an intermediate bedrock, the 

complex sedimentary (CS).  Our conclusions are based on T-RFLP and sequencing of 

16S rRNA bacterial clones.  Using the former, differences in bacterial communities were 

detected between different lithologies and stream habitat.  While the latter showed 

differences at the habitat level. 
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2.2 Material and Methods 

2.2.1 Study Area 

 Samples in this study were collected from headwater stream tributaries arising 

from uniform and contrasting lithologies within the Noatak National Preserve.  We 

sampled 30 streams located in the Noatak River basin (Figure 2.1) in the vicinity of 

Feniak Lake (68º14’56.55” N and 158º19’19.90” W, elevation 1411 feet).  Fourteen of 

these streams were used in the microbial community analyses described in this paper.   

2.2.2 Sampling Design   

 A suite of first and second-order streams were sampled within each separate 

lithology: three in the non-carbonate, five in the ultramafic and six in the complex 

sedimentary.  Sediment and rock samples were collected at each location.  The former 

were obtained in triplicate along a 25-meter reach while the latter were a composite of six 

rock scrubs from each location (see sample collection details below).   

2.2.3 Sample Collection of Benthic Microbial Communities  

 Sediment samples were collected in sterile 15-ml plastic tubes from the surface to 

a depth of approximately 3 to 5 cm.  Samples were preserved immediately by adding a 

sucrose lysis buffer (SLB: 20 mM EDTA, 400 mM NaCl, 0.7 M sucrose, 50 mM Tris pH 

9.0) in a 1:1 ratio and then frozen on dry ice while in the field and later transferred to a -

80ºC freezer for long-term storage.  

Biofilm material from the tops of six submerged rocks was obtained from riffle 

sections of each streambed sampled.  Rocks were scrubbed with a nylon brush and the 

liberated biofilm was collected by squirting filtered (0.22μ) stream water over the rock 
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surfaces into a sterile plastic container.  Water and biofilm material was transferred into a 

sterile syringe and filtered through a filter capsule with a 0.22μ membrane to trap most of 

the bacteria.  Filter capsules were removed from syringes and 1 ml of DNA extraction 

buffer (100 mM Tris (pH 8), 100 mM NaEDTA (pH 8), 100mM phosphate buffer (pH 8), 

1.5 M NaCl, 1% CTAB) was injected into the filter capsule using a sterile syringe.  Filter 

capsules were kept on dry ice in the field until long-term storage at -80ºC.    

2.2.4 DNA Extraction   

 DNA extractions were conducted using the MoBio Power Soil DNA extraction kit 

(MoBio Laboratories, Inc. Carlsbad, CA) following the manufacturer’s protocol with the 

following modification: a FastPrep Homogenizer and Isolation System (Thermo Fisher 

Scientific Waltham, MA) was used to shake tubes at 4.5m/sec for 30 seconds to ensure 

complete cell lysis of bacteria in sediment and rock biofilm samples.  Using sterile 

conditions, 500-μl subsamples of streambed sediment (1 : 1 sediment : SLB slurry) were 

placed in the DNA extraction tubes provided with the MoBio kit.  Similarly, filters of the 

rock biofilm samples were removed from their capsules and transferred to DNA 

extraction tubes.  DNA was extracted immediately prior to downstream applications to 

avoid degradation and bulk DNA was stored at 4ºC. 

2.2.5 T-RFLP Profiles  

 Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis was 

conducted on all triplicate sediment samples (42 total) and epilithon samples (8 total).  

The 16S rRNA gene was amplified from both sediment and rock biofilm samples for T-

RFLP analysis via polymerase chain reaction (PCR) using the following primers: Bac8f 
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(5’AGAGTTTGATCCTGGCTCAG, HEX labeled) (Reysenbach et al. 1994) and 

unlabeled reverse primer, Univ1492r (5’-GGTTACCTTTGTTACGACTT) (Edwards et 

al. 1989).  Forward and reverse primers were obtained from Sigma-Genosys (St. Louis, 

MO) and Invitrogen (Carlsbad, CA), respectively.  PCR reactions were run using Illustra 

PuReTaq Ready-To-Go PCR Beads (GE Healthcare Life Sciences, Piscataway, NJ).  The 

PCR reaction protocol was as follows: initial denaturation at 94ºC for 4 minutes, 

followed by 40 cycles of 94ºC for 45 seconds, 54ºC for 20 seconds, 72ºC for 2.5 minutes 

with a final 4 minutes at 72ºC.  Two separate PCR reactions were performed for each 

DNA sample.  Presence of PCR products were confirmed by running 2-μl on a 1% 

agarose gel at 90 volts for 30 minutes and stained with ethidium bromide.  For each 

sample the two PCR products were pooled and digested separately with three different 

restriction enzymes: MspI, AluI, and HinP1I (New England BioLabs, Beverly, MA).  The 

restriction digest mixture consisted of 10μl of PCR product, 1 unit of restriction enzyme, 

and 2 μl of 10X reaction buffer 2 (New England BioLabs) brought up to a total volume of 

25 μl with Sigma water (Sigma-Aldrich, St. Louis, MO).  Reactions were digested 

overnight at 37 ºC.   

 Fluorescently labeled terminal restriction fragments (T-RFs) were size separated 

on an ABI Avant Genetic Analyzer 3100 (Applied Biosystems, Foster City, CA) using an 

internal size standard (BioVentures MapMarker 1000, BioVentures, Inc. Murfreesboro, 

TN).  To test for variation within each digested PCR product as well as instrument 

performance, we ran a trial set of ten restriction enzyme digests in duplicates (1-μl 

aliquots).  Even though results from a preliminary assay did not show any substantial 
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differences across duplicate profiles, we chose to run three replicates for each restriction 

digest to ensure reliable results.    

2.2.6 Analysis of T-RFLP Profiles  

 T-RFLP electropherograms were analyzed using GeneMapper software version 

3.7 (Applied Biosystems, Foster City, CA).  GeneMapper software calculates fragment 

length to 1/100 of a base pair (bp).  The error associated with the determination of 

fragment size can be up to 0.5 bp (Dunbar et al. 2001), therefore T-RF peaks that differed 

by less than 0.5 bp were considered the same and grouped.  Common observations in T-

RFLP data include primer-dimer artifact formation in the low base-pair region of T-RFLP 

profiles and low peak area for T-RFs due to incomplete digestion or excess noise.  Given 

these considerations, only those T-RFs that were sized >80 bp with >50 relative 

fluorescent units were included in the analysis.  The raw data for each profile was 

examined to ensure that each peak was solely a result of the HEX-green fluorescence.  

Occasionally false peaks arise due to electrochemical noise from dust or bubbles present 

in the capillaries of the detector, therefore, careful consideration was taken to report only 

true peaks in the resulting profiles of each sample.  For comparisons between T-RFLP 

profiles, normalized relative T-RF peak height and allele presence/absence data were 

considered.  Triplicate profiles were collapsed into one average profile by including 

peaks that occurred in two of the three replicate profiles.  T-RFs of different lengths 

inferred representation of distinct operational taxonomic units (OTUs) but should not be 

interpreted as specific bacterial species because similar restriction fragment sizes can be 

produced from different organisms (Liu et al. 1997).    
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2.2.7 T-RFLP Statistical Analyses 

 Non-metric multidimensional scaling (NMDS) formalized by Clarke (1993) was 

used for T-RFLP profile comparisons among different lithologies based on the Bray-

Curtis dissimilarity matrix (Bray and Curtis 1957).  The purpose of the NMDS is to 

construct a configuration of the samples, in a specified number of dimensions, while 

attempting to satisfy all the conditions imposed by the dissimilarity matrix (Clarke 1993).  

The NMDS recognizes the relative similarities of the samples to each other by 

configuring the dimension that has the least amount of stress, or goodness of fit, between 

the similarity rankings (p-dimensional space) and corresponding distance rankings in the 

ordination plot (k-dimensional space) (McCune and Grace 2002).  Stress measures the 

degree of departure from the relationship between dissimilarity (distance).  

 Analysis of Similarity (ANOSIM) (Clarke and Green 1988, Clarke 1993) is a 

nonparametric procedure that evaluates the separation of groups in multivariate space by 

testing the hypothesis that there is no difference between two or more groups of entities.  

The ANOSIM test statistic “R” indicates the degree of discrimination among groups and 

usually falls between 0 and 1.  R = 1 if all samples within a group are more similar to 

each other than any other samples from different groups.  R approximates zero if the null 

hypothesis H0 is true and there are no differences among groups.  ANOSIM is a 

randomization test that simulates the null hypothesis by randomly reassigning group 

membership, in which an R* value is computed for each randomized grouping.  The 

probability (P) value calculated is the proportion of the R* values that are greater or equal 

to the actual R value.  Lower P value occur for R* values that rarely exceed R which 
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means that it is less likely that the null hypothesis is true (Minchin P., personal 

communication). 

 The NMDS describes relationships within the microbial community data.  In 

addition, higher level relationships can be examined by superimposing corresponding 

environmental data of each biogeochemical variable on the microbial community 

ordination by way of a vector analysis.  If environmental conditions are responsible for 

structuring microbial communities, then streams with similar biogeochemistry should 

have similar species composition.  The vector analysis determines which biogeochemical 

variables are positively correlated with particular groups of samples that represent given 

microbial community assemblages, as well as determining the strength of the correlation 

between the two sets of variables.  DECODA (Database for Ecological COmmunity 

DAta) version 3 (Minchin 1990) was used to perform the multivariate analyses (NMDS, 

ANOSIM, and vector analysis).   

2.2.8 Building Clone Libraries for 16S rRNA Gene   

 The sediment and rock biofilm samples from the stream sites in each lithology 

that showed the highest degree of variation using T-RFLP were chosen for more detailed 

phylogenetic analyses.  A total of nine clone libraries of the 16S rRNA gene were built 

from sediment (n=5) and epilithon (n=4) samples from two representative streams within 

the non-carbonate and ultramafic lithologies.  A single clone library was built from a 

sediment sample in the complex sedimentary lithology.  Bacterial 16S rRNA gene 

sequences were amplified from three sediment samples and the composite epilithon 

sample taken at each stream site using primers, Bac8f (unlabeled) and Univ1492r 
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(Invitrogen Carlsbad, CA).  PCR reactions protocol was as follows: initial denaturation at 

94ºC for 2 minutes, followed by 40 cycles of 94ºC for 30 seconds, 54ºC for 20 seconds, 

and 72ºC for 1.5 minutes with a final extension of 15 minutes at 72ºC.  To minimize the 

effect of PCR drift in individual reactions during amplification, PCRs were run in 

triplicate and pooled for each of the DNA extracts from an individual stream site (3 for 

sediment and 1 for epilithon).  The PCR products from individual stream site samples (9 

total for sediment and 3 total for epilithon) were run through a 0.75% agarose gel where 

the corresponding 16S rDNA fragment were visualized by ethidium bromide, excised 

with a sterile razor blade and cleaned with Zymoclean Gel DNA Recovery kit (Zymo 

Research, Orange, CA).  Gel cleaned PCR products were cloned into pCR®2.1 vectors 

using the TA cloning kit according to the manufacturer’s protocol (Invitrogen, Carlsbad, 

CA) and transformed into OneShot® Competent Cells (Invitrogen, Carlsbad, CA).  

Transformants were plated on Luria broth (LB) agar medium containing ampicillin, X-gal 

and isopropyl-β-d-thiogalactopyranoside (IPTG).  Ampicillin-resistant and β-

galactosidase-negative clones were randomly selected and grown overnight at 37ºC in LB 

with ampicillin.  Clones were tested for the presence of inserts by PCR amplification and 

ethidium bromide gel visualization.  Clones with inserts were sequenced directly and 

grown in three mls of LB ampicillin broth for long-term storage at -80 ºC.  An excess of 

100 clones for each sample were sequenced using primers designed to the pCR®2.1 

vector: M13Long Forward (5'-CAGGAAACAGCTATGACCATGATTAC-3') and 

M13Long Reverse (5'-GTAAAACGACGGCCAGTGAATTGT-3') as well as internal 

16S primers custom designed for specific clone groups to ensure complete overlap of 
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sequence reads in both directions: 16S-A1F (5'-GTGCCAGCAGCCGCGGTAATAC-3'); 

16S-A1R (5'-GTATTACCGCGGCTGCTGGCAC-3'); 16S-B1F (5'-

GGTGCTGCATGGCTGTCGTCAGC-3'); 16S-B1R (5'-

GCTGACGACAGCCATGCAGCACC-3'); 16S-B2F (5'-

GGTGGTGCATGGTTGTCGTCAGC-3'); and16S-B2R (5'-

GCTGACGACAACCATGCACCACC-3').  One library was sequenced with the 

following sequencing cycle: initial denaturation at 96ºC for 1 minute, followed by 25 

cycles of 96ºC for 10 seconds, 50ºC for 5 seconds, and 60ºC for 4 minutes.  Ready to 

load sequence reactions were run at Vermont Cancer Center, University of Vermont, 

Burlington, Vermont on an ABI Avant Genetic Analyzer 3100 (Applied Biosystems, 

Foster City, CA).  PCR products of the subsequent eight clone libraries were cleaned and 

sent to Agencourt Bioscience Corporation, Beverly, Massachusetts for sequencing.  A 

total of 9 clone libraries were constructed from five representative stream sites within 

each of the three lithologies (streams SNC03 and SNC08 from the non-carbonate 

lithology, SUM01 and SUM11 from the ultramafic lithology and site SCS07 from the 

complex sedimentary).  Five sediment clone libraries were constructed at each of the five 

stream sites and four epilithon libraries were constructed from the two representative 

stream sites in the non-carbonate and ultramafic lithologies.    

2.2.9 Processing of Sequence Data  

 Clone sequences were assembled and edited using Sequencher version 4.6 (Gene 

Codes, Ann Arbor, Michigan).  MacClade version 4.08 (Maddison and Maddison 2002) 

was used to visualize aligned sequences and positions that varied between clones within 
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each library were verified in the original contiguous Sequencher files.  Sequences were 

aligned using the Ribosomal Database Project II (RDP) release 9.58 web resource 

(http://rdp.cme.msu.edu/) by Cole et al. (2007).  The RDP makes available a general 

bacterial rRNA alignment model that uses a modified version of the RNACAD program 

that takes into consideration rRNA secondary structure in its internal model and is a 

Stochastic Context Free Grammar (SCFG) based rRNA aligner (Brown 2000, Gutell et 

al. 2002)  We screened for potential chimeric sequences using the RDP’s 

CHIMERA_CHECK program based on the Pintail algorithm by Ashelford (2005).  

Sequences identified as chimeric were removed from the data.  The final data set 

included a range of 70-95 non-chimeric sequences, approximately 1500 bp long, per 

clone library.  Edited sequences were imported into PAUP (Swofford 2001) where 

pairwise distances between sequences were computed and Jukes and Cantor (1969) 

distance matrices were exported for use in subsequent analyses.    

2.2.10 Estimations of richness and diversity.   

 Estimates of richness and diversity of 16S rRNA genes were determined for all 

clone libraries.  Highly similar sequences were considered as part of a single operational 

taxonomic unit (OTU) determined using the farthest-neighbor criterion of Schloss and 

Handelsman’s (2005) DOTUR (version 1.53; Department of Plant Pathology, University 

of Wisconsin–Madison [http://www.plantpath.wisc.edu/fac/joh/DOTUR.html]), with a 

matrix of Jukes-Cantor distances used as input.  An OTU was defined as having a 16S 

rRNA gene sequence similarity of ≥98% (farthest-neighbor distance of 0.02).  The 

“species” level as per convention by Rossello-Mora and Amann (2001) suggests using 
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≥97% sequence similarity; however we chose a slightly higher cutoff (98%) to increase 

the stringency of our results and subsequent conclusions.  DOTUR was also used to 

calculate rarefaction curves and diversity estimators, Chao1 (Chao 1984) and ACE – 

abundance coverage estimator (Chao and Lee 1992, Chao et al. 1993) for each of the 9 

clone libraries.  Bootstrapping procedures within DOTUR assess the confidence limits of 

the rarefaction curves and the diversity estimators.    

2.2.11 Clone Library Statistical Analyses  

 We examined the variation in the genetic structure of the bacterial communities in 

each clone library and among groups of lithology and habitat using analysis of molecular 

variance (AMOVA) and FST tests (Arlequin version 3.1; Genetics and Biometry 

Laboratory, University of Geneva: http://lgb.unige.ch/arlequin).  AMOVA uses a 

hierarchically partitioned matrix of genetic distances to assess, by permutation, the 

significance of variance component associated with each level of the partitioning 

(Excoffier et al. 1992).  For this analysis, input matrices consisted of distances computed 

in DNAsp (Rozas and Rozas 1999) and tested as follows: i) all clone libraries considered 

as distinct groups (n = 9); ii) sediment (n = 5) vs. epilithon (n = 4); and iii) ultramafic 

sediment (n = 2) vs. non-carbonate sediment (n = 2) and ultramafic epilithon (n = 2) vs. 

non-carbonate epilithon (n = 2).  

 FST tests (Martin 2002) were performed as tests of genetic differentiation among 

all pairs of samples.  FST can also be considered as a measure of distance between pairs of 

samples that takes into account both the frequency of identical or closely related 

sequences and the amount of diversity within the sample pairs.  A matrix of pairwise FST 
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distances was used as the basis of the NMDS plot in the program PRIMER 5 for 

Windows (version 5.2.7; PRIMER-E, Ltd: http://www.primer-e.com) to visualize 

samples that are similar in genetic composition.  ANOSIM was also used to determine 

which samples were most closely associated with patterns of similarity between bacterial 

communities (Clarke and Green 1988, Clarke 1993) .  Additionally, Mantel tests were 

used to examine the influence of geographic distance (straight-line distance between 

stream sites) on community composition. 

2.2.12 Taxonomic Associations of 16S rRNA Bacterial Clones 

 Groups of sequences were formed based on their similarities and by identifying 

their closest genus and species matches using the SeqMatch tool in the RDP, which has 

its own database as well as being linked to GenBank (Altschul et al. 1990).  Identification 

of unknown clones using GenBank data followed the guidelines established by Goebel 

and Stackebrandt (1994), which considers a 97-100% match an approximate 

identification to species level, 93-96% similarity as genus level identification, and 86-

92% match a distant yet related organism.  The ≥98% sequence similarity criteria 

concurred with results obtained using DOTUR in that all sequences within an established 

OTU generally matched to at least the same genus as determined using GenBank.   

2.2.13 Nucleotide sequence accession numbers 

 Sequence data will be submitted to GenBank and accessed using unique accession 

numbers that will be available upon publication. 
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2.3 Results 

2.3.1 Biogeochemistry of stream study sites 

 Stream study sites with unique global positioning system location and elevation 

and a summary of biogeochemical characteristics by lithology are found in Tables 2.1 

and 2.2, respectively.   

2.3.2 Lithology and Habitat Comparisons using T-RFLP 

 Using the NMDS ordination of T-RFLP patterns and the ANOSIM (DECODA; 

(Clarke and Warwick 2001), the 42 samples obtained from the 14 stream sites separated 

into three general clusters that represented streams arising in the three different 

lithologies (Global R = 0.40; P < 0.001) (Fig. 2.2).  Pairwise comparisons indicate that 

ultramafic UM streams were significantly different from non-carbonate (NC) and 

complex sedimentary (CS) streams (UM vs. CS: R = 0.50, P < 0.0001; UM vs. NC: R = 

0.55, P < 0.001; and NC vs. CS: R = 0.06, P = 0.2).  

We also observed significant differences when comparing the sediment and rock 

habitats (Global R  = 0.98; P < 0.0001) (Fig. 2.3).  The overall number of phylotypes, or 

restriction fragments (T-RFs), for sediment samples ranged from 19 to 69 (mean: 51) 

with an average of 51 for CS, 54 for NC, and 50 for UM.  T-RFs for rock biofilm samples 

ranged from 66 to 99 (mean: 79) with an average of 72 for CS, 86 for NC, and 75 for 

UM.  To detect differences with the T-RFLP data we chose NMDS with the ANOSIM 

multivariate method rather than diversity indices since it has been suggested that the use 

of diversity indices on T-RFLP data provides inaccurate estimates of true diversity in 

microbial communities (Blackwood et al. 2007) and that multivariate methods 
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(ordination and clustering) have greater sensitivity for detecting microbial community 

differences (Dunbar et al. 2000, Hartmann and Widmer 2006).   

 We examined the relationship between bacterial community structure and 

environmental variables in each of the three lithologies by using a vector analysis.  A 

positive correlation was observed between bacterial communities and measured inorganic 

chemical variables (Bonferroni-corrected P > 0.5 in all cases) (Fig. 2.2).  The vectors 

associated with cation variables (Ca2+, Mg2+, K+, and Na+) were correlated with the 

complex sedimentary community, while the vectors associated with dissolved organic 

carbon (DOC) and nutrients (Total dissolved nitrogen – nitrate, (TDN-NO3
-); Total 

dissolved nitrogen/Total dissolved phosphorus, (TDN/TDP)) were correlated with the 

non-carbonate community, and nitrate/total dissolved nitrogen, (NO3
-/TDN) was 

correlated with the ultramafic community.    

2.3.3 Lithology and Habitat Comparisons using Clone Libraries 

 Based on the analysis of T-RFLP data, samples that were furthest away in NMDS 

genotype space stream sites were selected for 16S rRNA gene cloning and sequencing 

from each of the three lithologies differentiated in Fig. 2.2.  Two streams from NC and 

UM and 1 from CS were selected to further characterize the diversity of the bacterial 

communities in sediment and epilithon of each lithology as well as to identify specific 

phylogenetic groups that could be associated with the bacterial community composition 

pattern shown by the T-RFLP analysis.  Subsequent to the removal of chimeric 

sequences, the number of clones for each library ranged from 77 to 95. 

2.3.3.1 Diversity Statistics 
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 Results for the diversity statistics obtained using DOTUR showed that at the 98% 

similarity level, there were small differences in the Chao1 (from 21 to 58) and ACE 

(from 22 to 65) diversity estimators calculated for each sample.  Moreover, the 

bootstrapped 95% confidence intervals were large and overlapped between all samples 

for both estimators (Figure A.5).    

2.3.3.2 Analysis by Rarefaction   

 Using DOTUR a number of the rarefaction curves were generated for each clone 

library.  At the ≥98% sequence-similarity level variation between curves was observed.  

However, several curves were nearly identical to each other (Figures A.2 and A.3).  In 

general, sediment and rock biofilm curves were at or near plateau, indicating that we 

were successful in sampling nearly the full extent of bacterial species richness within 

each of the samples.  The rarefaction curves differed when clone libraries were combined 

by lithology (UM and NC) and habitat (epilithon and sediment) (Fig 2.4; 95% CIs not 

shown), indicating differences in species richness.  The 95% CIs overlap between UM 

and NC curves, but there was minimal overlap between sediment and rock biofilm 

curves.  Rarefaction curves for both sediment and rock biofilm samples by stream site 

within the NC and UM lithologies (Fig. 2.5) indicated that streams within the NC were 

more variable than streams within the UM lithology, suggesting higher bacterial diversity 

across stream sites within the NC than UM.      

2.3.3.3 Comparisons of Clone Libraries using AMOVA   

 All nine populations had significantly different genetic composition (P < 0.0001) 

relative to the pool of total species in all samples.  The AMOVA (Figure 2.6; Table A.3.) 
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indicated that sediment and rock biofilm samples were composed of genetically different 

microbial communities (P = 0.01).  It was not possible to show that microbial populations 

in contrasting lithologies were genetically different (P = 1.00; P = 0.300).  However, 

pairwise comparisons of clone library FST tests (Martin 2002) showed that all were 

significantly different (P < 0.00001), with the exception of EpiSUM01 and EpiSNC03 (P 

= 0.11).  A NMDS ordination (Fig. 2.7) using pairwise FST comparisons, which 

represents distance in genetic and community composition, segregates samples by 

sediment and rock biofilm communities. 

2.3.3.4 Taxonomic Associations of 16S rRNA Bacterial Clones 

 Using sequence matches obtained from GenBank and the RDP, we determined the 

presence of 32 families of bacteria belonging to 14 classes.  The most commonly 

represented bacterial families in sediment samples were as follows: Enterobacteriaceae 

(25.1%), Paenibacillaceae (28.3%), Pseudomonadaceae (9.4%), and Xanthomonadaceae 

(11.6%) (Fig. 2.8; Table 2.3).  Rock biofilm samples were dominated by species of 

Cyanobacteria (43.5%) as well as the following bacterial families: Flexibacteraceae 

(17.7%), Comamonadaceae (12.9%), and Deinococcaceae (5.5%) (Fig. 2.9; Table 2.3).  

Sediment clones included 20 families belonging to 11 classes, whereas rock biofilm 

clones included 16 families representing 11 classes.  Sediment samples had four bacterial 

families that overlapped across all three lithologies.  The ultramafic sediment, with 16 

bacterial families, had the highest diversity at the family level, while 12 were detected in 

NC and five in CS.  Eight bacterial families were found in both NC and UM sediment 

samples.  Families unique to sediment NC and absent in sediment UM were 
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Sporolactobacillaceae and Aeromonadaceae, while several families were unique to 

sediment UM: Microbacteriaceae, Hyphomicrobiaceae, Carnobacteriaceae, 

Alcaligenaceae, Geobacteraceae, Flavobacteriaceae, Planctomycetaceae, and 

Crenotrichaceae.  Clones in the single CS library consisted of six families represented by 

three classes.  Fifty-seven of the 82 total clones matched at the genus level (98%) to the 

organism Paenibacillus borealis.     

 For rock biofilm clones, nine of 16 families were shared between the NC and UM 

samples.  In rock biofilm samples, 12 and 13 bacterial families were found in the UM and 

NC, respectively.  Unique families in rock biofilm from NC sites were as follows: 

Oxalobacteraceae, Cryomorphaceae, Planctomycetaceae, and Verrucomicrobiaceae, 

while those unique to rock biofilm from UM sites were Bdellovibrionaceae, 

Enterobacteriaceae, and Sphingobacteriales.    

 A test of isolation of stream site bacterial community composition by geographic 

distance using the Mantel Test, did not show any structure (P > 0.3).   

  

2.4 Discussion 

 Results from this study indicate that there are high levels of OTU diversity among 

and within bacterial communities in the streams of the Noatak National Preserve.  We 

used both T-RFLP and 16S rRNA gene sequencing, two methods that differ in their 

resolution, to determine how the methods would resolve samples collected from our 

study site.  Differing patterns in bacterial community composition at both the small-scale 

(stream habitat) and large-scale (lithology) were observed.  Using a T-RFLP approach we 
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detected distinct fingerprints of bacterial communities by lithology and habitat, whereas 

16S rRNA gene clone libraries differentiated habitats.               

2.4.1 Comparisons using T-RFLP 

 NMDS ordination of T-RFLP peaks show a high degree of separation between 

UM and NC communities and only partial separation between NC and CS.  These trends 

in bacterial community composition mirror stream biogeochemistry across the three 

lithologies in that UM and NC have significantly different biogeochemical 

characteristics, while the NC and CS are similar.  Our results are similar to previously 

reported differences in microbial community composition as influenced by lithology and 

parent material in soils (Dunbar et al. 2000, Oline 2006), glaciers (Skidmore et al. 2005), 

groundwater and substratum (Takai et al. 2003).  NMDS results of T-RFLP data also 

showed clear separation by habitat, between sediment and epilithon samples.  The 

average number of phylotypes (T-RFs) detected in sediment samples were similar, 

suggesting low variation in bacterial diversity across lithologies.  However, differences in 

the number of T-RFs were observed between sediment and epilithon within a lithology, 

indicating differences in bacterial diversity at the habitat scale.     

2.4.2 Relationships between Bacterial Communities and Biogeochemistry 

 Vector analysis indicates that certain biogeochemical variables explain NMDS 

ordination of T-RFLP data (Fig. 2.2), although causal relationships can only be inferred.  

Specifically, we observed a positive correlation between base cations and CS lithology, 

suggesting bacterial community structure may be influenced by the CS streams’ high 

base cation concentration, whereas the scarcity of cations in NC and UM streams may 
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constrain the composition of resident bacterial communities.  Notably calcium and 

magnesium are well known to enhance bacterial adhesion to substrates within the 

exopolysaccharide matrix of biofilms (Geesey et al. 2000), which may facilitate a niche 

for a more stable bacterial community in the CS lithology.  Other constituents such as 

DOC, TDN-NO3
-, and TDN/TDP were correlated with NC community composition while 

NO3
-/TDN was correlated with the UM community.  DOC and nutrient concentrations 

were lowest in streams of the CS and UM lithologies and highest in streams of the NC 

lithology.  These trends suggest that bacterial community composition may be influenced 

by the abundance or scarcity of resources.  Similar relationships have been observed in 

other studies that investigated the influence of microbial activity on redox chemistry and 

mineral processes in natural environments (Nealson and Stahl 1997, Ehrlich 1998).  

Furthermore, other studies have determined that microbial community composition can 

be correlated with observed aqueous geochemistry in subglacial chemical weathering 

(Skidmore et al. 2005), streamwater pH, quality of fine benthic organic matter, and 

quantity of DOC and nitrogen in stream water (Fierer et al. 2007), and seasonal changes 

in temperature, nutrient availability and light in estuarine biofilms (Moss et al. 2006).   

2.4.3 Comparisons using 16S rRNA Gene Sequencing 

 The T-RFLP approach used in this study revealed general patterns in community 

composition indicating differences by lithology and habitat.  Sequencing of the 16S 

rRNA gene offered greater resolution allowing the identification of dominant taxa present 

in each sample.  Although 16S rRNA gene sequencing was only able to distinguish 
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community composition by habitat, we gained insight into the taxonomic composition of 

both stream habitat and landscape lithology.      

  While we are aware that 77-95 clones per library is not a large number compared 

to the potential microbial diversity of these communities, we nonetheless detected high 

diversity among samples using 16S rRNA gene sequencing.  Similar levels of microbial 

diversity were detected in studies in which comparable or fewer number of clones were 

sequenced (Oline 2006, Fierer et al. 2007).  In this study, twenty-nine out of thirty 

possible FST pairwise comparisons of the 9 samples were significant, suggesting distinct 

genetic differentiation among all communities with the exception of EpiSUM01 vs. 

EpiSNC03.  Furthermore, there was significant variation in the genetic structure of 

communities residing in different habitats (AMOVA).  This heterogenetity in community 

composition may be a result of differences in hydrologic stressors and substrate 

availability in the sediment versus the rock biofilm habitats.   

 Sequencing of the 16S rRNA gene revealed the presence of genera including 

gram-negative bacteria that have previously been isolated from aquatic and terrestrial 

environments.  There were distinct differences in taxonomic identities (at the family 

level) of clones from sediment versus rock biofilm habitats. Only four families are shared 

between the 20 and 16 families found in sediment and rock biofilm samples, respectively.  

At the class level, eight of 11 classes were shared between sediment and epilithon.  Our 

results at the class level are similar to those reported by Hullar (2006), who sampled 

headwater streams in southeast Pennsylvania and found a high degree of similarity in 

taxa type overlap between sediment and rock biofilm samples.  Furthermore, all 

 66



representatives of the rock biofilm in our work, including 1 division and 3 classes, were 

also present in the 13 sediment classes detected in Hullar’s study.  Our results differ from 

those of Hullar (2006) in that there are few similar taxons between the sediment and 

epilithon at the family-level identification in our study and we detected a high abundance 

of cyanobacteria exclusively in rock biofilm samples (44%), whereas Hullar (2006) found 

that cyanobacteria clones comprised the majority (40%) of their sediment-derived 

sequences and a smaller proportion (25%) of the epilithic-derived sequences. 

 GenBank was used to identify matches to the sediment clones at the genus level.  

Groups of clones from the sediment samples: Pseudomonas, Flavobacterium, 

Alcaligenes, Aeromonas, Enterobacter, Xanthomonas, and Sporolactobacillus, known to 

be heterotrophic bacteria, were also previously isolated from similarly classified pristine 

stream bed sediments in forested watersheds (Halda-Alija and Johnston 1999).  

Aeromonadaceae, Pseudomonadaceae, and Xanthomonadaceae species are obligately 

aerobic, whereas Enterobacteriaceae and Sporolactobacilliaceae members are 

facultatively anaerobic with Enterobacteriaceae species having the ability to reduce 

nitrate to nitrite.  Paenibacillus borealis, a nitrogen-fixing species, also isolated from 

Norway and Finnish spruce forest humus, was present in sediment samples from all three 

lithologies, but found to be dominant in the CS clone library. 

 Unclassifiable Cyanobacteria species, the most dominant of the epilithon clones, 

metabolize via oxygenic photosynthesis.  Other dominant epilithic members include the 

following families: Flexibacteriaceae, Comamonadaceae, and Deinococcaceae, which 

are all chemoorganotrophic as well as obligately aerobic.  Thirteen clones identified as 
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belonging to the genus Spingomonas were found exclusively associated with the epilithic 

community (3.4%).  Spingomonas have been isolated from a range of environments, 

including ultraoligotrophic waters, in which species such as S. alaskensis has been shown 

to possess physiological characteristics adapted to very low carbon substrate 

concentrations (Eiler et al. 2003).  That the detection of Spingomonas in our study was 

restricted to epilithon samples, may indicate lower availability of carbon sources for 

bacterial metabolism in this habitat.  In contrast to the high loads of particulate and 

dissolved organic matter associated with upwelling areas from the hyporheic zone, 

associated with stream sediment habitats (Sobczak and Findlay 2002).   

2.4.4 Conclusions and Relevance to Microbial Biogeography 

 In the past decade, studies on the taxonomic, phylogenetic, and physiological 

diversity of prokaryotes have begun to provide more comprehensive information about 

microbial communities and their natural environments, and in particular, whether 

microbes exhibit biogeographical patterns.  Structural geographic patterns as detected in 

microbial communities within stream ecosystems have been attributed to the following 

factors: geographic distance (<10 km) and connectivity between lakes and streams 

(Crump et al. 2007); biome-level control in low-order streams (Findlay et al. 2008); 

variation of chemical characteristics in streams across the southeastern and midwestern 

U.S. (Gao et al. 2005); and landscape-level controls on streams due to biogeochemical 

factors (Fierer et al. 2007).  In general, very few studies have focused on low-order 

streams (Hullar et al. 2006, Findlay et al. 2008), as we have done in this study.  However, 
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these types of streams are important because they function as links between the terrestrial 

environment and the aquatic ecosystem network. 

 Results obtained by comparing the bacterial OTUs from our study to the GenBank 

database showed matches with similar bacterial taxa isolated from various locations 

around the globe, suggesting (as Baas-Becking hypothesized) that bacteria have a 

cosmopolitan distribution.  However, these results should be interpreted with caution 

given that the 16S rRNA gene sequencing method used in this study can be used as a 

measure of phylogenetic relatedness which does not necessarily reflect levels of 

similarity at the physiological level.  It is possible that even slight differences in bacterial 

physiology can be related to biogeochemical processing.  Future work that focuses on the 

metagenomics of environmental samples could be an alternative means to clarify the 

physiological characteristics of bacteria in a given environment allowing greater 

discriminatory power in determining bacterial contribution to ecosystem function.    

 While we observed similarities in bacterial clone types between our study sites 

and other geographically distant locations, we also detected biogeographic structure of 

species richness and taxon type.  This is shown in the rarefaction curves (Fig. 2.5) by 

habitat type within NC and UM lithologies, which reveal distinct variation in species 

richness in the NC landscape, while UM streams track each other.  These results indicate 

that NC streams may be more diverse than UM streams at the landscape scale.  

Furthermore, sediment and rock biofilm rarefaction curves are also significantly different 

from one another (Figure 2.4 a).  Thus, we conclude that biogeographical patterns in 

bacterial community composition occur in the Noatak River Basin.  With regards to the 
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controversy related to the Baas-Becking hypothesis (Whitfield 2005), results from our 

study indicate that whether a given taxon is cosmopolitan or biogeographically restricted 

will depend on the environment and its biogeochemical specificity.  Differences in 

microbial community composition between sediment and epilithic habitats could result 

from different hydrologic stressors.  For example, varying flow regimes alter sediment 

structure via erosion and redistribute bacteria, exposing them to different environmental 

conditions (Hullar et al. 2006).  While the epilithic community is not as likely to 

experience the same degree of disturbance as that found in the sediment, differences in 

hydrodynamic conditions are known to influence the structure and activity of epilithic 

biofilms (Battin 2000, Battin et al. 2003).       

 Biogeographical bacterial patterns as influenced by lithology may be the result of 

differences in resource availability across different lithologies.  The NC lithology is a 

richer environment, hosting streams with greater nutrient and DOC availability, higher 

chlorophyll a productivity, and concentrations of benthic organic matter, whereas streams 

of the UM lithology lack the resources abundant in the NC in addition to experiencing a 

scarcity of base cations.  Given these biogeochemical conditions, we infer that the NC 

landscape may allow for the survival of more varied metabolic types given the abundance 

of resources, creating opportunities for bacterial diversity to persist across streams.  The 

lack of biogeochemical resources in the UM streams may provide an environment where 

bacteria that are specialists and thriving on low nutrient and substrate concentrations may 

competitively exclude others.  Thus, the UM lithology displays a predictable species 
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richness perhaps because it is a highly selective environment where a limited type of 

organisms can persist.           

 Our results suggest that there are differences in bacterial community composition 

across contrasting lithologies that can be related to large-scale linkages between streams 

and the terrestrial environment and parent material in which they are embedded.  In turn, 

this relationship is reflected in differences in resource availability.  Furthermore, the 

resident microorganisms of sediment and epilithon habitats are composed of significantly 

different bacterial taxa, indicating the presence of contrasting ecological niches at the 

small-scale within stream ecosystems.  Thus, our study of arctic streams using T-RFLP 

and 16S rRNA gene sequencing indicates that bacterial community composition is 

dependent on the physical characteristics of the habitat within a stream as well as the 

stream location on the lithological landscape. 
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Table 2.1. Summary of individual study streams with GPS locations. 

 
Lithology Stream Site ID Sample Date Latitude (DD) Longitude (DD) Elevation (m)

Complex Sedimentary SCS01 7/12/06 68.265361 158.204972 570
Complex Sedimentary SCS02 7/12/06 68.267917 158.098778 451
Complex Sedimentary SCS03 7/13/06 68.320300 158.035400 535
Complex Sedimentary SCS04 7/12/06 68.252083 158.004833 490
Complex Sedimentary SCS07 7/13/06 68.245472 157.785278 556
Complex Sedimentary SCS09 7/13/06 68.195222 158.001806 474

Non-carbonate SNC03 7/11/06 68.266972 158.927500 342
Non-carbonate SNC05* 7/8/06 68.251750 158.872860 418
Non-carbonate SNC08 7/8/06 68.198617 158.816683 468
Non-carbonate SNC10* 7/8/06 68.178950 158.741817 426
Non-carbonate SNC12 7/11/06 68.139444 158.729750 358

Ultramafic SUM01 7/9/06 68.327139 158.306750 550
Ultramafic SUM07 7/10/06 68.392306 158.425778 660
Ultramafic SUM11 7/10/06 68.386528 158.542361 560
Ultramafic SUM12 7/10/06 68.382972 158.627056 447
Ultramafic SUM17 7/9/06 68.303361 158.574611 501

*Sample not used from particular site due to questionable sample preservation.
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Figure 2.1. Study area of Feniak Lake region with stream site locations across contrasting 
lithologies in the Noatak National Preserve, Alaska.
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Figure 2.2.  Non-metric multidimensional scaling (NMDS) ordination (1st & 2nd of the 3-
dimensional solution) of stream sediment bacterial communities based on pairwise 
similarity estimates (Bray-Curtis).  Points that are close together represent sediment 
biofilm communities with similar bacterial community composition based on the T-RFLP 
(terminal restriction fragment length polymorphism) method.  The associated normal 
stress value of the ordination is 0.11, indicating a good approximation of the overall 
structure of the data in multivariable space.  Significant (p<0.005), Bonferonni adjusted 
biogeochemical variables were overlaid (arrows) showing the degree of correlation with 
microbial data.  Abbreviations: Nutrients = TDN-NO3

-, total dissolved nitrogen – Nitrate 
and TDN/TDP, total dissolved nitrogen/total dissolved phosphorus; DOC, dissolved 
organic carbon; Cations = Ca2+, Mg2+, K+, and Na+; NO3

-/TDN, nitrate/total dissolved 
nitrogen. 
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Figure 2.3. Non-metric multidimensional scaling (NMDS) ordination (2-dimensional 
solution) of stream sediment and epilithon bacterial communities based on pairwise 
similarity estimates (Bray-Curtis).  Points that are close together on the right side of the 
ordination represent epilithon samples (n = 8) and those points close together on the left 
side of the ordination represent sediment samples (n = 42). 
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Figure 2.4. a) Rarefaction curves of observed OTU richness in sediment and epilithon 
samples within each lithology (non-carbonate and ultramafic). b) Rarefaction curves of 
observed OTU richness in sediment and epilithon samples regardless of lithology.  The 
variance of the number of OTUs drawn in 100 randomizations at each sample size was 
calculated as 95% CIs (not shown).  
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Figure 2.5. Rarefaction curves of observed OTU richness in individual stream and stream 
habitat comparisons (a) Sediment non-carbonate streams; (b) Epilithon non-carbonate 
streams; (c) Sediment ultramafic streams; (d) Epilithon ultramafic streams. 
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Figure 2.6. Percent variation from analysis of molecular variance (AMOVA) analysis at 
each level of partitioning: a) all populations includes the 9 clone libraries; b) sediment 
clone libraries (n = 5) versus epilithon clone libraries (n = 4); and non-carbonate clone 
libraries (n = 4) versus ultramafic clone libraries (n = 4).
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Figure 2.7. Non-metric multidimensional (NMDS) scaling plot of genetic and community 
structure for sediment and epilithon samples.  Distances between points are based upon 
the FST statistic for all samples pairs.   

 87



0102030405060

Acid
ob

ac
ter

iac
ea

e

Aero
mon

ad
ac

ea
e

Alte
rom

on
ad

ac
ea

e

Alca
lig

en
ac

ea
e

Alph
ap

rot
eo

ba
cte

ria

Carn
ob

ac
ter

iac
ea

e

Com
am

on
ad

ac
ea

e

Cren
otr

ich
ac

ea
e

Ente
rob

ac
ter

iac
ea

e

Flav
ob

ac
ter

iac
ea

e

Geo
ba

cte
rac

ea
e

Hyp
om

icr
ob

iac
ea

e

Micr
ob

ac
ter

iac
ea

e

Pae
nib

ac
illa

ce
ae

Plan
cto

myc
eta

ce
ae

Pse
ud

om
on

ad
ac

ea
e 

Rhiz
ob

iac
ea

e

Spo
rol

ac
tob

ac
illa

ce
ae

 

Unc
las

sif
iab

le 
Bac

ter
ia

Xan
tho

mon
ad

ac
ea

e

Number of Clones
N

on
-c

ar
bo

na
te

 (n
=2

)
U

ltr
am

af
ic

 (n
=2

)
C

om
pl

ex
 S

ed
im

en
ta

ry
 (n

=1
)

 

Fi
gu

re
 2

.8
. D

is
tri

bu
tio

n 
of

 re
pr

es
en

te
d 

ba
ct

er
ia

l d
iv

is
io

ns
 a

nd
 fa

m
ili

es
 d

et
ec

te
d 

in
 th

e 
se

di
m

en
t c

lo
ne

 
lib

ra
rie

s i
n 

ea
ch

 li
th

ol
og

y.
 

 88



 

02040608010
0

12
0

Bde
llo

vib
rio

ac
ea

e

Beta
-P

rot
eo

ba
cte

ria
Burk

ho
lde

ria
les

Com
am

on
ad

ac
ea

e

Cryo
morp

ha
ce

ae

Dein
oc

oc
ca

ce
ae

Flav
ob

ac
ter

iac
ea

e

Flex
iba

cte
rac

ea
e

Oxa
lob

ac
ter

ac
ea

e

Plan
cto

myc
eta

ce
ae

Sph
ing

ob
ac

ter
ial

es

Sph
ing

om
on

ad
ac

ea
e

Unc
las

sif
iab

le 
Bac

ter
ia

Unc
las

sif
iab

le 
Cya

no
ba

cte
ria

Verr
uc

om
icr

ob
iac

ea
e

Ente
rob

ac
ter

iac
ea

e

Number of Clones
N

on
-c

ar
bo

na
te

 (n
=2

)
U

ltr
am

af
ic

 (n
=2

)

 

 

Fi
gu

re
 2

.9
. D

is
tri

bu
tio

n 
of

 re
pr

es
en

te
d 

ba
ct

er
ia

l d
iv

is
io

ns
 a

nd
 fa

m
ili

es
 d

et
ec

te
d 

in
 th

e 
ep

ili
th

on
 c

lo
ne

 
lib

ra
rie

s i
n 

ea
ch

 li
th

ol
og

y.
 

 89



COMPREHENSIVE LITERATURE CITED 

Altschul, S. F., G. Warren, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic Local 
Alignment Search Tool. Journal of Molecular Biology 215:403-410. 

 
Anderson, P. M., P. J. Bartlein, and L. B. Brubaker. 1994. An early Wisconsin to present 

history of tundra vegetation in northwestern Alaska (U.S.A.). Quaternary 
Research 41:306-315. 

 
Ashelford, K. E., N. A. Chuzhanova, J. C. Fry, A. J. Jones, and A. J. Weightman. 2005. 

At least 1 in 20 16S rRNA sequence records currently held in public repositories 
is estimated to contain substantial anomalies. Applied and Environmental 
Microbiology 71:7724-7736. 

 
Avaniss-Aghajani, E., K. Jones, D. Chapman, and C. Brunk. 1994. A molecular 

technique for identification of bacteria using small subunit ribosomal RNA 
sequences. Biotechniques 17:144-146 148-149. 

 
Baas-Becking, L. G. M. 1934. Geologie of Inleiding Tot de Milieukunde. Van Stockum 

& Zoon, The Netherlands. 
 
Bahr, M., J. E. Hobbie, and M. L. Sogin. 1996. Bacterial diversity in an arctic lake: a 

freshwater SAR11 cluster. Aquatic Microbial Ecology 11:271-277. 
 
Battin, T. J. 2000. Hydrodynamics is a major determinant of streambed biofilm activity: 

From the sediment to the reach scale. Limnology and Oceanography 45:1308-
1319. 

 
Battin, T. J., A. Kaplan, D. Newbold, X. Cheng, and C. Hansen. 2003. Effects of current 

velocity on the nascent architecture of stream microbial biofilms. Applied and 
Environmental Microbiology 69:5443-5452. 

 
Bhatia, M., M. Sharp, and J. Foght. 2006. Distinct Bacterial Communities Exist beneath a 

High Arctic Polythermal Glacier. Applied and Environmental Microbiology 
72:5838-5845. 

 
Binkley, D., R. Stottlemyer, F. Suarez, and J. Cortina. 1994. Soil nitrogen availability in 

some arctic ecosystems in Northwest Alaska: responses to temperature and 
moisture. Ecoscience 1:64-70. 

 
Binkley, D., F. Suarez, C. Rhoades, R. Stottlemyer, and D. W. Valentine. 1995. Parent 

material depth controls ecosystem composition and function on a riverside terrace 
in northwestern Alaska. Ecoscience 2:377-381. 

 

 90



Blackwood, C. B., D. Hudleston, D. R. Zak, and J. S. Buyer. 2007. Interpreting 
Ecological Diversity Indices Applied to Terminal Restriction Fragment Length 
Polymorphism Data: Insights from Simulated Microbial Communities. Applied 
and Environmental Microbiology 73:5276-5283. 

 
Blackwood, C. B., T. Marsh, S.-H. Kim, and E. A. Paul. 2003. Terminal restriction 

fragment length polymorphism data analysis for quantitative comparison of 
microbial communities. Applied and Environmental Microbiology 69:926-932. 

 
Boulton, A. J., S. Findlay, P. Marmonier, E. H. Stanley, and H. M. Valett. 1998. The 

functional significance of the hyporheic zone in streams and rivers. Annual 
Review of Ecology and Systematics 29:59-81. 

 
Bray, J. R., and J. T. Curtis. 1957. An ordination of the upland forest communities of 

Southern Wisconsin. Ecological Monographs 27:325-329. 
 
Bremer, P. J., and G. G. Geesey. 1994. Interactions of Bacteria with Metals in the 

Aquatic Environment. Pages 41-64 in S. S. Rao, editor. Particulate Matter and 
Aquatic Contaminants. CRC Press, Boca Raton, Florida. 

 
Brock, T. D., M. T. Madigan, J. M. Martinko, and J. Parker. 1994. Biology of 

Microorganisms. Englewood Cliffs, N.J., Prentice Hall. 
 
Brown, M. P. S. 2000. Small subunit ribosomal RNA modeling using stochastic context-

free grammars. Pages 57-66 in Proceedings of the Eighth International 
Conference on Intelligent Systems for Molecular Biology, San Diego, California, 
USA. 

 
Chao, A. 1984. Nonparametric-estimation of the number of classes in a population. 

Scandinavian Journal of Statistics 11:265-270. 
 
Chao, A., and S. M. Lee. 1992. Estimating the number of classes via sampling coverage. 

Journal of the American Statistical Association 87:210-264. 
 
Chao, A., M. C. Ma, and M. C. K. Yang. 1993. Stopping rules and estimation for 

recapture debugging with unequal failure rates. Biometrika 80:193-201. 
 
Christensen, B. B., C. Sternberg, J. B. Anderson, L. Eberl, S. Moller, M. Givskov, and S. 

Molin. 1998. Establishment of new genetic traits in a microbial biofilm 
community. Applied and Environmental Microbiology 64:2247-2255. 

 
Clarke, K. R. 1993. Non-parametric multivariate analyses of changes in community 

structure. Australian Journal of Ecology 18:117-143. 
 

 91



Clarke, K. R., and R. H. Green. 1988. Statistical design and analysis for a 'biological 
effects' study. Marine Ecology Progress Series 46:213-226. 

 
Clarke, K. R., and R. M. Warwick. 2001. A futher biodiversity index applicable to 

species lists: variation in taxonomic distinctness. Marine Ecological Progess 
Series 216:265-278. 

 
Cole, J. J., S. Findlay, and M. L. Pace. 1988. Bacterial production in fresh and saltwater 

ecosystems: a cross-system overview. Marine Ecological Progess Series 43:1-10. 
 
Cole, J. R., B. Chai, J. Farris, Q. Wang, A. S. Kulam-Syed-Mohideen, A. M. Bandela, E. 

Cardenas, G. M. Garrity, and J. M. Tiedje. 2007. The ribosomal database project 
(RDP-II): introducing myRDP space and quality controlled public data. Nucleic 
Acids Research 35:D169-D172. 

 
Costerton, J. W., K.-J. Cheng, G. G. Geesey, T. I. Ladd, J. C. Nickel, M. Dasgupta, and 

T. J. Marrie. 1987. Bacterial Biofilms in Nature and Disease. Annual Reviews 
Microbiology 41:435-464. 

 
Cottrell, M. T., and D. L. Kirchman. 2000. Natural assemblages of marine Proteobacteria 

and members of the Cytophaga-Flavobacter cluster consuming low- and high-
molecular-weight dissolved organic matter. Applied and Environmental 
Microbiology 66:1692-1697. 

 
Crump, B. C., H. E. Adams, J. E. Hobbie, and G. W. Kling. 2007. Biogeography of 

Bacterioplankton in Lakes and Streams of an Arctic Tundra Catchment. Ecology 
88:1365-1378. 

 
Crump, B. C., and J. E. Hobbie. 2005. Synchrony and seasonality in bacterioplankton 

communities of two temperate rivers. Limnology and Oceanography 50:1718-
1729. 

 
Crump, B. C., G. W. Kling, M. Bahr, and J. E. Hobbie. 2003. Bacterioplankton 

Community Shifts in an Arctic Lake Correlate with Seasonal Changes in Organic 
Matter Source. Applied and Environmental Microbiology 69:2253-2268. 

 
Drever, J. I. 2002. The Geochemistry of Natural Waters: Surface and Groundwater 

Environments, Third edition. Prentice-Hall, Inc., Englewood Cliffs, NJ. 
 
Dunbar, J., S. M. Barns, L. O. Ticknor, and C. R. Kuske. 2002. Empirical and Theoretical 

Bacterial Diversity in Four Arid Soils. Applied and Environmental Microbiology 
68:3035-3045. 

 92



Dunbar, J., T. O. Lawrence, and C. R. Kuske. 2000. Assessment of Microbial Diversity in 
Four Southwestern United States Soils by 16S rRNA Gene Terminal Restriction 
Fragment Analysis. Applied and Environmental Microbiology 66:2943-2950. 

 
Dunbar, J., S. Takala, S. M. Barns, J. A. Davis, and C. R. Kuske. 1999. Levels of 

Bacterial Community Diversity in Four Arid Soils Compared by Cultivation and 
16S Gene Cloning. Applied and Environmental Microbiology 65:1662-1669. 

 
Dunbar, J., L. O. Ticknor, and C. R. Kuske. 2001. Phylogenetic Specificity and 

Reproducibility and New Method for Analysis of Terminal Restriction Fragment 
Profiles of 16S rRNA Genes from Bacterial Communities. Applied and 
Environmental Microbiology 67:190-197. 

 
Edwards, U., T. Rogall, H. Bloeker, M. D. Ende, and E. C. Boeettge. 1989. Isolation and 

Direct Complete Nucleotide Determination of Entire Genes, Characterization of 
Gene Coding for 16S Ribosomal RNA. Nucleic Acids Research 17:7843-7853. 

 
Ehrlich, H. I. 1998. Geomicrobiology: its significance for geology. Earth-Science Review 

45:45-60. 
 
Eiler, A., S. Laggenheder, S. Bertilsson, and L. J. Tranvik. 2003. Heterotrophic bacterial 

growth efficiency and community structure at different natural organic carbon 
concentrations. Applied and Environmental Microbiology 69:3701-3709. 

 
Elias, S. A., T. D. Hamilton, and M. E. Edwards. 1999. Late Pleistocene environments of 

the western Noatak Bason, northwestern Alaska. Geological Society of America 
Bulletin 111:769-789. 

 
Excoffier, L., P. E. Smouse, and J. M. Quattro. 1992. Analysis of Molecular Variance 

Inferred From Metric Distances Among DNA Haplotypes: Application to Human 
Mitochondrial DNA Restriction Data. Genetics 131:479-491. 

 
Fierer, N., J. L. Morse, S. T. Berthrong, E. S. Bernhardt, and R. B. Jackson. 2007. 

Environmental Controls on the Lanscape-Scale Biogeography of Stream Bacterial 
Communitesq. Ecology 88:2162-2173. 

 
Findlay, R. H., C. Yeates, M. A. J. Hullar, D. S. Stahl, and L. A. Kaplan. 2008. Biome-

Level Biogeography of Streambed Microbiota. Applied and Environmental 
Microbiology 74:3014-3021. 

 
Findlay, S., and W. V. Sobczak. 2000. Microbial communities in hyporheic sediments. in 

J. B. Jones and P. J. Mulholland, editors. Streams and Groundwaters. Academic 
Press, San Diego, California. 

 

 93



Findlay, S. E. G., R. L. Sinsabaugh, W. Sobczak, and M. Hoostal. 2003. Response of 
hyporheic biofilm bacterial metabolism and community structure to nitrogen 
amendments. Aquatic Microbial Ecology 33:127-136. 

 
Findlay, S. E. G., R. L. Sinsabaugh, W. V. Sobczak, and M. Hoostal. 2003. Metabolic 

and structural response of hyporheic microbial communities to variations in 
supply of dissolved organic matter. Limnology and Oceanography 48:1608-1617. 

 
Finlay, B. J. 2002. Global dispersal of free-living microbial eukaryote species. Science 

296:1061-1063. 
 
Franken, R. J. M., R. G. Storey, and D. D. Williams. 2001. Biological, chemicak and 

physical characteristics of downwelling and upwelling zones in the hyporeheic 
zone of a north-temperate stream. Hydrobiologia 444:183-195. 

 
Franklin, R. B., J. L. Garland, C. H. Bolster, and A. Mills. 2001. Impact of dilution on 

microbial community structure and functional potential: Comparison of 
numericals simulations and batch culture experiments. Applied and 
Environmental Microbiology 67:702-712. 

 
Fuhrman, J. 2002. Community structure and function in prokaryotic marine plankton. 

Antonie van Leeuwenhoek 81:521-527. 
 
Galand, P. E., C. Lovejoy, and W. F. Vincent. 2006. Remarkably diverse and contrasting 

archaeal communities in a large arctic river and the coastal Arctic Ocean. Aquatic 
Microbial Ecology 44:115-126. 

 
Gao, X., O. A. Olapade, and L. G. Leff. 2005. Comparison of benthic bacterial 

community composition in nine streams. Aquatic Microbial Ecology 40:51-60. 
 
Garneau, M. E., W. F. Vincent, L. Alonso-Saez, Y. Gratton, and C. Lovejoy. 2006. 

Prokaryotic community structure and heterotrophic production in a river-
influenced coastal arctic ecosystem. Aquatic Microbial Ecology 42:27-40. 

 
Geesey, G. G., R. Mutch, J. W. Costerton, and R. B. Green. 1978. Sessile Bacteria: An 

Important Component of the Microbial Population in Small Mountain Streams. 
Limnology and Oceanography 23:1214-1223. 

 
Geesey, G. G., B. Wigglesworth-Cooksey, and K. E. Cooksey. 2000. Influence of 

calcium and other cations on surface adhesion of bacteria and diatoms: A review. 
Biofouling 15:195-205. 

 
Gleeson, D. 2007. Understanding Microbially Active Biogeochemical Environments. 

Advances in Applied Microbiology 62:81-104. 

 94



Glockner, F. O., E. Zaichikov, N. Belkova, L. Denissova, J. Pernthaler, A. Pernthaler, 
and R. Amann. 2000. Comparative 16S rRNA analysis of lake bacterioplankton 
reveals globally distributed phylogenetic clusters including an abundant group of 
Actinobacteria. Applied and Environmental Microbiology 66:5053-5065. 

 
Goebel, B. M., and E. Stackebrandt. 1994. Cultural and phylogenetic analysis of mixed 

microbial populations found in natural and commerical bioleaching environments. 
Applied and Environmental Microbiology 60:1614-1621. 

 
Gray, N. D., A. Brown, D. R. Nelson, R. W. Pickup, A. K. Rowan, and I. M. Head. 2007. 

The biogeographical distrubution of closely related freshwater sediment bacteria 
is determined by environmental selection. International Society for Microbial  

 Ecology 1:596-605. 
 
Green, J. L., B. J. M. Bohannan, and R. J. Whitaker. 2008. Microbial Biogeography: 

From Taxonomy to Traits. Science 320:1039-1043. 
 
Gutell, R. R., J. C. Lee, and J. J. Cannone. 2002. The accuracy of ribosomal RNA 

comparative structure models. Current Opinion in Structural Biology 12:301-310. 
 
Gutnecht, J., R. Goodman, and T. Balser. 2006. Linking soil process and microbial 

ecology in freshwater wetland ecosystems. Plant and Soil Science 289:17-34. 
 
Halda-Alija, L., and T. C. Johnston. 1999. Diversity of culturable heterotrophic aerobic 

bacteria in pristine stream bed sediments. Canadian Journal of Microbiology 
45:879-884. 

 
Handelsman, J. 2004. Metagenomics: application of genomics to uncultured 

microorganisms. Microbiology Molecular Biology Reviews 68: 669-685. 
 
Hartmann, M., and F. Widmer. 2006. Community structure analyses are more sensitive to 

differences in soil bacterial communities than anonymous diversity indices. 
Applied and Environmental Microbiology 72:7804-7812. 

 
Hausner, M., and S. Wuertz. 1999. High rates of conjugation in bacterial biofilms as 

determined by quantitative in situ analysis. Applied and Environmental 
Microbiology 65:3710-3713. 

 
Hedin, L. O., J. C. v. Fischer, N. E. Ostrom, B. P. Kennedy, M. G. Brown, and G. P. 

Robertson. 1998. Thermodynamic constraints on nitrogen transformations and 
other biogeochemical processes at soil-stream interfaces. Ecology 79:684-703. 

 

 95



Hoj, L., R. A. Olsen, and V. L. Torsvik. 2005. Archaeal communities in High Arctic 
wetlands at Spitsbergen, Norway (78N) as characterized by 16S rRNA gene 
fingerprinting. FEMS Microbiology Ecology 53:89-101. 

 
Horner-Devine, M. C., M. Lage, J. Hughes, and B. J. M. Bohannan. 2004. A taxa-area 

relationship for bacteria. Nature 432:750-753. 
 
Hughes-Martiny, J. B., B. J. M. Bohannan, J. H. Brown, R. K. Colwell, J. A. Fuhrman, J. 

L. Green, M. C. Horner-Devine, M. Kane, J. A. Krumins, C. R. Kuske, P. J. 
Morin, S. Naeem, L. Ovreas, A. L. Reysenbach, V. H. Smith, and J. T. Staley. 
2006. Microbial biogeography: putting microorganisms on the map. Nature 
Reviews 4:102-112. 

 
Hullar, M., L. A. Kaplan, and D. A. Stahl. 2006. Recurring Seasonal Dynamics of 

Microbial Communities in Stream Habitats. Applied and Environmental 
Microbiology 72:713-722. 

 
Jorgenson, M. T., D. K. Swanson, and M. Macander. 2002. Landscape-Level Mapping of 

Ecological Units for the Noatak National Preserve, Alaska. Fairbanks, AK. 
 
Jukes, T. H., and C. R. Cantor. 1969. Evolution of protein molecules. Pages 21-132 in H. 

N. Munro, editor. Mammalian Protein Metabolism. Academic Press, New York. 
 
Kainanen, M. M., L. K. Korhonen, M. J. Lehtola, I. T. Miettinen, P. J. Martikainen, T. 

Vartiainen, and M. H. Suutari. 2002. The microbial community structure of 
drinking water biofilms can be affected by phosphorus availability. Applied and 
Environmental Microbiology 68:434-439. 

 
Kent, A. D., D. J. Smith, B. J. Benson, and E. W. Triplett. 2003. Web-Based 

Phylogenetic Assignment Tool for Analysis of Terminal Restriction Fragment 
Length Polymorphism Profiles of Microbial Communties. Applied and 
Environmental Microbiology 69:6768-6776. 

 
Kirchman, D. L., H. Elifantz, A. I. Dittel, R. R. Malmstrom, and M. T. Cottrell. 2007. 

Standing stocks and activity of Archaea and Bacteria in the western Arctic Ocean. 
Limnology and Oceanography 52:495-507. 

 
Langenheder, S., E. Lindstrom, and L. J. Tranvik. 2005. Weak coupling between 

community composition and functioning of aquatic bacteria. Limnology and 
Oceanography 50:957-967. 

 
Langenheder, S., E. Lindstrom, and L. J. Tranvik. 2006. Structure and Function of 

Bacterial Communites Emerging from Different Sources under Identical 
Conditions. Applied and Environmental Microbiology 72:212-220. 

 96



Langenheder, S., and H. Ragnarsson. 2007. The Role of Environmental and Spatial 
Factors for the Composition of Aquatic Bacterial Communities. Ecology 88:2154-
2161. 

 
Lindstrom, E. S. 2001. Investigating Influential Factors on Bacterioplankton Community 

Composition: Results from a Field Study of Five Mesotrophic Lakes. MIcrobial 
Ecology 42:598-605. 

 
Lindstrom, E. S., and A.-K. Bergstrom. 2004. Influence of inlet bacteria on 

bacterioplankton assemblage composition in lakes of different hydraulic retention 
time. Limnology and Oceanography 49:125-136. 

 
Lindstrom, E. S., M. Forslund, G. Algesten, and A. K. Bergstrom. 2006. External control 

of bacterial community structure in lakes. Limnology and Oceanography 51:339-
342. 

 
Liu, W., T. L. Marsh, H. Cheng, and L. J. Forney. 1997. Characterization of Microbial 

Diversity by Determining Terminal Restriction Fragment Length Polymorphisms 
of Gene Encoding 16S rRNA. Applied and Environmental Microbiology 63:4516- 

 4522. 
 
Logue, J. B., H. Burgmann, and C. T. Robinson. 2008. Progress in the Ecological 

Genetics and Biodiversity of Freshwater Bacteria. Bioscience 58:103-113. 
 
Maddison, D. R., and W. P. Maddison. 2002. MacClade. in. Sinauer Associates, Inc., 

Sunderland, MA. 
 
Martin, A. P. 2002. Phylogenetic Approaches for Describing and Comparing the 

Diversity of Microbial Communities. Applied and Environmental Microbiology 
68:3673-3682. 

 
McCune, B., and J. B. Grace. 2002. Analysis of Ecological Communities. MjM Software 

Design, Gleneden Beach, Oregon USA. 
 
McFeters, G. A., S. A. Stuart, and S. B. Olson. 1978. Growth of Heterotrophic Bacteria 

and Algal Extracellular Products in Oligotrophic Waters. Applied and 
Environmental Microbiology 35:383-391. 

 
McLean, R. J. C. 2002. An Overview of Biofilm Molecular Ecology. in R. J. C. McLean 

and A. W. Decho, editors. Molecular Ecology of Biofilms. Horizon Scientific 
Press, Norfolk, England. 

 

 97



Milner, A. M., M. W. Oswood, and K. R. Munkittrick. 2005. Rivers of Arctic North 
America. in A. Benke and C. Cushing, editors. Rivers of North America. 
Academic Press. 

 
Minchin, P. 1990. DECODA: Database for Ecological COmmunity DAta. in. Australian 

National University, Canberra. 
 
Moss, J. A., A. Nocker, J. E. Lepo, and R. A. Snyder. 2006. Stability and Change in 

Estuarine Biofilm Bacterial Community Diversity. Applied and Environmental 
Microbiology 72:5679-5688. 

 
Nealson, K. H., and D. A. Stahl. 1997. Microorganisms and biogeochemical cycles: what 

can we learn from layered microbial communities? Pages 5-34 in K. H. Nealson 
and J. F. Banfield, editors. Geomicrobiology: interactions between microbes and 
minerals. Mineralogical Society of America, Washington, DC. 

 
Nemergut, D. R., E. K. Costello, A. F. Meyer, M. Y. Pescador, M. N. Weintraub, and S. 

K. Schmidt. 2005. Structure and function of arctic and alpine soil microbial 
communities. Research in MIcrobiology 156:775-784. 

 
NPS. 2005. Land-Air-Water Linkages Scoping Workshop. in I. a. M. P. A. Network, 

editor. National Park Service. 
 
NPS. 2005a. National Park Service Vital Signs monitoring. in. 

http://science.nature.nps.gov/im/monitor/index.cfm. 
 
O'Brien, J. W., D. G. Huggins, and F. DeNoyelles. 1975. Primary productivity and 

nutrient limiting factors in lakes and ponds of the Noatak River Valley, Alaska. 
Archiv Fuer Hydrobiologie 75:263-275. 

 
Oline, D. K. 2006. Phylogenetic Comparisons of Bacterial Communities from Serpentine 

and Nonserpentine Soils. Applied and Environmental Microbiology 72:6965-
6971. 

 
Oswald, W. W., L. B. Brubaker, and P. M. Anderson. 1999. Late Quaternary vegetational 

history of the Howard Pass area, northwestern Alaska. Canadian Journal of 
Botany 77:570-581. 

 
Overpeck, J., K. Hugen, D. Hardy, R. Bradley, R. Case, M. Douglas, B. Finney, K. 

Gajewski, G. Jacoby, A. Jennings, S. Lamoureaux, A. Lasca, G. MacDonald, J. 
Moore, M. Retelle, S. Smith, A. Wolfe, and G. Zielinski. 1997. Arctic 
Environmental Change of the Last Four Centuries. Science 278:1251-1256. 

 

 98



Pace, N. R. 1997. A Molecular View of Microbial Diversity and the Biosphere. Science 
276:734-740. 

 
Pace, N. R., D. A. Stahl, D. J. Lane, and G. J. Olsen. 1985. The analysis of natural 

microbial populations by ribosomal RNA sequences. American Society for 
Microbiology News 51:4-12. 

 
Palmer, M. A., A. P. Covich, S. Lake, P. Biro, J. J. Brooks, J. Cole, C. Dahm, J. Gibert, 

W. Goedkoop, K. Martens, J. Verhoeven, and W. J. v. d. Bund. 2000. Linkages 
between Aquatic Sediment Biota and Life above Sediments as Potential Drivers 
of Biodiversity and Ecological Processes. Bioscience 50:1062-1075. 

 
Paul, B. J., H. C. Duthie, and W. D. Taylor. 1991. Nutrient cycling by biofilms in running 

waters of differing nutrient status. Journal of North American Benthological 
Society 10:31-41. 

 
Peterson, B. J., W. M. Wollheim, P. J. Mulholland, J. R. Webster, J. L. Meyer, J. L. Tank, 

E. Marti, W. B. Bowden, H. M. Valett, A. E. Hershey, W. H. McDowell, W. K. 
Dodds, S. K. Hamilton, S. Gregory, and D. D. Morrall. 2001. Control of Nitrogen 
Export from Watersheds by Headwater Streams. Science 292:86-90. 

 
Pusch, M., D. Fiebig, I. Brettan, H. Eisenmann, B. K. Ellis, L. A. Kaplan, M. W. Naegeli, 

and W. Traunspruger. 1998. The role of micro-organisms in the ecological 
connectivity of running waters. Freshwater Biology 40:453-495. 

 
Reysenbach, A. L., G. S. Wickham, and N. R. Pace. 1994. Phylogenetic analysis of the 

hypoerthermophilic pink filament community in Octupus Spring, Yellowstone 
National Park. Applied and Environmental Microbiology 60:2113-2119. 

 
Rosello-Mora, R., and R. Amann. 2001. The Species Concept for Prokaryotes. FEMS 

Microbiology Reviews 25:39-67. 
 
Rouse, W. R., M. S. V. Douglas, R. E. Hecky, A. E. Hershey, G. W. Kling, L. Lesack, P. 

Marsh, M. McDonald, B. J. Nicholson, N. T. Roulet, and J. P. Smol. 1997. Effects 
of climate change on the freshwaters of arctic and subarctic north america. 
Hydrological Processes 11:873-902. 

 
Rozas, J., and R. Rozas. 1999. DnaSP version 3: an integrated program for molecular 

population genetics and molecular evolution analysis. Bioinformatics 15:174-175. 
 
Sanzone, D. M., S. D. Miller, and S. B. Young. 2006. Monitoring Ecological Change in 

the Arctic Parklands: Vital Signs Monitoring Plan for the Arctic Network Phase 2 
Report. in. The National Park Service. 

 

 99



Saylor, G. S., and A. C. Layton. 1990. Environmental application of nucleic acid 
hybridization. Annual Reviews of Microbiology 44:625-648. 

 
Schloss, P. D., and J. Handelsman. 2005. Introducing Dotur, a computer program for 

defining operational taxonomic units and estimating species richness. Applied and 
Environmental Microbiology 71:1501-1506. 

 
Sigee, D. C. 2005. Freshwater Microbiology. John Wiley & Sons Ltd, West Sussex, 

England. 
 
Skidmore, M., S. P. Anderson, M. Sharp, J. Foght, and B. D. Lanoil. 2005. Comparison 

of Microbial Community Compositions of Two Subglacial Environments Reveals 
a Possible Role for Microbes in Chemical Weathering Processes. Applied and 
Environmental Microbiology 71:6986-6997. 

 
Smith, P. S. 1913. The Noatak River, Alaska. Annals of the Association of American  
 Geographers 2:65-72. 
 
Sobczak, W. V., and S. Findlay. 2002. Variation in bioavailability of dissolved organic 

carbon among stream hyporheic flowpaths. Ecology 83:3194-3209. 
 
Spiegelman, S., G. Whissell, and C. W. Greer. 2005. A survey of the methods for the 

characterization of microbial consortia and communities. Canadian Journal of 
Microbiology 51:355-386. 

 
Stackebrandt, E. 2006. Molecular Identification, Systematics, and Population Structure of 

Prokaryotes. Springer-Verlag Berlin Heidelberg, Germany. 
 
Stanford, J. A., and J. V. Ward. 1993. An ecosystem perspective of alluvial rivers: 

connectivity and the hyporheic corridor. Journal of the North American 
Benthological Society 12:48-60. 

 
Stottlemyer, R., C. Rhoades, and H. Steltzer. 2003. Soil temperature, moisture, carbon 

and nitrogen mineralization at treelin, Noatak National Preserve, Alaska. 
 
Suarez, F., D. Binkley, M. Kaye, and R. Stottlemyer. 1999. Expansion of forest stands 

into tundra in the Noatak National Preserve, northwestern Alaska. Ecoscience 
6:465-470. 

 
Swofford, D. L. 2001. PAUP* phylogenetic analysis using parsimony (*and other 

methods). in. Sinauer Associates, Inc., Sunderland, MA. 
 
Takai, K., M. R. Mormile, J. P. McKinley, F. J. Brockman, W. E. Holben, W. P. 

Kovacik, and J. K. Fredrickson. 2003. Shifts in archaeal communities associated 

 100



with lithological and geochemical variations in subsurface Cretaceous rock. 
Environmental Microbiology 5:309-320. 

 
Thurman, E. M. 1985. Organic Geochemistry of Natural Waters. Kluwer Academic 

Publishers Group, The Netherlands. 
 
Ward, J. V., and J. A. Stanford. 1995. Ecological connectivity in alluvial river 

ecosystems and its disruption by flow regulation. Regulated Rivers: Research and 
Management 11:105-119. 

 
Whitaker, R. J., D. W. Grogan, and J. T. Taylor. 2003. Geographic barriers isolate 

endemic populations of hyperthermophilic archaea. Science 301:976-978. 
 
Whitfield, J. 2005. Biogeography: Is Everything Everywhere? Science 310:960-961. 
 
Woese, C., O. Kandler, and M. Wheelis. 1990. Towards a natural system of organisms: 

proposal for the domains Archaea, Bacteria and Eukarya. Proceedings of the 
National Academy of Science (PNAS) 87. 

 
Wotton, R. S. 2007. Do benthic biologists pay enough attention to aggregates formed in 

the water column of lakes and streams? North American Benthological Society 
26:1-11. 

 
Young, S. B. 1974. The Environment of the Noatak River Basin, Alaska. Center for 

Northern Studies, Wolcott, VT. 
 
Zwart, G., B. C. Crump, M. Agterveld, F. Hagen, and S. K. Han. 2002. Typical 

freshwater bacteria: An analysis of available 16S rRNA gene sequences from 
plankton of lakes and rivers. Aquatic Microbial Ecology 28:141-155. 

 
 

 101



APPENDIX 

 

H
ab

ita
t

R
ep

re
se

nt
at

iv
e

N
o.

 o
f

G
en

B
an

k
A

cc
es

si
on

Si
m

ila
rit

y
H

ab
ita

t
C

la
ss

 (D
om

ai
n*

 )
Fa

m
ily

 (*
ot

he
r)

cl
on

e
cl

on
es

de
sc

rip
to

r
no

.
(%

)
S

ed
im

en
t

A
ci

do
ba

ct
er

ia
A

ci
do

ba
ct

er
ia

ce
ae

se
dS

U
M

11
 g

i|4
1|

4
E

llin
71

37
A

Y6
73

30
3

97
so

il
n 

= 
5

A
ct

in
ob

ac
te

ria
M

ic
ro

ba
ct

er
ia

ce
ae

se
dS

U
M

01
 g

i|9
7|

1
P

la
nt

ib
ac

te
r s

p.
 N

J-
81

 s
tra

in
A

M
39

69
18

99
A

nt
ar

ct
ic

a
A

lp
ha

pr
ot

eo
ba

ct
er

ia
U

nc
la

ss
ifi

ab
le

 A
lp

ha
pr

ot
eo

ba
ct

er
ia

*
se

dS
N

C
08

 g
i|7

0|
2

cl
on

e 
E

le
v_

16
S

_1
14

6
E

F0
19

62
0

99
tre

m
bl

in
g 

as
pe

n 
rh

iz
os

ph
er

e
H

yp
ho

m
ic

ro
bi

ac
ea

e
se

dS
U

M
01

 g
i|7

6|
3

S
M

1E
02

 s
tra

in
A

F4
45

68
0

98
-9

9
tra

ve
rti

ne
 d

ep
os

iti
on

al
 fa

ci
es

R
hi

zo
bi

ac
ea

e
se

dS
U

M
01

 g
i|7

2|
6

IA
M

 1
35

58
 s

tra
in

D
13

94
3

98
-9

9
n/

a
B

ac
ill

i
C

ar
no

ba
ct

er
ia

ce
ae

se
dS

U
M

11
 g

i|6
|

1
E

S
-1

1 
st

ra
in

A
M

26
99

06
99

de
ep

 s
ea

 s
ed

im
en

t e
as

t P
ac

ifi
c

P
ae

ni
ba

ci
lla

ce
ae

se
dS

N
C

08
 g

i|8
8|

11
5

K
M

8 
st

ra
in

A
J0

11
32

1
92

-9
8

hu
m

us
 b

ac
te

ria
 o

f f
in

ni
sh

 s
pr

uc
e 

st
an

ds
S

po
ro

la
ct

ob
ac

ill
ac

ea
e 

se
dS

N
C

08
 g

i|7
5|

25
JC

M
 3

41
7 

st
ra

in
A

B
37

45
19

89
-9

9
sp

oi
le

d 
O

J 
la

ct
ic

 a
ci

d 
ba

ct
er

ia
B

ac
te

ria
*

U
nc

la
ss

ifi
ab

le
 B

ac
te

ria
*

n/
a

1
n/

a
n/

a
>8

0
B

et
ap

ro
te

ob
ac

te
ria

A
lc

al
ig

en
ac

ea
e

se
dS

U
M

11
 g

i|2
5|

7
st

ra
in

 C
B

M
A

I 7
09

D
Q

41
30

30
98

n/
a

C
om

am
on

ad
ac

ea
e

se
dS

N
C

03
 g

i|7
7|

9
is

ol
at

e 
5G

35
/c

lo
ne

 S
IB

2 
4D

D
Q

62
89

3
99

su
bg

la
ci

al
 w

at
er

 o
r i

ce
 o

r s
ed

im
en

t
D

el
ta

pr
ot

eo
ba

ct
er

ia
A

er
om

on
ad

ac
ea

e
se

dS
N

C
08

 g
i|1

5|
28

R
B

E
2C

D
-5

1 
ta

xo
n 

41
50

49
E

F1
11

23
0

88
-1

00
B

og
ot

a 
R

iv
er

G
eo

ba
ct

er
ac

ea
e

se
dS

U
M

01
 g

i|4
9|

1
st

ra
in

 P
LY

 4
E

F5
27

23
4

96
n/

a
Fl

av
ob

ac
te

ria
Fl

av
ob

ac
te

ria
ce

ae
se

dS
U

M
01

 g
i|1

7|
2

st
ra

in
 W

B
 2

.4
.4

4
A

M
16

75
65

99
ha

rd
 w

at
er

 c
re

ek
 W

es
th

ar
z 

M
ou

nt
ai

ns
, G

er
m

an
y

G
am

m
ap

ro
te

ob
ac

te
ria

E
nt

er
ob

ac
te

ria
ce

ae
se

dS
N

C
03

 g
i|8

7|
10

2
st

ra
in

 N
j-5

4
A

M
49

14
61

94
-1

00
A

nt
ar

ct
ic

a
P

se
ud

om
on

ad
ac

ea
e 

se
dS

U
M

01
 g

i|8
5|

38
st

ra
in

 N
j-5

5
A

M
40

93
68

99
-1

00
A

nt
ar

ct
ic

a
S

he
w

an
el

la
ce

ae
se

dS
N

C
08

 g
i|6

7|
10

st
ra

in
 M

L-
S

2
A

F1
40

01
6

99
-1

00
la

ke
 s

ed
im

en
ts

, C
al

ifo
rn

ia
 U

S
A

X
an

th
om

on
ad

ac
ea

e
se

dS
U

M
01

 g
i|9

5|
47

st
ra

in
 N

11
E

F4
23

36
9

95
-1

00
A

nt
ar

ct
ic

a
P

la
nc

to
m

yc
et

ac
ia

P
la

nc
to

m
yc

et
ac

ea
e

se
dS

U
M

01
 g

i|7
3|

1
cl

on
e 

E
le

v_
16

S
_1

88
5

E
F0

20
31

6
97

tre
m

bl
in

g 
as

pe
n 

rh
iz

os
ph

er
e 

S
ph

in
go

ba
ct

er
ia

C
re

no
tri

ch
ac

ea
e

se
dS

U
M

11
 g

i|6
0|

3
cl

on
e 

A
K

Y
G

10
20

A
Y9

21
73

3
97

fa
rm

 s
oi

l M
in

ne
so

ta
 U

S
A

Ep
ilit

ho
n

A
lp

ha
pr

ot
eo

ba
ct

er
ia

S
ph

in
go

m
on

ad
ac

ea
e

se
dS

U
M

11
 g

i|1
5|

cl
on

e 
D

ol
o_

14
A

B
25

76
39

95
su

bs
ur

fa
ce

 d
ol

om
ite

 ro
ck

 in
 A

lp
s

n 
= 

4
B

ac
te

ria
*

U
nc

la
ss

ifi
ab

le
 B

ac
te

ria
*

n/
a

14
n/

a
n/

a
>8

0
n/

a
B

et
ap

ro
te

ob
ac

te
ria

B
et

ap
ro

te
ob

ac
te

ria
*

ep
iS

U
M

11
 g

i|7
7|

12
cl

on
e 

12
4d

s1
0

A
Y2

12
57

5
94

w
at

er
 w

ith
 fe

ca
l c

on
ta

m
in

at
io

n
B

ur
kh

ol
de

ria
le

s*
ep

iS
N

C
03

 g
i|1

|
14

cl
on

e 
S

pb
13

2
A

J4
22

16
3

99
bi

of
ilm

 o
f p

ol
lu

te
d 

riv
er

, S
pi

tte
lw

as
se

r R
iv

er
C

om
am

on
ad

ac
ea

e
ep

iS
U

M
11

 g
i|3

1|
49

cl
on

e 
A

N
TL

V
1_

B
06

D
Q

52
14

74
99

-1
00

la
ke

 ic
e 

co
ve

r, 
A

nt
ar

ct
ic

a
O

xa
lo

ba
ct

er
ac

ea
e

ep
iS

N
C

03
 g

i|2
7|

6
st

ra
in

 F
XS

9
A

Y3
15

17
9

90
su

bg
la

ci
al

 s
ed

im
en

t s
ou

th
er

n 
he

m
is

ph
er

e
C

ya
no

ba
ct

er
ia

*
U

nc
la

ss
ifi

ab
le

 C
ya

no
ba

ct
er

ia
ep

iS
N

C
08

 g
i|1

00
|

16
5

st
ra

in
 p

12
6

A
J5

36
45

3
97

-9
8

Fr
a g

ila
ria

 s
tri

at
ul

a
 c

hl
or

op
la

st
 1

6S
 rR

N
A

 g
en

e
D

ei
no

co
cc

i
D

ei
no

co
cc

ac
ea

e
ep

iS
U

M
11

 g
i|1

02
|

21
st

ra
in

 6
A

4-
2

E
U

02
91

36
89

ra
di

on
uc

lid
e 

co
nt

am
in

at
ed

 s
oi

l
D

el
ta

pr
ot

eo
ba

ct
er

ia
B

de
llo

vi
br

io
na

ce
ae

ep
iS

U
M

01
 g

i|7
|

1
cl

on
e 

LR
 A

2-
27

D
Q

98
83

08
96

A
2 

re
ac

to
r

Fl
av

ob
ac

te
ria

Fl
av

ob
ac

te
ria

ce
ae

ep
iS

N
C

08
 g

i|6
6|

5
st

ra
in

 W
B

 2
.1

-3
A

M
16

75
57

98
ha

rd
 w

at
er

 c
re

ek
 W

es
th

ar
z 

M
ou

nt
ai

ns
, G

er
m

an
y

G
am

m
ap

ro
te

ob
ac

te
ria

E
nt

er
ob

ac
te

ria
ce

ae
ep

iS
U

M
11

 g
i|9

6|
2

st
ra

in
 P

TB
20

92
D

Q
86

25
43

99
m

ap
le

 s
ap

 tu
bi

ng
 b

io
fil

m
P

la
nc

to
m

yc
et

ac
ia

P
la

nc
to

m
yc

et
ac

ea
e

ep
iS

N
C

03
 g

i|7
1|

1
st

ra
in

 J
W

10
-3

f1
A

F2
39

69
5

99
A

us
tra

lia
n 

la
ke

S
pi

ng
ob

ac
te

ria
Fl

ex
ib

ac
te

ra
ce

ae
ep

iS
U

M
11

 g
i|1

9|
67

is
ol

at
e 

G
W

F2
0A

A
J0

11
69

6.
1

96
-9

7
ol

ig
ot

ro
ph

ic
 c

av
e 

w
at

er
 s

ys
te

m
S

ph
in

go
ba

ct
er

ia
le

s*
ep

iS
U

M
01

 g
i|7

2|
16

cl
on

e 
A

K
Y

G
17

27
A

Y9
21

80
1

97
fa

rm
 s

oi
l M

in
ne

so
ta

 U
S

A
V

er
ru

co
m

ic
ro

bi
ae

V
er

ru
co

m
ic

ro
bi

ac
ea

e
ep

iS
N

C
03

 g
i|9

0|
1

D
E

V
00

5
A

J4
01

10
5

96
E

lb
e 

R
iv

er
 b

io
fil

m
, G

er
m

an
y

C
lo

se
st

 R
el

at
iv

e 
(c

ul
tu

re
d 

or
 u

nc
ul

tu
re

d)
Ph

yl
og

en
et

ic
 a

ffi
lia

tio
n

 Ta
bl

e 
A

.1
. P

hy
lo

ge
ne

tic
 a

ff
ili

at
io

n 
of

 c
lo

ne
s f

ro
m

 se
di

m
en

t a
nd

 e
pi

lit
ho

n 
sa

m
pl

es
. 

 102



Si
te

C
ha

o1
AC

E
Sh

an
no

n
Si

m
ps

on
Si

te
C

ha
o1

AC
E

Sh
an

no
n

Si
m

ps
on

E
pi

S
N

C
03

48
.2

0
46

.5
2

2.
92

0.
08

E
pi

S
N

C
03

48
.2

0
46

.5
2

2.
92

0.
08

E
pi

S
N

C
08

21
.2

5
23

.4
4

2.
26

0.
20

E
pi

S
N

C
08

21
.2

5
23

.4
4

2.
26

0.
20

E
pi

S
U

M
01

57
.5

0
64

.8
9

2.
85

0.
10

S
ed

S
N

C
03

33
.2

5
34

.8
7

2.
65

0.
09

E
pi

S
U

M
11

36
.3

3
41

.5
3

2.
77

0.
10

S
ed

S
N

C
08

26
.5

0
25

.1
2

2.
19

0.
15

av
er

ag
e

40
.8

2
44

.1
0

2.
70

0.
12

av
er

ag
e

32
.3

0
32

.4
9

2.
50

0.
13

st
d 

er
ro

r
7.

83
8.

52
0.

15
0.

03
st

d 
er

ro
r

2.
92

2.
66

0.
09

0.
01

S
ed

S
C

S
07

24
.5

0
21

.6
4

1.
51

0.
41

S
ed

S
N

C
03

33
.2

5
34

.8
7

2.
65

0.
09

E
pi

SU
M

01
57

.5
0

64
.8

9
2.

85
0.

10
S

ed
S

N
C

08
26

.5
0

25
.1

2
2.

19
0.

15
E

pi
SU

M
11

36
.3

3
41

.5
3

2.
77

0.
10

S
ed

S
U

M
01

30
.0

0
40

.4
2

2.
38

0.
14

S
ed

S
U

M
01

30
.0

0
40

.4
2

2.
38

0.
14

S
ed

S
U

M
11

37
.0

0
33

.0
6

2.
61

0.
09

S
ed

S
U

M
11

37
.0

0
33

.0
6

2.
61

0.
09

av
er

ag
e

30
.2

5
31

.0
2

2.
27

0.
18

av
er

ag
e

40
.2

1
44

.9
8

2.
65

0.
11

st
d 

er
ro

r
2.

26
3.

39
0.

21
0.

06
st

de
v

5.
98

6.
90

0.
10

0.
01

se
di

m
en

t v
s.

 e
pi

lit
ho

n
no

n-
ca

rb
on

at
e 

vs
. u

ltr
am

af
ic

 Ta
bl

e 
A

.2
. D

iv
er

si
ty

 In
di

ce
s (

C
ha

o1
, S

ha
nn

on
, A

C
E,

 a
nd

 S
im

ps
on

) f
or

 1
6S

 rR
N

A
 c

lo
ne

 li
br

ar
ie

s. 

 
 
 

 103



 
 
 
 
 
 
 
 

V
So

ur
ce

 o
f V

ar
ia

tio
n

df
Su

m
 o

f S
qu

ar
es

 

ar
ia

nc
e 

C
om

po
ne

nt
s

%
 V

ar
ia

tio
n

A
) A

ll 
C

lo
ne

 L
ib

ra
rie

s 
(n

 =
 9

)
   

  A
m

on
g 

po
pu

la
tio

ns
 w

ith
in

 s
tre

am
s

8
10

87
3.

66
5

14
.9

67
**

*
22

.0
   

  W
ith

in
 p

op
ul

at
io

ns
77

7
41

32
2.

30
2

53
.1

82
78

.0
   

  T
ot

al
78

5
52

19
5.

96
7

68
.1

49
B

) S
ed

im
en

t (
n 

= 
5)

 v
s.

 E
pi

lit
ho

n 
(n

 =
 4

)
   

  B
et

w
ee

n 
ha

bi
ta

t
1

65
87

.3
09

15
.2

02
**

20
.3

   
  A

m
on

g 
po

pu
la

tio
ns

 w
ith

in
 h

ab
ita

t
7

42
86

.3
57

6.
42

**
*

8.
6

   
  W

ith
in

 p
op

ul
at

io
ns

77
7

41
32

2.
30

2
53

.1
82

**
*

71
.1

   
  T

ot
al

78
5

52
19

5.
96

7
74

.8
03

C
) S

ed
. U

M
 (n

 =
 2

) v
s.

 S
ed

. N
C

 (n
 =

 2
)

   
B

et
w

ee
n 

lit
ho

lo
gi

es
1

69
9.

29
1

2.
30

5
2.

8
   

  A
m

on
g 

po
pu

la
tio

ns
 w

ith
in

 li
th

ol
og

y
2

21
38

.3
5

12
.2

81
**

*
14

.7
   

  W
ith

in
 p

op
ul

at
io

ns
32

1
23

65
0.

94
2

73
.6

79
**

*
88

.1
   

  T
ot

al
32

4
26

48
8.

58
2

83
.6

55
D

) E
pi

. U
M

 (n
 =

 2
) v

s.
 E

pi
 N

C
 (n

 =
 2

)
   

  B
et

w
ee

n 
lit

ho
lo

gi
es

1
86

6.
92

8
2.

83
8

3.
8

   
  A

m
on

g 
po

pu
la

tio
ns

 w
ith

in
 li

th
ol

og
y

2
65

8.
28

2
2.

73
3*

**
3.

6
   

  W
ith

in
 p

op
ul

at
io

ns
37

5
26

31
0.

20
3

70
.1

61
**

*
92

.6
4

   
  T

ot
al

37
8

26
31

0.
41

4
75

.7
31

**
* 

p<
 0

.0
00

1
 *

* p
=0

.0
1

  

 

Ta
bl

e 
A

.3
. A

M
O

V
A

 re
su

lts
 a

t e
ac

h 
le

ve
l o

f p
ar

tit
io

ni
ng

. 

 
 
 
 

 104



 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

0204060

Ul
tra

m
af

ic
No

nc
ar

bo
na

te
C

om
pl

ex
 S

ed
im

en
ta

ry

Number of T-RFs

8010
0

12
0

S
ed

im
en

t 
E

pi
lit

ho
n

Fi
gu

re
 A

.1
. D

is
tri

bu
tio

n 
of

 T
-R

Fs
 b

y 
ha

bi
ta

t w
ith

in
 e

ac
h 

lit
ho

lo
gy

. 

 105



 
 
 
 
 
 

 

Fi
gu

re
 A

.2
. R

ar
ef

ac
tio

n 
cu

rv
es

 fo
r t

he
 fi

ve
 se

di
m

en
t c

lo
ne

 li
br

ar
ie

s (
n 

= 
nu

m
be

r o
f O

TU
s o

bs
er

ve
d)

. 

0
20

40
60

80
10

0

051015202530

 

 

 

 

 

 S
ed

_S
N

C
03

 (n
=2

2)
 

 S
ed

_S
N

C
08

 (n
=1

6)
 S

ed
_S

U
M

01
 (n

=2
1)

 S
ed

_S
U

M
11

 (n
=2

2)
 S

ed
_S

C
S0

7 
(n

=1
4)

Number of OTUs Observed (D=0.02)

N
um

be
r o

f S
eq

ue
nc

es
 C

ol
le

ct
ed

 106



 

 

 

 

 

 

Fi
gu

re
 A

.3
. R

ar
ef

ac
tio

n 
cu

rv
es

 fo
r t

he
 fo

ur
 e

pi
lit

ho
n 

cl
on

e 
lib

ra
rie

s (
n 

= 
nu

m
be

r o
f O

TU
s o

bs
er

ve
d)

. 

0
20

40
60

80
10

0

051015202530

 

 

 

 

 E
pi

_S
N

C
03

  (
n=

30
) 

 E
pi

_S
N

C
08

  (
n=

20
)

 E
pi

_S
U

M
01

 (n
=3

2)
 E

pi
_S

U
M

11
 (n

=2
9)

Number of OTUs Observed (D=0.02)

N
um

be
r o

f S
eq

ue
nc

es
 C

ol
le

ct
ed

 107



 

 

 

 

 

Fi
gu

re
 A

.4
. R

ar
ef

ac
tio

n 
cu

rv
es

 fo
r s

ed
im

en
t a

nd
 e

pi
lit

ho
n 

cl
on

e 
lib

ra
rie

s a
t i

nd
iv

id
ua

l s
tre

am
 si

te
s (

n 
= 

nu
m

be
r o

f O
TU

s 
ob

se
rv

ed
). 

 

 

 

0
20

40
60

80
10

0

051015202530

   
SN

C
03

 E
pi

lit
ho

n 
(n

=3
0)

 
 S

ed
im

en
t (

n=
22

)

Number of OTUs Observed (D=0.02)

N
um

be
r o

f S
eq

ue
nc

es
 C

ol
le

ct
ed

0
20

40
60

80
10

0

051015202530

   
S

N
C

08
 E

pi
lit

ho
n 

(n
=2

0)
  

 S
ed

im
en

t (
n=

16
) 

Number of OTUs Observed (D=0.02)

N
um

be
r o

f S
eq

ue
nc

es
 C

ol
le

ct
ed

0
20

40
60

80
10

0

051015202530

   
SU

M
01

 E
pi

lit
ho

n 
(n

=3
2)

 
 S

ed
im

en
t (

n=
21

)

Number of OTUs Observed (D=0.02)

N
um

be
r o

f S
eq

ue
nc

es
 C

ol
le

ct
ed

0
20

40
60

80
10

0

051015202530

   
SU

M
11

 E
pi

lit
ho

n 
(n

=2
9)

 
 S

ed
im

en
t (

n=
22

) 

Number of OTUs Observed (D=0.02)

N
um

be
r o

f S
eq

ue
nc

es
 C

ol
le

ct
ed

0
20

40
60

80
10

0

051015202530

   
SN

C
03

 E
pi

lit
ho

n 
(n

=3
0)

 
 S

ed
im

en
t (

n=
22

)

Number of OTUs Observed (D=0.02)

N
um

be
r o

f S
eq

ue
nc

es
 C

ol
le

ct
ed

0
20

40
60

80
10

0

051015202530

   
S

N
C

08
 E

pi
lit

ho
n 

(n
=2

0)
  

 S
ed

im
en

t (
n=

16
) 

Number of OTUs Observed (D=0.02)

N
um

be
r o

f S
eq

ue
nc

es
 C

ol
le

ct
ed

0
20

40
60

80
10

0

051015202530

   
SU

M
01

 E
pi

lit
ho

n 
(n

=3
2)

 
 S

ed
im

en
t (

n=
21

)

Number of OTUs Observed (D=0.02)

N
um

be
r o

f S
eq

ue
nc

es
 C

ol
le

ct
ed

0
20

40
60

80
10

0

051015202530

   
SU

M
11

 E
pi

lit
ho

n 
(n

=2
9)

 
 S

ed
im

en
t (

n=
22

) 

Number of OTUs Observed (D=0.02)

N
um

be
r o

f S
eq

ue
nc

es
 C

ol
le

ct
ed

 108



02040608010
0

12
0

Epi_
SNC03

Epi_
SNC08

Epi_
SUM01

Epi_
SUM11

Sed
_S

CS07
Sed

_S
NC03

Sed
_S

NC08
Sed

_S
UM01 Sed

_S
UM11

Chao1 Estimates +/- 95% CIs

-1
00102030405060708090 Epi_

SNC03
Epi_

SNC08
Epi_

SUM01
Epi_

SUM11
Sed

_S
CS07

Sed
_S

NC03
Sed

_S
NC08

Sed
_S

UM01 Sed
_S

UM11

ACE Estimates +/- 95% CIs

a
b

02040608010
0

12
0

Epi_
SNC03

Epi_
SNC08

Epi_
SUM01

Epi_
SUM11

Sed
_S

CS07
Sed

_S
NC03

Sed
_S

NC08
Sed

_S
UM01 Sed

_S
UM11

Chao1 Estimates +/- 95% CIs

-1
00102030405060708090 Epi_

SNC03
Epi_

SNC08
Epi_

SUM01
Epi_

SUM11
Sed

_S
CS07

Sed
_S

NC03
Sed

_S
NC08

Sed
_S

UM01 Sed
_S

UM11

ACE Estimates +/- 95% CIs

a
b

 Fi
gu

re
 A

.5
. D

iv
er

si
ty

 ri
ch

ne
ss

 e
st

im
at

or
s, 

(a
) C

ha
o1

 a
nd

 (b
) A

C
E,

 w
ith

 9
5%

 c
on

fid
en

ce
 in

te
rv

al
s. 

 

 109


	 Page

