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1  Introduction

1.1  Background
The Sonoran Desert Network (SODN) is one of 
32 National Park Service (NPS) inventory and 
monitoring (I&M) networks nationwide that are 
implementing vital signs monitoring in order to 
assess the condition of park ecosystems and de-
velop a stronger scientifi c basis for stewardship 
and management of natural resources across the 
National Park System. Vital signs, as defi ned by 
the I&M Program, are selected physical, chemi-
cal, and biological elements and processes of 
park ecosystems that represent the overall health 
or condition of a park. Vital-signs monitoring can 
lead to early detection of potential problems, al-
lowing park managers to take steps to restore 
ecological health of park resources before seri-
ous damage can happen. Landscape Dynamics is 
one of the vital signs the network has identifi ed 
for monitoring at 11 park units throughout Ari-
zona and New Mexico. Within the scope of this 
vital sign, park managers identifi ed landscape 
fragmentation and land use/land cover patterns 
around parks as important resource concerns. 

Eff ective protocols for landscape-dynamics 
monitoring generally use remote sensing and 
Geographic Information Systems (GIS) to model 
broad-scale patterns and temporal changes oc-
curring in and around national parks. Protocol 
development for long-term monitoring of land-
scape dynamics of SODN parks involves identifi -
cation of (1) appropriate remote-sensing data for 
monitoring, (2) image classifi cation and process-
ing schemes, and (3) statistical and spatial analysis 
techniques to describe change and pattern. The 
landscape dynamics monitoring protocol pre-
sented in this document includes phases of data 
acquisition, processing, classifi cation, and accu-
racy assessment. The protocol is based on litera-
ture review and expert knowledge.

The aim of this pilot study and protocol devel-
opment was to retrospectively map land cover 
and vegetation and characterize historical land-
scape dynamics of selected areas in and around 
Tumacácori National Historical Park (NHP), the 
upper Santa Cruz River, and the surrounding wa-
tershed using (1) historical aerial photography 
and image interpretation and (2) statistical analy-
sis and classifi cation of satellite imagery. The fi rst 
part of this report includes a literature review of 
data-acquisition issues, data-preprocessing and 

quality-assurance steps, attribute and feature gen-
eration and extraction, land-cover classifi cation 
testing, and accuracy assessment and evaluation 
of maps. The second part describes the methods 
used to develop a functional landscape dynamics 
monitoring protocol. 

We examined two complementary approaches 
for monitoring landscape dynamics at multiple 
spatial and temporal scales: (1) decadal (1987, 
1996, and 2006), landscape-scale (1,195 km2), 
Landsat-derived, land-cover maps; and (2) multi-
date (seven years between 1936 and 2006), his-
torical formation maps derived from high-reso-
lution aerial imagery. Although scale, extent, and 
classifi cation methods for the two approaches 
diff ered, the class types were identical and can 
be analyzed in tandem or separately, depending 
on park monitoring questions. Our land-cover 
classifi cation scheme was based on vegetation life 
forms (tree, shrub, herbaceous) and coarse land-
use categories (agriculture and developed). These 
“formation” classes can be cross-walked to refl ect 
more traditional land-cover classes, for instance, 
Anderson Classifi cation Levels (Anderson et al. 
1976), and have the additional benefi t of sharing 
class attributes with park maps currently being 
created by the U.S. Geological Survey–NPS Veg-
etation Characterization Program (http://biology.
usgs.gov/npsveg/index.html). 

The fi nal section of the report highlights analysis 
approaches for identifying and monitoring land-
scape change and fragmentation, and we off er 
some cursory evaluation of our land-cover data 
to illustrate the potential use of these data for 
NPS landscape-dynamics monitoring.

1.2  Literature review

1.2.1  Land-cover classifi cation methods

Many recent satellite imagery classifi cation tech-
niques, data-preprocessing methods, data-prod-
uct and variable generation, and multi-platform 
approaches have been reviewed and described 
in detail in the literature (Collins and Woodcock 
1996; Thenkabail et al. 2004; Lu and Weng 2007).  
In the following section, we highlight some spe-
cifi c approaches and applications relevant to 
methods developed for the NPS Landscape Dy-
namics protocol: 

 Riparian area and aerial photo accuracy 
(Yang 2007)
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• Image normalization of Landsat Thematic 
Mapper (TM) (Yang and Lo 2000; Yang and 
Lo 2002)

• Kauth Thomas Tasseled Cap transforms 
refl ectance data into biophysical parameters 
like brightness, greenness and wetness or 
yellowness (Cohen and Goward 2004)

• Multi-temporal Kauth Thomas using two 
Landsat images to derive seasonal biophysi-
cal variables (Collins and Woodcock 1996; 
Rogan and Yool 2001)

• Sites located in the Montana plains were 
classifi ed by their departure from mean 
values in tasseled cap brightness, greenness, 
and wetness components, and stratifi ed by 
ecological site description (Maynard et al. 
2007)

• Spectral mixture model results (non-
photosynthetic vegetation, soil, vegetation) 
(Roberts et al. 2002); Mixture and decision 
tree (Roberts et al. 2002)

• Digital elevation model (DEM) + cluster 
analysis based on spectral data (Munoz-
Villers and Lopez-Blanco 2008)

• Classifi cation algorithm comparison (Pal 
and Mather 2003)

• Supervised classifi cation, post classifi cation 
in Egypt (Shalaby and Tateishi 2007)

• Mapping detailed biotic communities in 
the upper San Pedro Valley of Southeastern 
Arizona using Landsat 7 data and supervised 
spectral angle classifi er (Sohn and Qi 2005)

• Historical data classifi cation (Steyaert and 
Knox 2008)

• Regional land cover characterization and 
classifi cation using Landsat TM data and an-
cillary data sources (Vogelmann et al. 1998)

• Change detection classifi cation and analy-
sis techniques (Coppin et al. 2004; Lu et al. 
2004; Zhou et al. 2008)

• Classifi cation and Regression Tree (CART) 
models have been applied successfully at 
state and regional levels (C5 decision tree; de 
Colstoun et al. 2003) and GAP (Gap Analysis 
Project) Arizona (Lowry et al. 2007). Global 
decision tree land-cover classifi cation (Friedl 
et al. 1999; Pal and Mather 2003)

1.2.2  Feature selection and extraction

Appropriate feature extraction and selection 
from remotely sensed data and other environ-
mental variables are critical for optimal land-cov-
er classifi cation (Bruzzone and Serpico 2000; Kuo 
and Landgrebe 2004). Spatial patterns can be 
identifi ed based on texture analysis (Haralick et 
al. 1973; Peddle and Franklin 1991; Dikshit 1996; 
Bruzzone and Serpico 2000; Franklin et al. 2001). 
Landscape stratifi cation, combined with topo-
graphical and elevation information, has been 
used successfully in land-cover classifi cations 
(Hutchinson 1982; Florinsky 1998), as have spec-
tral indices and transforms, such as Normalized 
Diff erence Vegetation Index (NDVI), Enhanced 
Vegetation Index (EVI), Soil-Adjusted Vegeta-
tion Index (SAVI), tasseled cap, and normalized 
burn ratio (Huang et al. 2002; Cohen and Goward 
2004). Multi-temporal Landsat data have been 
used eff ectively to incorporate temporal dynam-
ics (e.g., seasonal, interannual) (Coppin and 
Bauer 1994; Wilson and Sader 2002). Grinand 
(2008) used a large variety of data and derived 
geographical layers in combination with CART 
models for land-cover classifi cation (Grinand et 
al. 2008) that included soil data, environmental 
data related to soil formation (McBratney et al. 
2003), elevation (m), local slope angle (%), pro-
fi le curvature, relative hydrological distance to 
the nearest river (m), relative height to the nearest 
river (m), spectral refl ectance (Landsat), and de-
rived spectral indices and geological data. Based 
on the recent literature, the CART model gener-
ally seems to provide fl exible and accurate land-
cover classifi cation results and products that can 
combine remotely sensed spectral data and ancil-
lary geospatial data. We used See5 (C5.0 2.05) to 
test and develop the use of CART for land-cover 
classifi cation.



Chapter 2: Methods     3

2  Methods 

2.1  Vegetation mapping from 
historical aerial photography

2.1.1  Aerial photography

2.1.1.1  Acquisition and image processing

We collected historical aerial-photography data-
sets of the study area from various sources with 
varying levels of pre-processing. Several datas-
ets were procured from the Arizona Geological 
Survey as hardcopy aerials and scanned to digi-
tal format. Other photographs were acquired in 
digital format from the Arizona Remote Sensing 
Center, the Santa Cruz County Department of 
Planning, and the Stromberg Lab at Arizona State 
University. Acquisition of panchromatic and col-
or-infrared aerial photographs included the fol-
lowing historical aerial photography dates: 1936, 
1956, 1959, 1967, 1975, 1984, 1992, 1996, 2004, 
and 2006. Most aerial photographs had no spatial 
reference and were georeferenced to digital ortho 
quarter quads (DOQQs) as references. Georef-
erencing was conducted using the ESRI ArcMap 
9.2 software georeferencing tool, in which a series 
of common points were selected from the DOQQ 
images and the historical image to be georefer-
enced.

2.1.2  Mapping procedures

We acquired baseline vegetation maps of Tu-
macácori NHP and the Upper Santa Cruz River 
(Drake et al. 2009) and the Santa Cruz River Ri-
parian Vegetation Map (ARSC&SI 2008). Both 
maps were created using methods developed for 
the USGS/NPS Vegetation Characterization Pro-
gram. During the early mapping stages, the cat-
egorical mapping unit for these vegetation maps 
was the formation level (dominant lifeform), 
later refi ned through extensive fi eld work to the 
alliance level (dominant species) as required by 
National Vegetation Classifi cation standards 
(Grossman et al. 1998; FGDC 2008). For land 
cover-scale mapping and analysis, we classifi ed 
vegetation to the formation level, which can be 
easily cross-walked to the Anderson classifi cation 
scheme commonly used for mapping land use 
and land cover using multispectral satellite imag-
ery (Anderson et al. 1976). 

The methods used to create the NPS and Santa 
Cruz County maps began with coarse formation 
maps of relatively homogenous areas identifi ed 
from high-resolution imagery (Quickbird = 0.6 m). 
We fi eld-checked the accuracy of the Santa Cruz 
County formation map (an ~51 km stretch of the 
Santa Cruz River from Mexico to Pima County) 
and found it to be highly accurate (kappa = .941, 
overall accuracy = 95%).* With this high accuracy, 
we felt confi dent in applying an identical forma-
tion mapping technique to historical aerial pho-
tographs. We mapped the following 11 formation 
types: Barren, Agriculture, Herbaceous, Shrub Sa-
vanna, Tree Savanna, Shrubland, Wooded Shru-
bland, Mesquite Woodland, Riparian Woodland, 
Mesquite Forest, and Riparian Forest.

Watersheds and catchments, defi ned by topogra-
phy and hydrology, are logical units for examina-
tion of ecological change in river systems (Aspi-
nall and Pearson 2000; Committee on Watershed 
Management 1999). To standardize and simplify 
the mapping eff ort, and because historical-pho-
tograph datasets often have incomplete coverage, 
we mapped formations for 11 vegetation transects 
within the study area, with each transect stratifi ed 
geographically by watershed catchment (Figure 
2-1). Catchments and associated stream networks 
were derived from a 10-m NED (National Eleva-
tion Dataset) DEM using the ArcGIS ArcHydro 
extension. One transect was established at the 
center of each major catchment from the U.S./
Mexico border to the Santa Cruz/Pima County 
border. Each transect was 2.0 × 2.5 km, with the 
exception of Tumacácori NHP, where we mapped 
the entire park, including a 100-m buff er. Vegeta-
tion and land cover within these transects were 
mapped for each date of historical aerial pho-
tography when available (1936, 1956, 1959, 1967, 
1975, 1984, 1992, 1996, and 2004).

2.2  Land-cover classifi cation

2.2.1  Topography

To analyze topography and derive topographic 
variables for image classifi cation, we used a DEM 
from the NED archives, administrated by the U.S. 
Geological Survey (USGS). We also obtained dig-
ital-raster-graphic, scanned topographic quad-
rangle maps from the Arizona Remote Sensing 
Center.

* Kappa is a measure of agreement between map classifi cation data and reference data. Kappa values range from 
-1.0 (complete disagreement) to 1.0 (perfect agreement).
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Figure 2-1. Location of area transects used for mapping activities. The area transects were located 
at the center of each major catchment (yellow lines) from the U.S./Mexico border to the Santa Cruz/
Pima County border.
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2.2.2  Landsat

2.2.2.1  Acquisition

We selected multi-year Landsat scenes (path 36, 
row 38) as one of the main datasets for monitor-
ing landscape dynamics of Tumacácori NHP. The 
Landsat TM 5 images used were acquired at ap-
proximately 10-year intervals from 1987 to 2006 
(May 3 and September 8, 1987; May 11 and Au-
gust 31, 1996; and May 23 and August 27, 2006). 
The two Landsat scenes from 2006 were pur-
chased from the USGS; data from 1987 and 1996 
were acquired from the Arizona Regional Image 
Archive. We used pre- and post-growing season 
scenes to exploit spectral change related to plant 
phenology changes that occur during the summer 
months following rains from the southwestern 
monsoon.

2.2.2.2  Image preprocessing

Terrain-corrected Level 1L Landsat data, ac-
quired from the Land Processes Distributed Ac-
tive Archive Center (https://lpdaac.usgs.gov/), 
require additional processing to improve geomet-
ric accuracy and remove atmospheric noise. Ac-
curate geometric registration is important when 
comparing changes in land-cover pixels over 
time; atmospheric preprocessing steps are critical 
for ensuring accurate spectral transformations. 
Brief descriptions of all the steps that were ex-
ecuted and evaluated to preprocess the data are 
provided in the following sections.

Orthorectifi cation—. Remotely sensed data 
usually contain both systematic and unsystem-
atic geometric errors. These errors can be divided 
into two classes: errors that we can correct using 
data from platform ephemeris and knowledge of 
internal-sensor distortion, and errors that can-
not be corrected with acceptable accuracy with-
out a suffi  cient number of ground control points 
(GCPs). A GCP is a point on the surface of Earth 
where both image and map coordinates can be 
identifi ed (Jensen 1996). Those geometric dis-
tortions that can be corrected through analysis 
of sensor characteristics and ephemeris include 
scan skew, mirror scan velocity non-linearities, 
panchromatic distortion, spacecraft velocity, and 
perspective geometry (systematic distortions). 
Non-systematic distortions that can only be cor-
rected with the use of GCPs are attitude (roll, 
pitch, and yaw) and altitude (Bernstein 1983; Jen-
sen 1996).

The process of orthorectifi cation can be con-
ducted as an image-to-map rectifi cation or as an 

image-to-image registration; we chose the latter, 
using a Multi-resolution Land Characteristics 
Consortium (MRLC) product to orthorectify 
our Landsat images. The image-to-image regis-
tration process involves translation and rotation 
alignment, in which two images of like geometry 
and the same geographic area are positioned co-
incident to one another so that corresponding 
elements of the same ground area appear on the 
same place on the registered images (Chen and 
Lee 1992; Jensen 1996). 

For this process, we used an orthorectifi ed im-
age from the MRLC and a 30-m-resolution DEM 
from the area of interest as spatial references. We 
used ERDAS Imagine software and followed the 
standard protocol used by the Arizona Remote 
Sensing Center for preprocessing Landast 5 im-
ages. We utilized the path 36 and row 38 MRLC 
from June 15, 2000, re-sampled to 30-m resolu-
tion, re-projected to UTM Zone 12, with datum 
NAD83 and spheroid GRS 1980. For each of 
the images we orthorectifi ed, we used at least 30 
GCPs, obtaining an accuracy of less than a one-
half-pixel error (Table 2-1).

Radiometric and atmospheric correction—. 
Ideally, the radiant fl ux recorded by the bands 
of a remote-sensing system is an accurate repre-
sentation of the radiant fl ux leaving the feature 
of interest (e.g., soil, vegetation, water). However, 
errors can enter the data-collection system dur-
ing data acquisition. One example is radiometric 
error. In remote sensing, radiometric error can 
be introduced by the sensor system itself if the 
individual detectors are not properly function-
ing or calibrated. The intervening atmosphere 
between our target (feature of interest) and the 
remote-sensing system may also introduce er-
ror. Some atmospheric processes, such as atmo-
spheric attenuation, can obscure the data to the 

Table 2-1. Number of ground control points 
and root mean square error for each date 
processed. 

Date GCPs (n) RMS error

May 3, 1987 32 0.4034

September 8, 1987 30 0.3329

May 11, 1996 32 0.4322

August 31, 1996 30 0.1774

May 23, 2006 31 0.4874

August 37, 2006 32 0.3649
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point where the energy recorded by the remote 
sensor does not resemble the energy that was 
originally refl ected from the target in the terrain 
(Jensen 1996). Atmospheric eff ects on wavebands 
(including scattering and absorption phenom-
ena) are both additive and multiplicative in na-
ture (Curcio 1961; Turner et al. 1971; Sibins 1978; 
Slater et al. 1983; Chavez 1996). 

Algorithms that address radiometric and atmo-
spheric errors of remote-sensing data aim to sup-
press error introduced by the sensor and noise in-
troduced by atmospheric processes. To complete 
the atmospheric and radiometric correction in 
our data, we applied the cosine-of-theta (COST) 
model proposed by Chavez (1996), using Landsat 
TM bands 1–5 and 7, to each of the images used 
in this project. The data requirements to run the 
model are:

 Minimum digital number (DN) value per 
band in the Landsat image (DN from the 
darkest value per Landsat band).

 Sun elevation angle for the time the image 
was acquired (given in degrees).

 Sun–earth distance for the time the image 
was acquired (given in astronomical units).

 Chavez’s (1996) improved dark-object 
atmospheric correction for Landsat TM5 
multispectral data (bands 1–5 and 7). Below 
is the general structure of the model for 
Band 1 of Landsat TM (each band is pro-
cessed with diff erent coeffi  cients; however, 
sun–earth distance and sun angle remain the 
same). Each band is processed according to 
diff erent coeffi  cients that vary: 

 MODEL = ((-Lhaze + (0.0602353 × (TM 
Refl ectance band1) - 0.15)) × PI × Sun-Earth 
Distance2 ) / (195.7 × COS (PI/180 × (90 - 
Sun-Angle)) 2), where Lhaze is a coeffi  cient 
that has to be calculated for each band in 
each image.

To account for more recent sensor degradation, 
we utilized new correction factors and coeffi  -
cients presented by Chander et al. (2007). We 
used an MS Excel spreadsheet to calculate the 
inputs for the equation above and input the coef-
fi cients into an ERDAS Imagine graphical model 
to transform the original images into atmospheri-
cally corrected images. We applied this method-
ology to each of the orthorectifi ed images to re-
move atmospheric and radiometric noises.

Multi-temporal scene normalization—. We 
tested radiometric scene normalization schemes 
in an attempt to reduce variance between multi-
temporal images introduced by residual atmo-
spheric noise and sensor degradation. When 
normalizing an image, the general approach is 
to apply a set of model parameters derived from 
a linear-regression model describing the rela-
tionship between refl ectance values from stable 
targets located on reference and non-reference 
scenes (i.e., bright and dark objects that do not 
show large variability in refl ectance from scene 
to scene). However, our results showed that this 
normalization introduced more uncertainty in 
the data, particularly related to temporal variabil-
ity introduced by apparent “dark,” barren target 
pixels that may have, in fact, had vegetation pres-
ent. Therefore, we did not implement normaliza-
tion in this classifi cation process. We do believe, 
however, that normalization is an important step 
when dealing with multi-temporal datasets, and 
warrants more investigation and potential inclu-
sion in future NPS landscape dynamics monitor-
ing protocols.

2.2.2.3  Image classifi cation

Creation of classifi cation attributes and vari-
ables—.Using the orthorectifi ed and atmospher-
ic-radiometric corrected Landsat imagery, we de-
rived the attributes to be used for the land-cover 
classifi cation (Table 2-2). We generated a num-
ber of information layers from the Landsat data 
acquisitions (6 spectral bands/image; 2 images/
year). Many of the following variables were gen-
erated using a graphical model in ERDAS Imag-
ine: 

 Landsat refl ectance: Unmodifi ed (but ortho-
rectifi ed and atmospheric-radiometric cor-
rected) six bands from the Landsat 5 sensor. 
We did not use band 6 (thermal) because the 
60-meter resolution is coarser than that of 
the rest of the bands. 

 Normalized Diff erence Vegetation Index 
(NDVI): Standard procedure to detect veg-
etation responses based on Landsat bands 
3 and 4, red and near infrared (NIR) refl ec-
tance data, respectively.

 Soil Adjusted Vegetation Index (SAVI): A veg-
etation index similar to NDVI but adjusted 
by a coeffi  cient (L=0.5) meant to minimize 
the eff ects of soil spectral properties (Huete 
1988).
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 Soil Adjusted Total Vegetation Index (SATVI): 
This index results from the application of a 
correction factor to the Normalized Diff er-
ence Senescent Vegetation Index (NDSVI). 
This index was found to be sensitive to both 
green and senescent vegetation, which is 
ideal for rangeland canopy estimates (Mar-
sett et al. 2006).

 Enhanced Vegetation Index (EVI): The EVI 
was developed to optimize the vegetation 
signal with improved sensitivity in high 
biomass regions and improved vegetation 
monitoring through a de-coupling of the 
canopy background signal and a reduction 
in atmosphere infl uences (Huete et al. 2002).

 Enhanced Vegetation Index 2 (EVI2): EVI2 is 
computed without a blue band. It is func-
tionally equivalent to the EVI, although 
slightly more prone to aerosol noise, which 
may become less signifi cant with continu-
ing advancements in atmosphere correction 
(Jiang et al. 2008).

 Modifi ed Soil Adjusted Vegetation Index 
(MSAVI): A modifi ed SAVI (MSAVI) that 

replaces the constant L in the SAVI equation 
with a variable L function. The L function 
may be derived by induction or by using the 
product of the NDVI and Weighted Diff er-
ence Vegetation Index (WDVI): L = 1 – 2y 
NDVI × WDVI : where y is the soil line 
parameter (Qi et al. 1994). For this project, 
we derived the L by induction.

 Normalized Diff erence Wetness Index 
(NDWI): uses the near-IR (band 4; 0.78–0.90  
μm) and a SWIR (band 5; 1.55–1.75 μm) for 
sensing of vegetation water content (Hardis-
ky et al. 1983; Gao 1995).

 Tasseled Cap (brightness, greenness, wetness): 
Developed by Kauth and Thomas (1976), 
this index was originally produced to extract 
information about brightness, greenness, 
and yellowness of landscapes using the 
multispectral scanner system (MSS) Land-
sat sensors. Brightness, the fi rst feature, is 
a weighted sum of all the bands, and was 
defi ned in the direction of principal varia-
tion in soil refl ectance. It thus measures soil 
brightness or total refl ectance. The second 

Table 2-2. List of Landsat-derived attributes generated from corrected refl ectance data.

Variable name Acronym Equation* Reference

Normalized Difference 
Vegetation Index

NDVI (NIR-RED)/(NIR+RED) Tucker 1979

Soil Adjusted 
Vegetation Index

SAVI (NIR-RED*(1-L))/(NIR+RED+L) Huete 1988

Enhanced Vegetation 
Index

EVI (G*(NIR-RED))/(NIR+C1*RED-C2*BLUE+L) Huete et al. 2002

Enhanced Vegetation 
Index 2

EVI2 2.5* (NIR-RED)/(NIR+2.4RED+1) Jiang et al. 2007 

Modifi ed Soil Adjusted 
Vegetation Index

MSAVI ((2NIR+1)-((2NIR+1)2-8(NIR-RED))0.5)/2 Qi et al. 1994

Normalized Difference 
Water Index

NDWI (NIR-SWIR)/(NIR+SWIR) Gao 1995

Soil Adjusted Total 
Vegetation Index

SATVI ((1+L)(Band5-Band3)/(Band5+Band3+L))-(Band7/2) Marsett et al. 2006

Principal Components PC Fung and LeDrew 1987

Tasseled Cap TC Crist and Cicone 1984

Texture Analysis TEXTURE

Haralick et al. 1973; Peddle and 
Franklin 1991; Dikshit 1996; 
Bruzzone and Serpico 2000; 
Franklin et al. 2001

Multi-temporal Kauth-
Thomas 

MKT Collins and Woodcock 1996

*These variables were computed using the ERDAS modeler. Principal Components, Tasseled Cap Analysis, Texture analysis, and Multi-temporal Kauth-
Thomas (Multi-temporal Tasseled Cap) procedures are addressed in the literature cited above.
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feature, Greenness, is a contrast between the 
near-infrared bands and the visible bands. 
A third feature, Yellowness, was originally 
defi ned in the spectral direction expected 
to correspond to plant senescence but was 
subsequently redefi ned to serve as a haze di-
agnostic (Kauth et al. 1979; Crist and Cicone 
1984). This index was adapted to be used 
with Landsat TM by Crist and Cicone (1984).

 Principal Components (PCs): Using this 
technique, we reduce the dimensionality 
(number of bands/information) of the data-
set by deriving the important components 
from the original six bands. Using two or 
three principal components reduces noise 
and sensor-striping while retaining most of 
the original data variance (Jensen 1996). The 
fi rst principal component accounts for the 
maximum amount of variance of the original 
dataset. Subsequent principal components 
account for the remaining variances.

 Multi-temporal Kauth-Thomas (MKT): 
MKT involves the Gramm-Schmidt (GS) 
orthogonalization process, which is used to 
identify the column vectors of a transforma-
tion matrix. The method orthogonalizes 
spectral vectors that are taken directly from 
a bi-temporal image, in much the same way 
that the original tasseled-cap transformation 
was created for single-date imagery. When 
done carefully, the GS process can produce 
three stable components corresponding to 
multi-temporal analogues of Kauth-Thomas 
Brightness, Greenness, and Wetness dimen-
sions, plus a change component associated 
with interdate diff erences (Collins and 
Woodcock 1996). 

 Variance: Calculated local pixel variance of 
Landsat band 3 (red) with a 3 × 3 moving 
window.

2.2.2.4  Ancillary datasets

In addition to the image-derived variables, we uti-
lized four ancillary, non-image data layers:

Digital Elevation Model: Three layers containing 
elevation, slope, and aspect from a 30-meter reso-
lution DEM.

Soil Survey Geographic Dataset (SSURGO): Field-
mapping methods using national standards were 
used to construct the soil maps in the SSURGO 
database. 

2.2.3  Classifi cation scheme

We developed a hybrid classifi cation scheme 
based on the Anderson Classifi cation system and 
the National Vegetation Classifi cation (NVC) 
Terrestrial Vegetation Classifi cation Hierarchy 
(Anderson et al. 1976; Grossman D.H. et al. 1998; 
FGDC 2008). We used broad NVC physiognomic 
classes, based on vegetation structure and deter-
mined by height and percentages of cover occu-
pied by tree, shrub, and herbaceous strata. We 
further distinguished class types by modifying 
the physiognomic system to include additional 
qualifi ers based on elevation and hydrologic at-
tributes (e.g., upland and riparian) (Table 2-3). 
One benefi t of using the physiognomic system 
is that consecutive stages can be captured within 
the classifi cation, generating useful information 
for understanding riparian dynamics. Cultural 
land cover classes were based on Anderson Level 
II classes (Table 2-3). 

2.2.4  Running the models

2.2.4.1  Training data

One advantage of the NVC physiognomic clas-
sifi cation scheme is that it allows the use of 
high-resolution digital aerial imagery to generate 
training data and accuracy assessment. The high-
resolution satellite imagery and aerial photogra-
phy (~1-m resolution) commonly used for vegeta-
tion mapping allows interpreters to distinguish 
map classes by estimating lifeform height and per-
cent cover. For this research, we appropriated the 
NVC classifi cation system, in large part because 
of the coincident mapping eff orts at Tumacácori 
NHP and the Santa Cruz River described above. 
The high kappa value associated with these proj-
ects (kappa = .941, overall accuracy = 95%) en-
gendered confi dence that we could use this in-
formation as “training” data for the 2006 CART 
classifi cation. These known locations are called 
training sites because their spectral characteris-
tics are used to “train” the image-classifi cation 
algorithm (Jensen 1996).

Suitable training sites for the multi-temporal da-
taset were selected by examining historical aerial 
imagery (1980, 1983, 1992, 1996 and 2006) to 
determine areas that exhibit lifeform stability 
over time. For each class, 25–125 training points 
were generated, depending on the estimated total 
amount of area occupied by each class. For exam-
ple, the Water class, uncommon in the study area, 
was assigned 27 training points, while Shrubland, 
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the most prevalent land-cover type, was assigned 
122 training points.

2.2.4.2  Classifi cation and regression tree 
analysis

Classifi cation and regression-tree models have 
proven useful for land-cover classifi cation and, 
in many cases, outperformed traditional image 
classifi ers, such as the Maximum Likelihood 
Classifi cation (MLC) (Hansen et al. 1996; Pal 
and Mather 2003). CART models are popular 
for remote-sensing classifi cation in part because 
the classifi er is non-linear and makes no assump-
tions about data distribution, encouraging the 
use of spectral and ancillary layers regardless of 
data scale (Lawrence and Wright 2001). In gen-
eral terms, by using spectral and ancillary data 

as predictor variables and a list of a priori se-
lected classes as the response, the model creates 
a dichotomous “tree” by recursively partitioning 
training data. The classifi cation-tree rules derived 
from the training data are then applied directly to 
variable layers, creating a classifi ed image. Addi-
tionally, model accuracy can be increased using 
CART techniques like “boosting” or “bagging” 
(Quinlan 1996; Lawrence et al. 2004; Prasad et al. 
2006).

Using ArcGIS, sets of training samples and as-
sociated x,y coordinates were generated and 
exported as .txt fi les. Using these data and the 
NLCD ERDAS Imagine “Sampling Tool,” val-
ues were extracted from each input variable and 
saved as See5 .data and .names fi les. The See5 

Table 2-3. Comparison of the class types with National Vegetation Classifi cation (NVC) terrestrial vegetation 
classifi cation hierarchy formations.

ID Class Description
Related 
formation

NVC formation description

1 Agriculture Row crops, orchards, and pasture Agriculture Row crops, orchards, and pasture

2 Barren Rock, bare soil, and strand Barren Rock, bare soil, and strand

3 Upland Forest Tree cover >60%, non-riparian Forest Tree cover >60%, non-riparian

4 Herbaceous Herbaceous-dominated with sparse tree 
and shrub cover

Herbaceous Herbaceous-dominated. Tree cover 
<10%, shrub cover <10% 

5 Industrial/
Commercial

Areas of intensive use with much of the 
land covered by structures and impervious 
surfaces

Industrial/
Commercial

Areas of intensive use with much of 
the land covered by structures and 
impervious surfaces

6 Riparian 
Mesquite Forest

Tree cover >60%. Mesquite-dominated 
and typically found adjacent to river 
channels

Forest Tree cover >60%. 

7 Woodland Tree cover dominant cover type but <60% 
total cover

Woodland Tree cover dominant cover type but 
<60% total cover

8 Residential Areas of high- and low-density residential 
structures

Residential Areas of high- and low-density 
residential structures

9 Riparian Forest Tree cover >60%. Dominated by 
cottonwood and Goodding’s willow

Forest Tree cover >60%. 

10 Riparian 
Woodland

Tree cover <60%. Dominated by 
cottonwood and Goodding’s willow/
Netleaf hackberry

Woodland Tree cover <60%. 

11 Shrub Savanna Herbaceous-dominated with some sparse 
shrub cover

Shrub 
Savanna

Herbaceous-dominated, shrub cover 
present but <10%

12 Shrubland Shrub/Desert scrub-dominated Shrubland Shrub cover >50%

13 Tree Savanna Herbaceous-dominated with sparse tree 
cover

Tree 
Savanna

Herbaceous-dominated, tree cover 
present but <10%

14 Water Water Water Water
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CART software requires these two fi les to con-
struct the model.* We found that the following 
Classifi er Construction options from See5 pro-
duced the best models: Boosting (10 trials) and 
Global Pruning (25%). The See5 CART model is 
output as a .tree fi le, which we used to create a 
land-cover map using the NLCD ERDAS Imag-
ine “See5 Classifi er Tool.” 

2.2.4.3  Evaluation of the CART model using 
Supervised Classifi cations

We evaluated the results of the CART model by 
conducting coincident supervised classifi cations 
and comparing the results of the two models. 
Like the CART process, in a supervised clas-
sifi cation the locations of land-cover types are 
known a priori and samples collected through a 
combination of fi eld work, analysis of aerial pho-
tography, and expert knowledge. The goal is to 
locate sites representing homogeneous examples 
of known land-cover types and use the data to 
train the classifi er. We conducted the supervised 
classifi cation using the same information layers 
and the same training samples utilized during the 
CART process.

For comparison purposes, we chose to imple-
ment the MLC, one of the most common algo-
rithms used to create supervised classifi cations. 
MLC uses the training data to derive a series of 
multivariate statistics (e.g., means, standard de-
viations, covariance matrices) and assigns a class 
to every pixel within and outside the training site 
based on the statistical likelihood of class mem-
bership (Jensen 1996). More specifi cally, the 
MLC rule assigns each pixel having pattern mea-
surements or features X to the class c whose units 
are most probable or likely to have given rise to 
feature vector X (Swain and Davis 1978; Foody et 
al. 1992; Jensen 1996). Unlike the CART model, 
this approach assumes normality (Gaussian dis-
tribution) on training-data statistics for each class 
in each band (Blaisdell 1993; Jensen 1996).

To accomplish the process described above, we 
used ERDAS to create areas of interest of training 
data based on training points used for the CART 
model. We then used the Signature Editor in ER-
DAS to create the signature fi le for the supervised 
classifi cation and merged the derived signature 
values to create an average class signature per 
type (e.g., agriculture, forest, industrial), comput-
ing a global signature per class derived from the 
intersection of the signature in our raster input 
layers.

We executed three MLC supervised classifi cation 
tests based on the attributes identifi ed in Table 
2-4. MLC were performed using the 2006 data 
only, with each consecutive classifi cation com-
puted using a subset of the original 68 variables. 
This process was meant to evaluate whether the 
classifi cation could be refi ned using key variables 
as identifi ed from the output CART decision 
trees. For MLC Test 1, we used all variables used 
for the CART model. For MLC Test 2, a limited 
number of variables were used, based on their 
contribution to the CART classifi cations. For Test 
3, only three variables were used, based on the 
decision-tree analysis results and an evaluation of 
which variables had signifi cantly contributed to 
the explanation and separation of selected land-
cover types. 

After we were satisfi ed with our model results, we 
ran the classifi cations through a 3 × 3-pixel ma-
jority fi lter. The primary function of the majority 
fi lter is to smooth the data, minimizing the single-
pixel “salt and pepper” appearance that results 
from a per-pixel classifi cation.

2.2.5  Accuracy assessment

We assessed map accuracy by randomly generat-
ing a set of points and comparing the classifi ed 
value at those locations to the reference class type 
and percent cover interpreted from aerial pho-

*In order to use the CART/See5 tool developed for ERDAS 8.7, we had to convert every output from the radiomet-
ric correction process to signed 16-bit, instead of fl oating points. In other words, the outputs of the radiometric-
correction processes should be set to signed 16-bit, and the same should be applied for the variables extracted from 
the products in this process (e.g., NDVI, EVI, NDWI). Another important change we made was to redefi ne the 
spheroid from GRS 1980 to WGS 84, and the datum from NAD83 to WGS 84, in order to use the same parameters 
used by the U.S. Forest Service’s See5 ERDAS extension. If the SODN plans to use MRLC data for analysis, we 
will fi rst have to obtain information about how the product was processed. In on our experience, more than one 
procedure or product type was identifi ed, depending on the year when it was processed. We will also have to know 
if there was any manipulation of the original data (MRLC product) and adjust our data pre-processing routines 
accordingly.
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tography. We generated 30 points for each class 
using a random stratifi ed sampling approach. A 
measure of accuracy for each map was calculated 
using the kappa statistic (Congalton et al. 2002). 

Accuracy points were generated for each CART 
map, but to reduce time and eff ort, the same 
2006 ground-truth points generated for the 2006 
CART map were applied to the 2006 MLC maps.

Table 2-4. Variables used for testing the CART model. 

Image 
date

Variable
Number of bands

Test 1 Test 2 Test 3

20060523 EVI2 1

EVI 1

MSAVI 1

NDVI 1 1

NDWI 1

Principal Components 6 6

SATVI 1

SAVI 1

TM Refl ectance 6 6

Tasseled Cap 6

Image Variance 1 1 1

20060827 EVI2 1

EVI 1

MSAVI 1

NDVI 1 1

NDWI 1

Principal Components 6 6

SATVI 1

SAVI 1

TM Refl ectance 6 6

Tasseled Cap 6

Image Variance 1 1 1

Multidate Multi-temporal Kauth-Thomas 12 12 12

NA Aspect 1

NA Elevation 1 1 1

NA Slope 1
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3  Results 

3.1  Assessing historical vegetation 
change 

Based on maps derived from the historical aerial 
photography (Figure 3-1; fi gures start on page  
16), we summarized and analyzed landscape and 
patch change within each transect for the time 
period 1936–2006, using GIS and FRAGSTATS 
landscape-analysis software. The following fi g-
ures describe historical change in class area over 
the entire landscape (i.e., all 11 catchments) (Fig-
ure 3-2) and for Tumacácori National Historical 
Park (Figures 3-3 and 3-4).

From 1956 to 2006, agricultural land decreased in 
the watershed and was likely replaced by wood-
land and mesquite forests in various stages of suc-
cession (see Figure 3-2). There was a general up-
ward trend in riparian forest and a slight decline 
in 2006, following the tree die-off  that occurred 
south of the main park unit (see Figure 3-2). 
Similar trends were evident at Tumacácori NHP 
as in the overall watershed, but when mapped 
to 1936 rather than 1956, a few important dif-
ferences were apparent. For example, mesquite 
forest class area, highest during 1936, decreased 
drastically until a general recovery after 1975 
(Figure 3-3). Similar trends were evident in ripar-
ian woodland and woodland classes (Figure 3-3). 
The trend shown in riparian forest was similar in 
both the aerial data and CART classifi cations (see 
below)—specifi cally, a general increase in class 
area over time and a reduction in the number of 
patches as riparian forests became more contigu-
ous (Figures 3-3 and 3-4).

3.2  Land-cover classifi cation

3.2.1  Accuracy of classifi cation and 
regression tree and maximum 
likelihood classifi cation models

Using the CART model approach, we generated 
land-cover maps for 2006 (Figure 3-5), 1996 (Fig-
ure 3-6), and  1987 (Figure 3-7).

An example of the input variables used to classify 
Woodland, Residential, and Forest is provided in 
Figure 3-8.

We identifi ed major diff erences in the accuracy 
of the two classifi cation techniques (CART and 
supervised; see Figure 3-5) when applied to the 
land-cover classifi cation of the Upper Santa Cruz 
River Watershed. For the regression tree analysis 
(CART), we obtained an overall accuracy of 83.8 
and a kappa statistic of 0.83. The supervised clas-
sifi cation (the best of the three tests) method was 
less accurate (44.88%, kappa 0.4035) than the 
CART methodology.*  Due to the higher accuracy 
of the land-cover map generated using the CART 
model, we decided to derive metrics (e.g., frag-
mentation, land conversion, connectivity) based 
on this output.

All CART maps were over 80% accurate: 1987 
(85%), 1996 (82%) and 2006 (83%). Individual 
class accuracies of CART maps varied from 60 
to 100% (Appendix A, Table A2). Certain classes 
were often incorrectly mapped as other classes 
with similar physiognomic characteristics. For 
instance, class 4, herbaceous, was most often 
incorrectly classifi ed as class 13, tree savanna. 
Both classes are dominated by grass cover, mak-
ing them diffi  cult to distinguish. While this type 
of confusion lowered the overall accuracy and 
kappa values for each map, the errors have no 
major consequences for landscape-scale analy-
sis and geographic investigation, because the two 
classes are functionally and ecologically similar at 
this scale.

The accuracy of land-cover maps created with 
the CART model was considerably higher the ac-
curacy of those made with the more traditional, 
supervised Maximum Likelihood Classifi cation 
and trained with the same dataset (overall accura-
cies ranged from 21.8 to  44.8 % and Kappas from 
0.19 to 0.40). Furthermore, the range of kappas 
for the MLC maps illustrates one main diff er-
ence between the CART and MLC approach: 
CART models can successfully classify using a 
large number of variables, while accuracies of the 
MLC maps decreased as the number of variables 
increased. 

*The results for our supervised classifi cation, according to overall accuracy and kappa statistics, are shown in Ap-
pendix A (Table A1).
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3.2.2  Landscape dynamics monitoring

3.2.2.1  Watershed fragmentation indices, 
1987–2006

Using the CART land-cover maps from 1987, 
1996, and 2006, we calculated several class met-
rics using the FRAGSTATS program (McGarigal 
et al. 2002). Landscape-pattern metrics presented 
in this report fall into the following fi ve groups: 
Area/Density/Edge, Shape, Core Area, Isolation/
Proximity, and Contagion. Several metrics are 
available within each major group, and FRAG-
STATS reports the mean, area weighted mean, 
median, range, standard deviation, and coeffi  -
cient of variation for each metric. The number of 
metrics reported depends on the run parameters 
selected prior to executing a FRAGSTATS ses-
sion, with a full set approaching 100 metrics. For 
illustrative purposes, we selected a few basic met-
rics from the full set and focused specifi cally on 
the mean of each class metric reported. The class 
metrics presented below (and other relevant met-
rics) can be analyzed, interpreted, and presented 
as desired by park or network analysts. 

As an illustration, some general trends in land-
cover change from 1987 to 2006 have been iden-
tifi ed using the fragmentation metrics. For ex-
ample, there was a general decline in class area of 
herbaceous and shrubland classes over the time 
period (Figure 3-9). This is likely explained by 
the expansion of woody species into grasslands 
(herbaceous to shrub savanna and shrubland to 
woodland), a phenomenon observed throughout 
the Southwest in recent decades. There was also 
a relatively small but steady increase of indus-

trial and residential classes over the time period, 
which is consistent with rural and urban develop-
ment trends throughout the southwestern U.S. 

In terms of patch complexity, the mean shape in-
dex and mean fractal dimension index increased 
for riparian forest, industrial, and residential 
classes, indicating that these types became more 
complex over time (Figures 3-10 and 3-11). The 
complexity of riparian forest is likely explained 
by the introduction of effl  uent wastewater into 
the system, increasing riparian forest cover since 
the 1980s. This is also refl ected in the mean con-
tiguity index, which indicates that riparian forest 
patches became more connected over the time 
period (Figure 3-12). The change in shape com-
plexity of the urban types indicates that develop-
ment in the area is spatially fragmented and that 
growing urban areas are becoming increasingly 
complex.* 

3.2.2.2  Urban change map, 1987–2006

By applying post-classifi cation change-detection 
techniques to CART-derived land-cover maps, 
we can describe and display land-cover change 
in a spatially explicit manner. Post-classifi cation 
change products are created by applying raster 
algebra to land-cover maps of diff erent dates. Fig-
ure 3-13, for example, describes change in pixel 
values from non-urban to urban between 1987 
and 2006. Using this approach, analysts can visu-
ally represent changes for any land-cover class of 
interest. The resulting rasters can be further inter-
preted and analyzed using GIS. Table 3-1 displays 
similar information.

*The “Water” class was excluded from some analyses because many single, edge/background pixels were misclas-
sifi ed as water (see Figure 3-9). These misclassifi cations skewed some class statistics and may be addressed in 
future analysis.
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Table 3-1. Change in residential and industrial/commercial land uses, 
1987–2006. 

Class (1987)
Residential (2006)

Industrial/Commercial 
(2008)

Pixels Hectares Pixels Hectares
Agriculture 1,184 106.56 83 7.47

Barren 5,088 457.92 487 43.83

Herbaceous 2,805 252.45 466 41.94

Industrial/Commercial - - 2,683 241.47

Riparian Mesquite Forest 201 18.09 13 1.17

Woodland 6,551 589.59 340 30.6

Residential 17,074 1,536.66 663 59.67

Riparian Forest 191 17.19 9 0.81

Riparian Woodland 497 44.73 56 50.4

Shrub Savanna 2,484 223.56 366 32.94

Shrubland 26,457 2,381.13 914 82.26

Tree Savanna 673 60.51 157 14.13

Total 63,205 5,688.39 6,237 606.69

Total ha converted 4,151.79 319.86
Column on the left indicates the class type in 1987 that was converted to residential or industrial/
commercial classes by 2006.
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Figure 3-1. Floodplain change, 1936–2006.

1936          1956          1976        1983         1996         2004       2006
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Figure 3-2. Class area in hectares, 1956, 1975, 1983, 1996, 2004 and 2006, derived from aerial photography analysis.
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Figure 3-3. Class area distribution for Tumacácori National Historical Park, 1956, 1975, 1983, 1996, 2004, and 2006, derived 
from aerial photography analysis.
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Figure 3-4. Number of patches per class as derived from aerial photography analysis, Tumacácori National Historical Park, 
1956, 1975, 1983, 1996, 2004, and 2006.
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Figure 3-6. Land-cover map generated using the CART model, 1996.
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Figure 3-7. Land-cover map generated using the CART model, 1987.
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Figure 3-9. Class area in hectares for the 1987, 1996, and 2006 land-cover maps.
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Figure 3-10. Mean shape index for the 1987, 1996, and 2006 land-cover maps.
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Figure 3-11. Mean fractal dimension index for the 1987, 1996, and 2006 land-cover maps.
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Figure 3-12. Mean contiguity index for the 1987, 1996, and 2006 land-cover maps.
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Figure 3-13. Spatial location of residential and industrial change, 1987–2006.
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4  Discussion
This research examined the use of Landsat-based 
CART modeling and vegetation mapping from 
historical photography for NPS landscape dy-
namics monitoring. The results of this research 
indicate that the two approaches can provide 
valuable historical and spatial information for 
NPS monitoring programs—information that can 
guide management decisions and help national 
parks to address landscape and vegetation chang-
es occurring within and around park boundaries. 

The landscape dynamics protocol presented in 
this report resulted in multidecadal accuracies of 
over 80%, suggesting that the CART approach is 
reliable, repeatable, and can provide realistic data 
describing park landscapes. The following is a list 
of the advantages and outcomes of this project:

• Information on classifi cation techniques col-
lected thorough the remote-sensing litera-
ture review and the high accuracies of CART 
maps created using the methods in this 
report suggest that spectral transformation 
of multi-date imagery can help to increase 
class separability, resulting in high classifi ca-
tion accuracies. 

• The CART technique provides tractability of 
input variables via interpretation of the deci-
sion tree output. 

• The high accuracies of the CART-based 
maps indicates that seasonal Landsat data, 
in combination with CART modeling, is an 
appropriate model for multi-decadal SODN 
landscape dynamics monitoring. 

• Fragmentation indices and change-detection 
techniques allow interpretation and visual-
ization of complex data. 

Map derivatives, such as land-cover conversion 
and fragmentation changes between decades, are 
just two examples of how the methods described 
in this report can be used to characterize and 
monitor landscape dynamics.

We recommend that the following steps be tak-
en to provide additional insights into the SODN 
landscape dynamics monitoring protocol and 
the utility of resultant products for other SODN 
parks and management applications:

• Analyze the CART model data to better 
understand the contribution of each variable 
and supporting biophysical mechanisms.

• Integrate land-cover maps with land-use and 
socio-economic datasets.

• Test the protocol on other SODN parks with 
diff erent vegetation types and land-use pat-
terns.
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