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Summary

1. Understanding the distribution and ecology of episodic or mobile species requires us to address

multiple potential biases, including spatial clustering of survey locations, imperfect detectability

and partial availability for detection. These challenges have been addressed individually by previous

modelling approaches, but there is currently no extension of the occupancy modelling framework

that accounts for all three problems while estimating occupancy (w), availability for detection (i.e.

use; h) and detectability (P).
2. We describe a hierarchical Bayes multi-scale occupancymodel that simultaneously estimates site

occupancy, use, and detectability, while accounting for spatial dependence through a state-space

approach based on repeated samples at multiple spatial or temporal scales. As an example applica-

tion, we analyse the spatiotemporal distribution of the Louisiana waterthrush Seiurus motacilla

with respect to catchment size and availability of potential prey based on data collected alongAppa-

lachian streams of southern West Virginia, USA. In spring 2009, single observers recorded

detections of Louisiana waterthrush (henceforth, waterthrush) within 75 m of point-count stations

(i.e. sites) during four 5-min surveys per site, with each survey broken into 1-min intervals.

3. Waterthrushes were widely distributed (w range: 0Æ6–1Æ0) and were regularly using (h range: 0Æ4–
0Æ6) count circles along forested mountain streams. While accounting for detection biases and

spatial dependence among nearby sampling sites, waterthrushes became more common as catch-

ment area increased, and they became more available for detection as the per cent of the benthic

macroinvertebrates that were of the orders Ephemeroptera, Plecoptera or Trichoptera (EPT)

increased. These results lend some support to the hypothesis that waterthrushes are influenced by

instream conditions as mediated by watershed size and benthic macroinvertebrate community com-

position.

4. Synthesis and applications.Although several available modelling techniques provide estimates of

occupancy at one scale, hierarchical Bayes multi-scale occupancy modelling provides estimates of

distribution at two scales simultaneously while accounting for detection biases and spatial depen-

dencies. Hierarchical Bayes multi-scale occupancy models therefore hold significant potential for

addressing complex conservation threats that operate at a landscape scale (e.g. climate change) and

probably influence species distributions overmultiple scales.

Key-words: detection probability, Louisiana waterthrush, Markov chain Monte Carlo, mon-

itoring, multi-scale occupancy, Seiurus motacilla, spatiotemporal distribution, state-space

modelling, WinBUGS

Introduction

Much ecological research seeks to understand drivers of

species distributions across space and time. Examples

include studies of metapopulation ecology (Hanski 1994), pop-

ulation viability (Beissinger & Westphal 1998), community
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composition and dynamics (Mordecai, Cooper & Justicia

2009; Zipkin, Dewan & Royle 2009), resource selection (Mac-

Kenzie 2006) and disease spread (Thompson 2007). Modelling

distribution of species based on presence–absence data using

occupancy models offers flexibility in addressing such diverse

questions with relatively simple sampling designs that account

for detectability (Mackenzie & Royle 2005). Understanding

the distribution and ecology of episodic ormobile species, how-

ever, requires us to address multiple challenges related to sam-

pling biases (Pollock et al. 2004; Kéry & Schmidt 2008; Kéry

et al. 2009). In particular when studying vocal species, chal-

lenges include (i) individualsmay bemoredetectable in acousti-

cally favourable environments (Pacifici et al. 2008;Mattsson&

Marshall 2009), (ii) individuals periodically become unavail-

able for detectionwithin a sample unit (Farnsworth et al. 2002;

Diefenbach et al. 2007; Rota et al. 2009) and (iii) spatial clus-

tering of survey locations may induce spatial dependence

among nearby points (for review see Campomizzi et al. 2008).

The first challenge (imperfect detection) can be addressed by

simultaneously estimating occupancy and detection prob-

abilities based on repeated detection ⁄non-detection data

(MacKenzie et al. 2002; Mattsson & Marshall 2009). If unad-

dressed, variation in detectability can produce misleading

inferences regarding species distribution (Williams, Nichols &

Conroy 2002; Gu & Swihart 2004). Detection bias has been

recognized and addressed in several applications that investi-

gate distributions of species (Wintle et al. 2005; O’Connell

et al. 2006; Bailey et al. 2007;Kéry & Schmidt 2008).

A second challenge is that periodic unavailability for detec-

tion due to species movement or phenology may violate the

closure assumption of occupancy models and may generate

biased estimates of patch occupancy (Pollock et al. 2004; Kéry

& Schmidt 2008). The robust design is a sampling design com-

prised of nested primary and secondary surveys and allows

application of models that account for (i) variation in detect-

ability during each secondary survey and (ii) violation of the

closure assumption among primary surveys (Pollock 1982). In

addition to providing a means to account for potential biases,

the robust design offers an opportunity to distinguish occu-

pancy at two nested scales (Fig. 2). At a coarser scale, we can

estimate the probability that a site is usable (i.e. that a species

may use the site), whichwe define here as occupancy (w). Given

species occupancy at the coarser scale, we can then estimate

the probability that a species uses a site during each primary

survey, which we define here as use (h). Taken together, this

multi-scale modelling approach allows examination of species

distribution at two scales simultaneously.

Multi-scale occupancy models may be fit to detection data

collected using the robust design, and they simultaneously pro-

vide estimates of occupancy, use and detection (Mordecai

2007; Nichols et al. 2008). As such, these models may be par-

ticularly useful for investigators that are interested in examin-

ing patch occupancy across multiple primary surveys and

during each of >2 primary surveys (e.g. days or weeks). Use

(i.e. availability for detection) and detection are often sepa-

rated when estimating local species abundance (for review see
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Fig. 1. Louisiana waterthrush survey locations in New River Gorge National River (NERI) and Gauley River National Recreation Area

(GARI), WV. As illustrated in the transect map at Arbuckle Creek, NERI (inset), each transect contained five point-count stations and could

have included as many as four Louisiana waterthrush territories.
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Johnson 2008), and such estimates can be provided by general-

ized Horvitz–Thompson estimators (Pollock et al. 2004;

Diefenbach et al. 2007). In contrast, distinguishing patterns in

species distribution (i.e. occupancy) from use and detection

has received little attention (Mordecai 2007; Nichols et al.

2008).

The third, and perhaps the least addressed, challenge is

that survey locations are often clustered and conspecifics

may aggregate or occupy areas covering multiple sampling

locations, which induces spatial dependence and therefore

underestimation of variation among nearby sample units

(Sauer, Link & Royle 2005). A solution to this dependence is

to apply a random effect that references a coarser, aggregate

sampling unit when predicting distribution at finer spatial

scales (Royle & Dorazio 2006; Royle et al. 2007). Although

this may be accomplished through maximum-likelihood esti-

mation and linear mixed modelling, hierarchical Bayes mod-

els offer flexible and robust approaches to modelling

distributions of species based on sparse detections while

accounting for spatiotemporal dependencies and detectability

(Royle & Dorazio 2008, pp. 106–124). Applying a hierarchi-

cal Bayes approach to multi-scale occupancy models offers a

robust and extensible solution for dealing with multiple chal-

lenges of studying nested patterns of distribution or resource

use by mobile or episodic species.

Here, we describe a multi-scale site occupancy model that

integrates existing occupancy modelling approaches by simul-

taneously estimating site occupancy (w) and use (h) while

accounting for detectability (P) and spatial dependence

through the use of random effects. In particular, this model

addresses challenges to studying episodic or mobile species by

employing a Bayesian state-space modelling approach and is

an extension of existing multi-scale occupancy models that

assume no spatial dependence among sample units (Mordecai

2007; Nichols et al. 2008). We first demonstrate that multi-

scale occupancy models are a generalization of single-scale

occupancymodels, and then we describe sampling designs nec-

essary to simultaneously estimate occupancy and temporal or

spatial patterns of use while accounting for detectability. We

then present an analysis based on bird data collected in south-

ern West Virginia as part of a long-term monitoring pro-

gramme administered by the National Park Service (NPS). In

particular, we examine occupancy and temporal patterns of

use by the Louisiana waterthrush Seiurus motacilla Vieillot, a

riparian obligate passerine, based on catchment area and a

measure of benthic macroinvertebrate community composi-

tion. Finally, we discuss the importance and potential exten-

sions of hierarchical Bayes multi-scale occupancy modelling

for addressing many questions in ecology, management and

conservation biology.
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Fig. 2. Comparison of example single-scale (a) and multi-scale (b) occupancy designs with either temporal or spatial replication of subsamples.

A square represents a site, surveys take place at sites (here, point count circles), and wi is the probability that site i is occupied by a species. In sin-

gle-scale occupancy design (a), P is the probability of detecting that species during a subsample (e.g. minute of point count) given the site is occu-

pied. In multi-scale occupancy design (b), h is the probability that the species uses the site on a specific survey given the site is occupied, and P is

the probability of detecting that species during a subample given the site is used during a specific survey.
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Materials and methods

STUDY AREA AND FIELD PROTOCOL

As part of the NPS Inventory and Monitoring Programme in the

Eastern Rivers andMountains Network, a long-term streamside bird

monitoring programme was developed, in part, to monitor the distri-

bution of the Louisiana waterthrush (henceforth, waterthrush;

Mattsson & Marshall 2010) which has been demonstrated to be an

indicator of biotic integrity in headwater streams (Mattsson &

Cooper 2006; Mulvihill, Newell & Latta 2008). This riparian obligate

warbler consumes primarily benthic macroinvertebrates along stream

margins, and their mostly linear territories typically extend 250–

300 m along stream networks in this region (Mattsson et al. 2009).

Watershed conditions such as catchment area, topography and land

cover can affect the community composition of potential prey for

waterthrushes (Klemm et al. 2002; Roy et al. 2003; King et al. 2005),

which in turn may affect waterthrush distribution. Waterthrush mon-

itoring is one element of a larger ‘Vital Signs’ monitoring effort in the

network that includes monitoring of water quality and benthic macr-

oinvertebrates (Marshall & Piekielek 2007).

From a total of 80 candidates, 28 tributary watersheds (2nd–3rd

Strahler stream order; Strahler 1952) were selected for waterthrush

monitoring in two National Parks (i.e. New River Gorge National

River and Gauley River National Recreation Area) of southernWest

Virginia (37�57¢ N, 81�4¢ W‘; Fig. 1; Mattsson & Marshall 2010).

These parks are characterized by steep, forested 1st–3rd order drain-

ages that flow into larger rivers that bisect each park. Watersheds

within these parks were selected using a stratified randomization

based on underlying features, including watershed size, geology and

land ownership. Watersheds were delineated and catchment area (i.e.

the area of land that drains to a focal point in the landscape, also

known as watershed area) within each watershed was estimated based

on a 10-m digital elevation model (US Geological Survey 2004) using

ArcGIS 9Æ1 (ESRI 2005). Once delineated, the number of cells that

flow into any focal point within a watershed were converted into a

measure of catchment area for that point. Some candidate watersheds

were excluded from monitoring due to logistical limitations (e.g. safe

access).

Within each selected watershed, a 1-km streamside transect was

established within a predetermined range of catchment areas (i.e. 1–

99Æ9 km2). As such, transects were established along reaches that were

perennial and wadeable. If >1 km of stream was available, then a

series of four adjacent 250-m segments were selected at random. A 1-

km streamside transect was expected to contain up to four mostly lin-

ear waterthrush territories (Fig. 1), based on territorymapping of col-

our-banded waterthrushes in this region (Mulvihill, Newell & Latta

2008). Along each 1-km transect, a point-count station was estab-

lished every 250 m, totalling five stations per transect and 140 points

throughout the two parks. Detectability of waterthrush pairs is par-

ticularly high during the first month following fledging of nests

(Mattsson & Cooper 2006). As such, each transect was visited twice

from 23 May to 19 June 2009 to coincide with the peak period of

waterthrush fledgling care. Transect visits were 4–20 days apart for

any given transect.

During each visit day, one of four observers traversed a transect

twice (i.e. upstream and downstream), conducted 5-min point counts

at each station during both passes, and recorded per-minute detec-

tions (aural or visual) of waterthrush adults or young within an esti-

mated 75 m of the point-count station. This resulted in two levels of

temporal replication (Fig. 2). Before conducting any transect surveys,

observers underwent ‡5 days of training that focused on improving

accuracy in estimating distances to waterthrushes within 75 m using

both aural and visual cues. Each point-count station was therefore

sampled four times (four passes over two days), and there were five

subsamples (five 1-min intervals) per sample (i.e. 4 · 5 = 20 subsam-

ples per point throughout the season). Due to travel time between

sites and the limited daily period of waterthrush vocal activity, it was

more reasonable for an observer to conduct two passes per transect

visit than it would have been for that observer to conduct surveys

along two transects per day. To account for observer variability with

respect to detection of waterthrushes while minimizing the number of

days between visits, one observer conducted counts on both passes

along a transect on a given day, and another observer conducted

counts on both passes along a transect on the second day.

Early spring is the seasonwhen benthic macroinvertebrate commu-

nities are typically most diverse (Huryn, Wallace & Anderson 2008);

consequently, benthic macroinvertebrates were sampled from 26 of

28 transects during March 2009. This period also coincides with

waterthrush territory establishment in the region (Mattsson et al.

2009). The benthic macroinvertebrate sampling protocol was based

on methods developed for the US Geological Survey (Moulton et al.

2000, 2002). For more details on sampling methods, see Tzilkowski,

Weber & Ferreri (2009). Substrate disturbance sampling, with a

0Æ25 m2 template and Slack sampler (500 lmmesh), was used to col-

lect subsamples from five riffles throughout each transect. Stream

conditions (i.e. substrate, water velocity and depth) were measured

and kept consistent among riffle subsamples. These subsamples were

composited into one sample for each stream transect, preserved in

95% ethanol and transported to the laboratory. Fixed-count subsam-

ples of 240–360 individuals were identified to genus for all taxa, except

for chironomid midges and oligochaete worms, using standard

dichotomous keys (Peckarsky et al. 1990; Merritt, Cummins & Berg

2008). For the analysis, the percentage of individuals belonging to the

insect orders Ephemeroptera, Plecoptera or Trichoptera (henceforth,

% EPT) was calculated for each sample, as this metric is related to

waterthrush distribution in other parts of its range (Mattsson & Coo-

per 2006).

HIERARCHICAL BAYES MULTI -SCALE OCCUPANCY

MODEL

We first illustrate how a single-season, single-scale occupancy model

(MacKenzie et al. 2002) is generalized to a single-season, multi-scale

occupancy model (Mordecai 2007; Nichols et al. 2008) based on the

sampling design for examining waterthrush distribution patterns. In

doing so, we largely follow the theory and notation of MacKenzie

et al. (2002). Suppose that each transect were visited during only a

single day, and a 5-min survey was repeated twice per day at each

point-count station (i.e. site) following a temporal replication sam-

pling design (Fig. 2). A single-season occupancy model could then be

applied to estimate the probability that a waterthrush occupied a site

that day (w) and the minute-by-minute probability of detecting the

waterthrush (P), given the site is occupied. For a given site-visit day,

using 1 to denote a detection and 0 a non-detection to create a detec-

tion history, if we only detected a waterthrush during the thirdminute

of the first pass (i.e. a detection history of 00100 00000), then we could

conclude that the species occupied the site. Alternatively, if we never

detected a waterthrush at the site (i.e. 00000 00000), then either (i) the

site was occupied but the species was not detected or (ii) the site was

not occupied. As such, minute-by-minute detection ⁄ non-detection
data provides information to estimate bothw andP.

In reality, however, transects were visited on two different days

(Fig. 3a). A multi-scale occupancy model can therefore be used to
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estimate (i) the probability that a waterthrush occupied a site (w) at
least once from the start of the first survey to the end of the final sur-

vey of that site, (ii) the probability of use (h) by a waterthrush during

an individual point-count survey given the site is occupied and (iii)

the probability of detecting a waterthrush (P) during an individual

survey given the site was used. For example, if we only detect a water-

thrush on the third minute of the first survey (00100 00000 00000

00000), then we could assert that the species: (i) occupied the site, (ii)

used the site during the first survey and (iii) either used the site during

the subsequent surveys and was not detected or did not use the site

during these subsequent surveys. Alternatively, suppose no individu-

als were detected during any survey of the site (i.e. 00000 00000 00000

00000). In this case, a waterthrush either: (i) did not occupy the site;

(ii) occupied but did not use the site (i.e. species was unavailable for

detection) during any survey or (iii) was not detected despite occupy-

ing and using the site during either survey. Minute-by-minute detec-

tion ⁄ non-detection data during surveys that are repeated on multiple

days therefore provide information to estimate not only w and P, but

also h. Note that a single-scale occupancy model may also be fit to

such a data set, and its performance could be directly compared with

that of a multi-scale occupancy model. This is analogous to the case

where single-season and dynamic occupancy models can be fit to the

same data set (MacKenzie et al. 2003).

We formulated the multi-scale occupancy model as a state-space

model (Royle & Kéry 2007) that comprises two submodels, including

a state process model for the latent or partially observed processes of

use and occupancy, and an observation model for the repeated detec-

tions themselves. The state process model is composed of two equa-

tions, starting with the binary site occupancy state:

Zi � BernoulliðwiÞ for i ¼ 1; 2; . . .N

followed by the binary use state, which is conditional on the

respective site occupancy state:

uijjZi � BernoulliðhijÞ for j ¼ 1; 2; . . .V

where, under a temporal replication sampling design (Fig. 3a),

i indexes the N sites and j indexes the V surveys. Therefore, a

species occupies a site according to a Bernoulli trial with parame-

ter w, and the species uses (i.e. is available for detection at) the

site during a survey according to another Bernoulli trial with

parameter h. The observation model, which is conditional on the

state of use is denoted as follows:

yijkjuij � BernoulliðPijkÞ for k ¼ 1; 2; . . .S

where k indexes S subsamples, y is a three-dimensional array of

1’s or 0’s representing detections or non-detections of a species for

each site-survey-subsample combination, and P is the correspond-

ing three-dimensional array of detection probabilities for each

site-survey-subsample combination. Thus, if the species uses an

occupied site during a survey, then the species is detected during

that survey according to a Bernoulli trial with parameter P.

To demonstrate how sampling design dictates interpretations of

occupancy, use, and detectability, we refer again to the waterthrush

sampling design where N = 140 point-count stations are surveyed

during V = 4 surveys, and detection ⁄ non-detection data are col-

lected during S = 5 successive 1-min counts during each survey. In

this case, parameters could be interpreted as follows: (i) occupancy

(w) is the probability that a site is usable, i.e. that a waterthrush may

use the site; (ii) use (h) is the probability that a waterthrush uses the

site by vocalizing during a survey given a site is occupied; and (iii)

detection (P) is the probability of detecting a waterthrush during a

survey given that a waterthrush uses the site that day. It is therefore

possible for a waterthrush to occupy a site but not use that site during

the four surveys.

This design, where the replication is temporal (Fig. 3a), focuses on

the frequency that a waterthrush uses a site (or is available for detec-

tion). It is important to note that the model structure is easily adapt-

able for questions focused on spatial patterns in addition to temporal

patterns of use among plots within sites (Fig. 3b). In particular,

V would instead represent the number of plots per site, and S would

represent the number of temporally replicated surveys per plot. Inter-

pretations of occupancy, use, and detection are therefore contingent

on the sampling design (Mackenzie & Royle 2005). Spatial replica-

tion, however, may introduce Markovian dependence due to animal

movements and require approaches that accommodate such depen-

dence (Hines et al. 2010).

Covariates and missing data can be easily incorporated into the

state-space multi-scale occupancy model as they have for other state-

space occupancy models (Royle & Dorazio 2008). Effects of site-level

covariates onw, h, andP, patch or survey-level covariates on h and P,

and subsample-level covariates on P can be modelled using the logit

transformation, where Y is the response parameter of interest (i.e.

either w, h or P),X is the covariate information and B is the vector of

logistic model coefficients for estimation:

Y ¼ eXB

1þ eXB

Catchment area (km2) 

O
cc

up
an

cy
 p

ro
ba

bi
lit

y 
D

ai
ly

 u
se

 p
ro

ba
bi

lit
y 

(a)

(b)

Fig. 3. Effect of catchment area and%EPT (in benthicmacorinverte-

brate community) on probability of occupancy (a) and of daily use

(b) by the Louisiana waterthrush within 75-m radius count circles

along streams in two national parks of southernWest Virginia during

spring of 2009. Per cent EPTwas held at 70% for graph A, and catch-

ment area was held at 20 km2 in graph B.Dashed lines represent 95%

BCIs.
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Under some standard sample designs, sites are nested within larger

spatial units (henceforth, aggregates) to improve sampling efficiency

or accommodate logistical constraints (Bibby & Burgess 2000; Sauer,

Fallon & Johnson 2003; Newson et al. 2008). Spatial dependence due

to nested or clustered distribution of species among nearby sites,

unless taken into account, may yield biased estimates of distribution

(for review see Dormann et al. 2007). In addition to covariates, a ran-

dom intercept for aggregates (e.g. transects each comprised of multi-

ple survey sites; b0i) can be incorporated into themodel to account for

this dependence:

logitðwiÞ ¼ a0a þ a1x1 þ a2x2 þ � � � þ arxr

where a indexes aggregates, i indexes sites and the model may

contain any number of fixed effects, indexed by r. In the hierar-

chical Bayes analysis, prior distributions are defined such that

aggregate intercept values share a common mean and variance

(Royle & Dorazio 2006; Howell, Peterson & Conroy 2008):

b0a � Normallðl; r2Þ

This variance then represents variation among aggregates or the

level of spatial dependence.

MODEL ASSUMPTIONS

Obtaining accurate estimates via the multi-scale occupancy model

presented here requires important assumptions. Unlike single-scale,

single-season occupancy models (MacKenzie et al. 2002), multi-scale

occupancy models allow for the possibility that species become occa-

sionally unavailable for detection at a site. For example, a water-

thrush may move into or out of a count circle as it passes along its

streamside territory. Similar to dynamic occupancy models (Mac-

Kenzie et al. 2003), multi-scale occupancy models assume that sites

are closed (i.e. availability for detection remains constant) during

each primary survey. For example, waterthrushes do not move into

or out of a count circle throughout a 5-min point-count survey. Sec-

ondly, species are identified correctly upon detection, or no species

are misidentified. Again, this assumption may be relaxed to account

for false positives, as it has been for single-scale occupancy modelling

(Royle & Link 2006). Thirdly, covariates must be included to account

for any detection biases, such as differences among observers, tempo-

ral variation in species perceptibility (e.g. singing rates), sampling

effort and environmental conditions (Mattsson & Marshall 2009).

Finally, parameters must be incorporated to account for any depen-

dencies of detections among sites (e.g. spatially clustered or large ter-

ritories), surveys (e.g. temporally clustered availability for detection)

or subsamples (e.g. observer expectation bias or temporally clustered

availability for detection).

WATERTHRUSH ANALYSIS

We investigated patterns of waterthrush occupancy and use along

tributaries by fitting a hierarchical Bayes multi-scale occupancy

model to temporally replicated detection ⁄ non-detection data

(Fig. 2). We assume that use (h) represents availability for detection

during a point count, as waterthrushes move along their ca. 250-m

territories throughout the day. Waterthruses are thus only available

for detection when they are present within the 75-m detection radius

(henceforth, count circle) during a 5-min count. Therefore, occupancy

(w) is the probability that a point is occupied by ‡1 waterthrushes at

least once during the study period, h is the probability that ‡1 wat-

erthrushes use the count circle during a particular pass given the point

is occupied, andP is the probability of detecting a waterthrush during

one of the 5 min given they use that count circle on a particular pass.

A count circle, therefore, is a site in a traditional, single-season occu-

pancymodel.

Occupancy, use, and detectability of waterthrushes in count circles

may depend on watershed-scale attributes, including local water-

thrush territory density, and this dependence would manifest

throughout a transect (Fig. 1). With this in mind, we applied the hier-

archical Bayes multi-scale occupancy model that included a random

intercept for variation among transects with respect to count-circle w
and h. We also assumed that sources of variation in detectability of a

waterthrush would be accounted for when considering observer-spe-

cific attributes (Mattsson &Marshall 2009) and previous detection of

a waterthrush. Detections of waterthrushes may not be independent

during a 5-min count due to an expectation bias of observers and ⁄ or
temporally clustered singing activity of a waterthrush (Riddle et al.

2010).We therefore included in the model fixed categorical covariates

for observer (Obs) and detection during the previous minute (Prev).

We also included as predictors of w, h and P fixed effects for catch-

ment area and for % EPT. We predicted that w and h would increase

with increasing catchment area and % EPT, as these are both

expected to correspond directly with waterthrush food availability

(Klemm et al. 2002; Mattsson et al. 2009). Catchment area and %

EPThadweak, if any correlation (–0Æ19). As such, we developed a ser-

ies of logistic regression equations to estimate the level of spatial

dependence and relationships between covariates and response

parameters of themulti-scale occupancymodel:

logitðwiÞ ¼ a0a þ a1catchmenti þ a2EPTi

logitðhijÞ ¼ b0a þ b1catchmenti þ b2EPTi

logitðPijkÞ ¼ d0 þ d1catchmenti þ d2EPTi þ d3;ObsObsij

þ d4Previjk

where i indexes sites, j indexes surveys within sites, k indexes

subsamples within surveys, and Obs indexes observers, and Prev

is a binary variable for previous detection. Parameters a0a and

b0a represent random intercepts that account for transect-level

spatial dependence when modelling occupancy and use, respec-

tively, and d0 represents the fixed intercept for detectability.

Parameters a1, b1, and r1 represent slopes for the catchment area

effect, whereas a2, b2, and r2 represent slopes for the effect of %

EPT on occupancy and use, respectively. For modelling detect-

ability, r3,Obs and r4 represent the slopes for the effect of observer

and previous detection, respectively.

We usedWinBUGS version 1Æ4 (Spiegelhalter et al. 2003) to fit the

model to the waterthrush data, which uses an Markov chain Monte

Carlo (MCMC) algorithm. R and WinBUGS code for fitting the

model is provided in Appendix S1 (Supporting information), and we

provided simplified code (i.e. without covariates) for running the hier-

archical Bayes multi-scale occupancy model in WinBUGS in Appen-

dix S2 (Supporting information). We chose a relatively

uninformative normal prior with a logit-scale mean of 0 (i.e. 0Æ5 on

the probability scale) and standard deviation of 1Æ58 (i.e. 0Æ83 on

probability scale and precision of 0Æ4 on logit scale) for the mean of

the random intercepts forw and h. Unlike a uniform prior on the logit

scale, this normal prior results in an approximately uniform distribu-

tion from 0 to 1 on the probability scale.We also used this uninforma-

tive normal prior for the remaining parameters, except we used a

uniform prior of 0Æ001–10 on the logit scale for the standard deviation
of random intercepts (SDRs) for w and h. For the latter, the lower
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and upper bounds represent no spatial dependence and strong spatial

dependence, respectively. To improve mixing of the MCMC algo-

rithm, we truncated the normal priors from –10 to 10, disallowed val-

ues below 1E)5 or above 1–1E)5 for probabilities, and disallowed

values below 1E-3 for standard deviation.We exported model output

fromWinBUGS to programme R (RDevelopment Core Team 2006)

and assessed convergence using the default values for the Raftery–

Lewis test implemented in the R package BOA, which is based on a

single chain of MCMC iterations (Raftery & Lewis 1992a,b; Smith

2007). Inferences regarding effect sizes and direction were based on

posterior means and 95% Bayesian Credible Intervals (BCIs; 2Æ5th–
97Æ5th percentile of the distribution), and parameter estimates are

reported as mean with BCI in square brackets. In particular, if the

BCI surrounding a slope estimate did not include zero, then we inter-

preted this as a statistically significant (henceforth, significant) effect.

Results

Waterthrushes were detected in 70 of 140 point-count circles

for a naı̈ve occupancy estimate of 0Æ500, and waterthrushes

were detected during 99 of 280 surveys in these 70 count circles

for a naı̈ve use estimate of 0Æ353. Catchment areas ranged from

1Æ08 to 74 km2, benthic macroinvertebrate densities ranged

from 436 to 14 469 individuals m)2, and % EPT ranged from

0Æ7 to 90Æ0%. The hierarchical model, when fit to these data,

converged after 2Æ5 million MCMC iterations following

100 000 discarded (i.e. burn-in) iterations. Based on estimates

from this model, waterthrush occupancy of count circles

increased on average from 59 to 100% across the range of

catchment areas while holding % EPT at the mean value

across sites (i.e. 70%), and this effect was significant

(a1 = 1Æ775 [0Æ445, 3Æ745]; Fig. 3). Likewise, use increased on

average from 35 to 66%across the range of%EPTwhile hold-

ing catchment area at the mean value across sites (i.e. 20 km2),

and the credible interval was almost entirely above zero

(b2 = 1Æ620 [)0Æ106, 3Æ527]; Fig. 3). Minute-specific detect-

ability of waterthrushes increased as catchment size increased

by 1 ha, and the credible interval was almost entirely above

zero (r1 = 0Æ169 [)0Æ004, 0Æ330]; Fig. 4). Detectability more

than doubled when a waterthrush was detected during the pre-

vious minute compared to when no waterthrushes were

detected previously (Fig. 4). Catchment area had weak, if any,

effect on waterthrush daily use, and % EPT had weak, if any,

effects on waterthrush occupancy or detection. Based on pos-

terior distributions for SDRs in the model, spatial dependence

among count circles within transects was evident with respect

to occupancy and use (Fig. 5). The mode of SDR for

occupancy (0Æ2) was less than that for use (0Æ8).

Discussion

Questions about species distribution and resource use are cen-

tral to many ecological studies and their application for man-

agement and conservation. Hierarchical Bayes multi-scale

occupancy modelling is an extension of existing approaches

that model occupancy at a single scale while accounting for

detectability and ⁄or spatial dependence (MacKenzie et al.
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Fig. 4. Per-minute detectability with (a) and without (b) prior detec-

tion of the Louisiana waterthrush within 75-m radius count circles

along streams in two National Parks of southern West Virginia dur-

ing spring of 2009.Whiskers represent 95%BCIs.

Occupancy

Use

No dependence

Fig. 5. Spatial dependence among count circles within transects with

respect to count-circle occupancy and survey-specific use by the Loui-

siana waterthrush along streams of two National Parks in southern

West Virginia during spring 2009. The histogram shows the prior

probability density, and the curves show the posterior probability dis-

tributions for the logit-scale standard deviation of random intercepts

(SDR) for transect. Vertical dotted line at 0 standard deviation indi-

cates the expectation if there were no spatial dependence of occu-

pancy or use.
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2002; Royle & Dorazio 2006; Mordecai 2007; Nichols et al.

2008). Specifically, hierarchical Bayes multi-scale occupancy

modelling allows inference regarding species occurrence at two

different spatial or temporal scales while enabling incorpora-

tion of random effects that account for nested sampling designs

(e.g. count circles along transects). At two different temporal

scales, investigators can model both the probability of species

occurrence at a site during the study period and the frequency

of species occurrence (i.e. use of or availability for detection) at

that site while accounting for detectability and spatial depen-

dence among nearby sites. Alternatively, at two different spa-

tial scales, investigators can model both the probability of

species occurrence in an area (e.g. management unit) and, if

the species occurs in that area, the probability of species occur-

rence in smaller regions nested within that area (e.g. stands

within the management unit) while accounting for spatial

dependence among adjacentmanagement units.

An alternative, common approach to study species distribu-

tion at multiple scales is radiotelemetry (e.g. Michalski et al.

2006; Matson et al. 2007; Rittenhouse & Semlitsch 2007).

Although radiotelemetry can provide data on both spatial and

temporal patterns in use by individual animals, it is often logis-

tically challenging and expensive to obtain sufficient sample

size to detect differences in use among habitats (Murray 2006).

In contrast, detection–nondetection data for highly visible or

audible species tend to be inexpensive and easy to collect; thus,

conducting repeated surveys of unmarked animals may be

more efficient than conducting telemetry for studying patterns

of resource use bymany species.

Based on our analysis and rather simple sampling design,

waterthrushes were not only widely distributed (w > 0Æ6) but
were also often using (h > 0Æ4) riparian areas along forested

mountain tributaries. While accounting for detection biases

and spatial dependence among nearby sampling sites, waterth-

rushes became more common as catchment area increased.

Community composition of instream prey varies with

watershed size (Klemm et al. 2002; Roy et al. 2003; King et al.

2005), and waterthrushes may be attracted to assemblages of

benthic macroinvertebrates found in larger watersheds. Daily

use probability increased with increasing %EPT, and this

result does not refute the hypothesis that waterthrushes are

indicators of benthic macroinvertebrate community composi-

tion (Mattsson & Cooper 2006; Mulvihill, Newell & Latta

2008). Until additional macroinvertebrate metrics, water qual-

ity metrics (e.g. pH) or sampling methods are explored, catch-

ment area appears to be a more important driver of

waterthrush distribution; whereas % EPT is associated with

waterthrush availability for detection.

With respect to patterns of detection, waterthrushes that

were using an area during a count were easier to detect if they

were also detected earlier in that count. While the specific rea-

son for the increased detectability is unclear, observer knowl-

edge of the previous location of individual waterthrushes may

have increased the rate of redetection. Alternatively, waterth-

rushes may have multi-minute bouts of vocalization, yielding

clumped minute-by-minute detections. Whatever the mecha-

nism, increased detection probability after a prior detection

may be common in bird surveys, and not accounting for this

dependence can result in a downward bias in occupancy esti-

mators (Riddle et al. 2010).

MULTI -SCALE PERSPECTIVE OF DISTRIBUTION

ESTIMATES

In traditional occupancy modelling, use and detection proba-

bilities are combined into a single parameter, P. There are

many ecological problems, however, where separating use and

detectionwould be particularly important. One common situa-

tion, as illustrated by the waterthrush analysis, involves an ani-

mal that is absent from large portions of its home range at any

given time. In this case, an investigator can apply multi-scale

occupancy models to investigate patterns of occupancy within

patches of home ranges in addition to frequency of use for

those patches. Furthermore, modelling w, h and P in a hierar-

chical framework becomes particularly informative when, as

indicated by the waterthrush example, P < 1 and variation

exists among coarser-scale sampling units (i.e. streamside tran-

sects) with respect to both occupancy and use.

Modelling h and P could also be useful for revealing con-

trasting patterns in use and detection in relation to a factor of

interest. For example, many bird species occasionally use non-

forested habitat but spend a majority of their time in forested

habitat (Lent & Capen 1995; Annand & Thompson 1997;

Mordecai, Cooper & Justicia 2009). When these facultative

species occupy non-forested habitat, they may be easier to

detect due to the reduced visual and auditory obstructions in

an open area. However, the probability that these species use

non-forest habitat at a given time is lower, because they spend

less time in that habitat. While multi-scale and single-scale

occupancy models both predict occupancy rates for each habi-

tat, multi-scale occupancymodels could also estimate the nega-

tive trend in use and positive trend in detectability associated

with non-forested habitat. Therefore, multi-scale occupancy

models distinguish between parameters that are typically of

ecological interest, occupancy (i.e. w) and use (i.e. h) and a

parameter that is generally estimated only to account for per-

ceptibility by observers for detecting that species (i.e. P; John-

son 2008).

Multi-scale occupancy models provide estimates of distribu-

tion at two scales (i.e. w and h), and these estimates are subject

to an important assumption about spatial independence.

Using the state-space framework, spatial dependence may be

addressed by adding to the process model a random effect that

indexes coarser spatial units. As shown in the waterthrush

analysis, species distributions may be clustered such that

nested sampling designs (e.g. point-transects) warrant inclu-

sion of this random effect to account for spatial dependence.

COMPARING MULTI -SCALE AND DYNAMIC OCCUPANCY

MODELS

Use may be estimated based on the robust design under two

alternative modelling approaches. First, dynamic occupancy

models explicitly account for transitions in patch occupancy
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between successive primary surveys such as months, seasons or

years (MacKenzie et al. 2003; Rota et al. 2009). Secondly,

multi-scale occupancy models account for the possibility that

an occupied patch may be periodically unused by providing

estimates of (i) patch occupancy across primary surveys, (ii)

use of occupied patches (i.e. availability for detection of at least

one individual) during each primary survey and (iii) detectabil-

ity of species within used patches during secondary surveys

(Mordecai 2007; Nichols et al. 2008). Patch occupancy during

each primary survey under the dynamic-occupancy modelling

approach is analogous to the use parameter in multi-scale

occupancy models. Therefore, initial occupancy in a dynamic

occupancy model is the likelihood of use during the first sea-

son. The two approaches, in fact, provide identical estimates

for use of occupied patches under a random immigration

model where immigration and emigration are equal.

In contrast with dynamic occupancy models that allow esti-

mation of use for a single scale of sampling units, multi-scale

occupancy modelling allows estimation of species distribution

at two nested temporal and ⁄or spatial scales. As such, dynamic

occupancy models provide a parameter for ‘seasonal’ use (h)
but have no parameter for ‘cross-seasonal’ occupancy (w) as
defined in multi-scale occupancy models. Researchers inter-

ested in examining immigration or emigration between consec-

utive surveys (e.g. monthly, seasonal or annual) may be better

served by the dynamic occupancy model (MacKenzie et al.

2003), whereas investigators that are interested in examining

patterns of species distribution at multiple nested scales would

be better served by the multi-scale occupancy model described

here and elsewhere (Mordecai 2007; Nichols et al. 2008).

EXTENDING HIERARCHICAL MULTI -SCALE OCCUPANCY

MODELS

Hierarchical Bayes multi-scale occupancy models can be

expanded in numerous ways. Current extensions to single-

season occupancy models such as species interactions

(MacKenzie, Bailey &Nichols 2004), community-level metrics

(Dorazio & Royle 2005; Dorazio et al. 2006), dynamic

occupancy models (MacKenzie et al. 2003), and false positives

(Royle & Link 2006) could all be applied to multi-scale occu-

pancy models. Additionally, probabilities of occupancy, use

and detection at any scale could be estimated with double-

observer sampling (Cook & Jacobson 1979), removal models

(Moran 1951; Seber 1982) or distance sampling (Reynolds,

Scott & Nussbaum 1980; Buckland, Burnham & Laake 1993).

In conclusion, hierarchical Bayes multi-scale occupancy mod-

els have many potential applications and extensions for study-

ing the distribution and resource use patterns of mobile or

episodic species that exhibit spatial heterogeneity.

IMPL ICATIONS FOR CONSERVATION PLANNING

Conservation organizations are increasingly challenged by

complex threats, such as climate change, which may affect spe-

cies distributions at multiple scales (Elith & Leathwick 2009;

Galatowitsch, Frelich & Phillips-Mao 2009). Evaluating

conservation policies to address these threats will probably

require analysis of clustered detection–nondetection data for

elusive species across a wide range of spatial and temporal

scales. The proposed hierarchical Bayes extension to multi-

scale occupancy models will allow conservation organizations

to evaluate alternative management options while accounting

for challenges associated with clustered sampling designs for

species that are highlymobile or episodic.
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