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Selecting a survey design to detect change through time in an ecological resource requires balancing the
speed with which a given level of change can be detected against the cost of monitoring. Planning studies
allow one to assess these tradeoffs and identify the optimal design choices for a specific scenario of
change. However, such studies seldom are conducted. Even worse, they seem least likely to be under-
taken when they offer the most insight – when survey methods and monitoring designs are complex
and not well captured by simple statistical models. This may be due to limited technical capacity within
management agencies. Without such planning, managers risk a potentially severe waste of monitoring
resources on ineffective and inefficient monitoring, and institutions will remain ignorant of the true costs
of information and the potential efficiency gains afforded by a moderate increase in technical capacity.
We discuss the importance of planning studies, outline their main components, and illustrate the process
through an investigation of competing designs for monitoring for declining brown bear (Ursus arctos)
densities in southwestern Alaska. The results provide guidance on how long monitoring must be sus-
tained before any change is likely to be detected (under a scenario of rather strong true decline), the opti-
mal designs for detecting a change, and a tradeoff where accepting a delay of 2 years in detecting the
change could reduce the monitoring cost by almost 50%. This report emphasizes the importance of plan-
ning studies for guiding monitoring decisions.

Published by Elsevier Ltd.
1. Introduction

An ecological monitoring program created to inform manage-
ment decision-making is only effective if it produces information
of sufficient accuracy and precision as to resolve the underlying sci-
entific questions (Field et al., 2007; Lindenmayer and Likens, 2009)
and thus influence the decision-making (Olsen et al., 1999; Lyons
et al., 2008). When an underlying question entails detecting a spec-
ified level of population change, perhaps in response to a specific
management action or as part of a wider investigation into ecosys-
tem change, then the faster the monitoring program can detect the
given level of change when it indeed happens the more effective the
program will be. However, limited monitoring resources (staff,
money, equipment) constrain effectiveness by also requiring effi-
ciency; the goal is a monitoring program that provides the quickest
detection for the least implementation cost (Sims et al., 2008).

A large determinant of both a monitoring program’s effective-
ness and its efficiency is the survey design - the distribution of data
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collection effort in space and time. Planning studies allow one to
identify combinations of design choices, especially the per-survey
sampling effort level and survey frequency, that provide optimal
tradeoffs in effectiveness and efficiency (Rhodes et al., 2006, pro-
vide an alternative formulation).

The general importance of such planning is widely acknowl-
edged in the literature’s discussion of statistical power analysis
(Gerrodette, 1987; Thomas and Krebs, 1997; Sims et al., 2006),
yet it remains the exception rather than the rule in natural
resource monitoring (Legg and Nagy, 2006; Field et al., 2007;
Lindenmayer and Likens, 2009). Unfortunately, failure to conduct
such planning can entail severe management costs. A program’s
ineffectiveness may not be recognized and remain unresolved for
a long time given the large spatial and temporal variability of most
resources of interest in natural systems. Meanwhile, program re-
sources (staff time, money, equipment) are wasted that could have
been directed elsewhere (e.g., opportunity costs); the poor-quality
information delays recognition of and response to important
system changes, reducing management capacity and efficiency be-
cause the changes have progressed further before detection. This
may lead to misguided management decisions and irreversible
shifts in the ecosystem (Fairweather, 1991; Taylor and Gerrodette,
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1993; Gibbs et al., 1999; Reid, 2001; Field et al., 2005; Legg and
Nagy, 2006; Taylor et al., 2007).

Long-term costs of poor planning include failing to adequately
document historic ecosystem processes and population levels to
aid future planning, and wasting resources by failing to improve
the monitoring process itself (Nichols and Williams, 2006; Lyons
et al., 2008). From an organizational perspective, the most impor-
tant shortcomings may be the failure to learn both how to develop
well-defined management objectives and the technical aspects of
developing well-designed monitoring programs (Field et al.,
2007). This raises the subsequent risk of losing long-term institu-
tional support. All of this is in addition to the cumulative financial
costs, which can be substantial, of repeatedly spending ‘trivial’
amounts to monitor X.

Although perhaps the less frequent problem, a monitoring pro-
gram is inefficient if it employs excessive levels of survey effort and
frequency relative to the information quality required for the deci-
sion-making. Such programs similarly entail cumulative costs of
implementation, opportunity costs, and perhaps greater risk of los-
ing institutional support due to the potential savings from stopping
the program.

The importance of planning increases with survey costs and po-
tential for political contention over survey results. Both features
characterize current and proposed landscape-scale monitoring ef-
forts focused on understanding and responding to global change
in northern latitudes (for example, see Beever and Woodward, in
this issue). The complexity, and value, of the planning process in-
creases with the observation process’s complexity, such as known
major sources of bias (e.g., imperfect detection), multiple sources
of variation (Renner et al., 2010), and/or logistical constraints
(see Thompson et al., in this issue). All of these features character-
ize the monitoring of large mammals in remote regions of Alaska,
especially brown bears (Ursus arctos) (e.g., Walsh et al., 2010).
Brown bear surveys are expensive, logistically challenging, have a
high potential for political contention over the results, and can re-
quire complex survey methods.

Finding an optimal, or near optimal, combination of per-survey
effort and survey frequency, i.e., one that achieves the required
information quality standards for the lowest cost, can be done di-
rectly if the number of feasible combinations is small. Each combi-
nation is evaluated for its cost and ability (‘statistical power’) to
detect the pre-defined level of change or trend at the desired level
of statistical significance. We illustrate the planning process by
investigating the effort levels and costs required to detect declines
in brown bear density on Togiak National Wildlife Refuge (NWR) in
Alaska, USA.

1.1. Is it feasible to monitor brown bears on Togiak National Wildlife
Refuge?

Brown bears serve key ecological roles in Togiak NWR, a rela-
tively undeveloped region of southwest Alaska (Walsh et al.,
2010). They are top predators that influence population dynamics
of other species and act as conduits of nutrient transfer from
spawning salmon (Oncorhynchus spp.) to the terrestrial system
(Gende et al., 2002). Brown bear management is important in this
region because of the species role in the ecosystem and concerns
over its impact on subsistence prey species, such as caribou and
moose (Walsh et al., 2010). Precise estimates of brown bear density
are needed for immediate management decisions regarding har-
vest regulations, whereas precise estimates of changes in density
are needed for properly interpreting and reacting to changes in
prey species abundance (National Research Council, 1997). How-
ever, brown bears are difficult and expensive to survey in south-
west Alaska (Becker and Quang, 2009). They often occur at low
to moderate densities, can have low probability of detection from
aircraft except in open habitats, are inactive throughout the winter,
and often inhabit areas that are largely remote, mountainous, and/
or difficult to access (Walsh et al., 2010).

Mark-recapture methods using radio collars have been em-
ployed to estimate brown bear abundance in the Togiak region
(Kovach et al., 2006) but these methods were not sustainable as
a regular monitoring program due to their required effort and
costs. DNA mark-recapture using hair snares (Boulanger et al.,
2002) would eliminate the need for direct handling of bears but
still suffers from the logistical constraints and expense associated
with ground-based efforts to establish and maintain hair snares
(ibid; Boulanger et al., 2006) in a region dominated by mountains
and under the operating constraints of legally protected wilder-
ness. A line transect method using distance sampling from small
aircraft and double-observer models was developed to survey
brown bears (Becker and Quang, 2009) and successfully used in
other parts of southwest Alaska (ibid). The method does not re-
quire ground access or direct handling of bears. However, experi-
ence suggests it requires approximately 150 or more detections
of bear groups to attain relatively precise abundance estimators
(Earl Becker, Alaska Dept. of Fish and Game, pers. comm.).

This distance sampling method was employed in the Togiak re-
gion in 2004/2005, the second year being required to achieve the
minimum of 150 bear group detections (see Table 2 in Walsh
et al., 2010). In total, 969 25-km long transects were surveyed
and 199 bear groups detected, leading to an estimate of 40.3 bears
per 1000 km2 (95% confidence interval 31.4–54.5) (Walsh et al.,
2010). The data collection required 20 survey days each for five
survey aircraft with two-person crews (front observer/pilot, back
observer/record keeper); a breakdown of implementation costs
by task is in the online supplement of Walsh et al. (2010).

Given the successful implementation of the survey in 2004/
2005, the manager of Togiak NWR raised two questions motivating
the planning study reported here: What survey effort levels and
frequency would most efficiently achieve a probability of 0.80 of
detecting a population rate of decline meeting the IUCN ‘vulnera-
ble’ criterion (IUCN Standards and Petitions Subcommitee,
2010)? What would that program cost?

We summarize the planning steps used to address the Togiak
NWR manager’s questions. We emphasize the general planning
components as a broad guide for resource managers to the steps
involved, minimizing the technical details of this particular appli-
cation. Our objective is to illustrate to managers (i) the value of
such planning and (ii) the relatively negligible cost of conducting
such planning relative to the total cumulative cost of implement-
ing a monitoring program.
2. Methods

The manager’s questions were addressed by calculating, for
each survey design considered, the smallest rate of decline detect-
able (the minimum detectable difference) with the manager’s speci-
fied statistical error rates; the minimum detectable difference was
calculated after each survey through the first 41 years of the mon-
itoring program. A survey design became effective the year its min-
imum detectable difference was smaller than the rate of
population change associated with classifying the population as
‘vulnerable’ under IUCN criteria (IUCN Standards and Petitions
Subcommittee, 2010). This type of planning study requires defin-
ing a number of features before implementation.
2.1. Define the survey design options

All combinations of per-survey sample size (n = 500, 750, 1000,
1250 or 1500 transects) and survey frequency (every 1, 4, 5, or



Table 2
Optimal choices for survey effort levels and monitoring frequency change from
among those investigated (Section 2.1), to most quickly and least expensively detect a
rate of population change that, if sustained long enough, would warrant classifying
the population as ‘vulnerable’ under the IUCN criterion, with a probability of 0.80
when the true rate of population change is r = �0.03, for each investigated initial
density. ‘True decline’ is 1 – (mean of simulated true densities at that year)/(initial
density).

Initial density
(bears/
1000 km2)

First
year

True
decline
(%)

Cumulative cost
to first year
(US$)

Monitoring
frequency

Survey
sample
size

40.3 29 58 3,661,054 4 1500
31 61 1,918,775 10 1500

80 16 38 1,256,863 5 1250
21 47 670,439 10 750

160 11 28 717,953 5 1000
21 47 490,360 10 500
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10 years) were investigated, with one exception. Results from
annual monitoring were only considered for n = 250 or 500 tran-
sects because it is logistically infeasible to sample more than 500
transects in a given season. This constraint reflected limitations
in (i) the time available between den emergence and vegetation
green-up (Walsh et al., 2010), (ii) the availability of experienced
pilots and observers to conduct such studies, (iii) annual agency
budgets for biological surveys, and (iv) safety and logistical con-
cerns of simultaneously employing more than five survey aircraft
in the study region.

2.2. Define the survey cost function

Cumulative costs of implementing each survey were estimated
based on the costs of the 2004/2005 Togiak NWR survey: fixed
costs for initiating monitoring = US$9000.00, fixed costs per sur-
vey = US$21,460.00, and per transect costs = US$168.51 (Patrick
Walsh, Togiak NWR, pers. comm.). Calculations included a 3% per
annum inflation rate across the duration of monitoring. The costs
accounted for each survey’s data processing, QA/QC, and analysis
but did not include long-term data management or dissemination
of survey results.

2.3. Define the response metric

Given the limited information on brown bear populations in
this region, the initially proposed monitoring objective focused
on estimating instantaneous rates of population change, r, assum-
ing an exponential growth model with multiplicative errors (Pro-
cess model, Table 1). This could be estimated using just the first
and most recent surveys, r̂ = ln(Nt/N0)/t, or using the slope estimate
from fitting a regression model of abundance estimates from all the
surveys against time (Skalski et al., 2005). The latter approach uti-
lized more information so was assumed to provide more precise
rate estimates. Accordingly, rate of decline was estimated by fitting
the linear model of lnðcNt Þ against survey year (‘t’) using weighted
least squares to account for any changes in the estimated variance
of the lnðcNt Þ values as true density declined. Weights were inver-
sely proportional to the var(ln ðcNt ÞÞ � varðbNt Þ

ðbNt Þ2
by Taylor series

expansion.

2.4. Define the reference rate of change and statistical error rates

The reference rate of decline was set at the value required for
classifying the population as ‘vulnerable’ under IUCN criteria (IUCN
Standards and Petitions Subcommittee, 2010): an estimated 30%
Table 1
Process and observation models used to generate time series of density estimates and
their standard errors, and the estimation model used to estimate the rate of
population change from the each simulated time series. Process model parameter
settings are given in Section 2.7. Source of the observation model is explained in
Section 2.5.

Model Components

Process Nt = Nt�1 exp(r + et)
et i.i.d. � Normal(0, r2

annual)

Observation cDt � NormalðDt ;r2
DensityðDt ;nÞÞ

Dt ¼ Nt=area

r2
DensityðDt ;nÞ ¼ ð129:29þ 1:81DtÞ2=n

logðcSEðcDt ÞÞ � Normal lðDt ;nÞ;r2
SEðDt ;nÞ

� �
lðDt ;nÞ ¼ 1:21þ 0:137

ffiffiffiffiffiffi
Dt
p

� 0:000394n
r2

SEðDt ;nÞ ¼ 246:17� 44:36 logðDtÞ=n

Estimation logðbNtÞ ¼ b0 þ rt þ dt

dt i.i.d. � Normal(0, r2
residual)
reduction in population size over the last 10 years or three gener-
ations, whichever is longer, where the reduction or its causes may
not have ceased or may not be understood or may not be revers-
ible. Generation length, defined to be the average age of the par-
ents of the current cohort, was set at 16.5 years (Steve Kovach,
pers. comm.; David Garshelis, pers. comm.). Under the exponential
growth model, this r0 = ln(Nt/N0)/(three generations) = ln(0.70)/
49.5 = �0.0072. This rate of population change, sustained over
49.5 years, would reduce the population by 30%. Detecting a rate
of population change of this magnitude or more extreme, though
over a shorter time frame, was taken as a trigger by the manager.
The comparison of the estimated rate of population change and
this reference value used a Type I error rate of 0.05 and a Type II
error rate of 0.20 (i.e., statistical power of 0.80).
2.5. Calculate the minimum detectable rate of decline for each design

Planning requires calculating how the variance of the estimate
changes across different survey designs. When the quantity of
interest is a rate or trend estimate, this requires calculating both
how the per-survey estimate variance changes with sample size
and how the trend estimate’s variance changes with survey fre-
quency. This can be calculated directly when the estimation meth-
ods allow derivation of the necessary analytical formulas (e.g.,
Larsen et al., 2001), otherwise calculations must use simulation.

As with many wildlife survey methods, the distance sampling
method for brown bear density estimation combined a classical
statistical survey design method, e.g., Horwitz–Thompson estima-
tion, with fitting a probability model of the observation process,
e.g., a detection function (Becker and Quang, 2009). The detection
function was moderately complex as it included a general linear
model to allow parameters of the detection function to systemati-
cally vary with covariates and a double-observer mark-recapture
model to estimate maximum probability of detection (ibid). This
complexity precluded deriving an analytical formula for how the
variance of the density estimate would change as a result of
changes in the sample size and underlying true density. Thus plan-
ning required simulation.

Simulation mimicked both the dominant sources of variation in
the underlying resource of interest and the assumed change in that
resource (via a process or state model) as well as the dominant
sources of variation in surveying the simulated resource (via an
observation model) (Borchers et al., 2002). The procedure had four
steps (detailed below): (i) use the process model to generate a time
sequence of declining true densities in the study region, (ii) use the
observation model to generate a time sequence of density esti-
mates and standard errors based on the true densities and the sam-
ple size, (iii) extract the estimates for the years actually surveyed
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under the specific survey frequency, then (iv) use those density
estimates and their standard errors to estimate the response met-
ric described above (Section 2.3).
2.6. Process model

Time series of declining brown bear abundance were generated
over a 41-year period from a discrete-time exponential growth
model with annual process variation imposed on the population
growth rate (Table 1). Each abundance time series was converted
to a density time series by dividing by the area of the simulated
study region.
2.7. Observation model

The observation model was applied to each density time series
to generate a time series of estimated densities and their uncer-
tainties. The observation model included both the imperfect detec-
tion process during sampling and the distance sampling estimation
process required by the unbiased density estimators. It was devel-
oped in two stages. Initially, computer code was written to simu-
late explicitly each step of surveying n transects in a simulated
study region with a true brown bear density D and analyze the
results (Appendix A). This model was too slow to directly employ
in the trend simulations, so a small study was conducted to devel-
op analytical models (Appendix B) that approximated the sampling
distributions of both the density estimate, D̂, and its standard error,
cSEðD̂Þ, as predicted by the detailed model, for a given true density
and sample size (Table 1). The secondary models were then used to
simulate brown bear density estimates and their standard errors in
the planning study.

For each simulated time sequence of density estimates and
standard errors generated, the relevant subset of estimates was ex-
tracted for each survey frequency and used to estimate the rate of
population change, r̂, and its 90% confidence interval at years 6, 11,
16, 21, 26, 31, 36 and 41. This procedure was repeated 1000 times
Fig. 1. Decrease in minimum rate of population change (vertical axis) detectable with p
initial density (row) and design combination (columns and symbols, see key in lower left
of at least 0.80 to detect a declining population; a point below the dashed horizontal
vulnerable population criteria if sustained for three generations, e.g., 49.5 years.
for each sample size for each initial density. The 0.80 quantile of
each set of 1000 upper confidence interval limits was that survey
design’s minimum detectable rate of decline. A decline <0 corre-
sponded to having at least 80% power for rejecting a null hypoth-
esis of no trend vs. the alternative hypothesis of declining trend.

2.8. Identification of optimal designs

For each initial density, the optimal survey designs were identi-
fied by plotting the first year at which a design’s minimum detect-
able rate of decline was more extreme than, i.e. below, the IUCN
threshold (Section 2.4) against the cumulative cost of implement-
ing the design through that year. The optimal designs are those
that had the quickest detection for a given total cost such that
any design that detected the decline more quickly had a larger total
cost. These optimal designs fall along the edge of the scatter near
the horizontal and vertical axes, i.e., the tradeoff frontier.

2.9. Planning study settings

Population trends were simulated for initial densities (D0) of
40.3, 80 and 160 brown bears per 1000 km2, a range encompassing
estimates from both the Togiak NWR study (Walsh et al., 2010) and
a recent study from other southwest Alaska federal management
units, Lake Clark National Park and Preserve and Katmai National
Park and Preserve (Olson and Putera, 2007). The study area was a
square 145.53 km on a side, giving the same area as the Togiak
NWR study (21,178 km2). The true instantaneous rate of popula-
tion change was set at r = �0.03. The annual process variation
around this trend was set at rannual = 0.008 based on a mark-
recapture study from the Togiak NWR area (Kovach et al., 2006).
3. Results

Under the assumed process model, at an initial brown bear den-
sity as low as that estimated to exist at Togiak NWR (40.3 bears per
robability of 0.80 as monitoring progresses through time (horizontal axis), for each
panel). See Section 2.5 for details. A point below the solid horizontal line has a power
line has at least that power to detect a rate of change that would meet the IUCN
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1000 km2), 21 years passed before any design combination
detected a population decline (n = 1500 transects, survey every
4 years; minimum detectable rate of decline <0, Fig. 1) with the
required probability of 0.80, even with the highest level of
sampling effort; at this point the population was expected to have
declined by at least 47%. At the earliest, managers should expect
to monitor 29 years to attain their information objective of detect-
ing a rate of population decline as bad as that required to meet
the IUCN vulnerable criterion (though the rate of decline had
not yet been sustained for three generations), surveying 1500
transects every 4 years (Fig. 1) at a total cumulative cost of over
US$3.5 million (Table 2). The population would have actually
declined, on average, 58% (Table 2). This level of monitoring effort
would require surveying in three of every 5 years, assuming
logistic constraints limit surveying to 500 transects a year. Or
the management information objective could be met 2 years later
at just over 1/2 the cost by surveying 1500 transects every
10 years (Table 2).

The optimal monitoring designs differed for different initial
densities, with the optimal sample size decreasing as initial density
increased (Fig. 1, Table 2). The management information objective
was achieved much more quickly and cheaply at higher initial
densities (Table 2).

4. Discussion

Planning studies are useful both for what they reveal and what
they encourage. The current study revealed that Togiak NWR can
achieve its initially proposed management information objectives
by monitoring brown bears using the distance sampling survey
method if it is willing to commit to spend approximately US$2 M
over the next 30 years and survey 500 transects for three consecu-
tive years per decade (Table 2). Although these results likely some-
what overestimate the required time and cost of achieving these
information objectives (discussed below), managers can use them
as a guide for assessing whether this is a feasible expenditure of
monitoring resources and, if it is, to identify a design that is both
effective and efficient.

More importantly, the results encourage a greater dialogue be-
tween managers and field biologists (and biometricians) regarding
appropriate and feasible management objectives, potential man-
agement actions and information needs (including appropriate er-
ror rates). Such a dialogue may lead to selection of a different
response metric or perhaps just different error rates. Setting Types
I and II error rates is a policy choice and should reflect both the
knowledge base of the relevant body of science and the risks asso-
ciated with the alternative actions stemming from the potential
decisions (Shrader-Frechette and McCoy, 1992; Field et al., 2004;
Taylor et al., 2007). Given the limited information on brown bears
in this region, it may be adequate to use a Type I error rate of 0.10
or 0.20, thus equalizing the risks of false discovery and missed sig-
nals (Types I and II errors, respectively). The planning study could
then be recalculated to determine the optimal designs, expected
monitoring duration and total cost for the new error rates (e.g.,
Field et al., 2005).

Failure to conduct planning studies and just ‘do what you can
with available resources’ generally wastes resources on fruitless ef-
fort (Legg and Nagy, 2006; Taylor et al., 2007), provides a false
sense of management performance (Fairweather, 1991), and per-
haps most importantly, encourages continued institutional igno-
rance of the true costs of information. Planning results can help
garner institutional support by making clear the length of commit-
ment that may be required before achieving the desired informa-
tion goals, e.g., 31 years in the case of monitoring brown bears at
Togiak NWR. This can be especially important given the tendency
for relatively rapid shifts of focus at the higher management levels.
Planning results can also help in assessing the potential effects of
declining support.

Study planning can be technically challenging and time con-
suming, but its cost is negligible compared to the potential savings
from having identified the set of optimal designs and, thereby, also
the ineffective or inefficient ones. The labor required to develop the
current results totaled to less than a third of a year’s focused labor
by a senior biometrician (not counting interruptions by other du-
ties). Unfortunately, a major barrier to regularly conducting such
planning studies is a lack of availability of technical capacity within
management agencies and/or their partners (Field et al., 2007).
Natural resource managers should emphasize the importance of
this need so that program staffing plans can take concrete steps
to address it. Having completed just a few such studies is often suf-
ficient to demonstrate their value.

Relevance of simulation results clearly depends on the ade-
quacy of the process, observation, and estimation models (Seavy
and Reynolds, 2007). It is unclear how the current results are
affected by the simple process model (Table 1) that ignores any
aspect of demographics, spatial patterns of habitat use, changing
harvest rates or patterns, or changing system drivers such as cli-
mate or salmon-stock abundance. The modeled decline assumed
that all age and sex classes declined at equal rates, rather than
the least detectable individuals being most susceptible to loss
or some other demographically inhomogeneous process. How-
ever, regardless of how desirable a more detailed process model
may be, the model used here reflects the current level of detailed
data available for modeling brown bear population dynamics in
this region.

Observation errors likely could be reduced somewhat in actual
practice by incorporating additional covariates, such as terrain
topographic relief (e.g., high vs. low), into the detection function
(e.g., Walsh et al., 2010) or combining information on detections
across multiple monitoring surveys or surveys from similar habi-
tats (e.g., Bayesian hierarchical modeling; Royle and Dorazio,
2008). Also, a potentially more precise survey estimator has been
suggested (Laake and Borchers, 2004). Further, in real life, manag-
ers would avail themselves of information on population demo-
graphics collected during the line transect survey as well as
information from other sources, such as harvests.

In actual application, effort should be made to remove the
observation error from the estimated process variation, the latter
being the relevant source of uncertainty and the former simply
noise (Link and Nichols, 1994; de Valpine and Hastings, 2002;
Lindley, 2003). Such an analysis could greatly improve monitoring
effectiveness and efficiency, potentially greatly reducing the ex-
pected cumulative costs and the expected time to achievement
of the management information objectives. However, that requires
not only much more complicated analyses than employed here but
rather strong insight into the most relevant process model.

The impossibility of synthesizing the simulation errors from the
assumed process, observation, and estimation models (Table 1),
reinforces the importance of revisiting the planning study as fur-
ther surveys are conducted and system understanding improves
(Field et al., 2007). Ideally, the planning study would be redone
after each survey, leading to an adaptive monitoring program that
continually learns and improves its efficiency and effectiveness
(Lindenmayer and Likens, 2009). Having developed the planning
tools, it is a relatively simple matter to investigate other scenarios
of change as well as other levels of statistical confidence and power
(Field et al., 2004, 2005).

5. Conclusion

A number of landscape-scale monitoring programs exist or are
being initiated in the northern latitudes, among many others
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elsewhere, to aid and inform natural resource management in the
face of a variety of sources of change. Based on past history, much
of this effort risks being wasted (Legg and Nagy, 2006; Nichols and
Williams, 2006; Field et al., 2007) unless the management agencies
and their non-governmental partners embrace and engage in
thorough program planning (Fancy et al., 2009; Lindenmayer and
Likens, 2009, 2010) – from the formulation of management objec-
tives and information needs through the numerous intervening
stages to the selection of survey and analysis methods, culminating
in the types of study design planning illustrated here. Achieving
this will require expanding the technical capacity of most
resource-management agencies and/or their non-governmental
partners. In the long run, such costs should result in improved
management efficacy and efficiency, earlier problem detection
(and resolution), improved production efficiency, development of
‘outside’ clientele and program champions, greater institutional
support, and improved institutional awareness of the true costs
of information.
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Appendix A. Detailed observation model

We briefly describe the program developed to simulate all
phases of the survey data collection and analysis method; the pro-
gram was written for the R analysis environment (R Development
Core Team, 2009) and is available from the first author. The find-
ings and conclusions in this article are those of the authors and
do not necessarily represent the views of the U.S. Fish and Wildlife
Service.

A.1. Setting up the simulation ‘region’ and brown bear ‘population’

The survey method requires that number and size of animal
groups in the study region remain constant during the survey
and their distribution remain constant relative to the time required
to survey a transect (Becker and Quang, 2009). This was simulated
by defining a square study region 145.53 km on a side, giving the
same area as the Togiak NWR study (21,178 km2). A specific brown
bear density was simulated in the region by (i) calculating the total
number of bears to place in the region to achieve that density, (ii)
randomly simulating a large number of bear group sizes from the
Togiak study group size distribution (Walsh et al., 2010), stopping
when the cumulative number of bears first met or exceeded the to-
tal number required, (iii) randomly placing the bear groups in the
square study region following a uniform spatial distribution. Bear
group locations and sizes were held fixed for the duration of the
simulations under that density.

A.2. Simulating observations

The detailed observation model explicitly simulated the domi-
nant sources of uncertainty in the observation process: a sample
of n 25-km-long transects were randomly selected in the study
region and detection of each bear group along a transect was
simulated for the ‘pilot’ and, independently, the ‘observer’ using
their respective detection functions. These ‘true’ detection func-
tions were simplifications of the functions identified in the Togiak
NWR study (Table 5 of Walsh et al., 2010). The covariate model for
the scale parameter was ln(k) = b0 + b1 ln(ESD), where ESD was the
effective search distance, the furthest distance off the transect that
pilot was actively searching immediately preceding a group’s
detection (see Becker and Quang (2009) for a discussion of this
covariate). All parameters were set at the values from fitting these
detection models to the Togiak study results. The ESD covariate
was generated by adding a random number to the distance from
the transect to the bear group. Investigation of the empirical distri-
bution of these ‘innovations’ for the Togiak NWR survey, i.e., ESDi –
(distance from transect)i for each detected bear group i, revealed
that they were adequately modeled by a gamma distribution
(parameters shape = 1.27, rate = 0.004) (unpublished data), a selec-
tion originally considered because of its flexible shape and ability
to represent skewed distributions. The simulations assumed that
the size of a detected group was counted without error.

A.3. Simulating analysis

Estimation followed the method of Becker and Quang (2009), but
without a model selection process – only the scale model above was
fit during estimation. Standard errors were estimated from 600
bootstrap replicates for each simulated sample; this had been
shown to be an adequate number of bootstrap replicates for precise
standard error estimates (unpublished data). Analyses were con-
ducted using the GammaMRDS library of functions (Reynolds
et al., 2010) for the statistical package R (R Foundation, 2010).
Appendix B. Analytical approximation to detailed observation
model

The detailed observation model was used to generate 500 esti-
mated densities and their standard errors (using 600 bootstrap
replicates) for each sample size n = {800, 1000, 1200, 1400, 1600}
under a density of 40.3 bears/1000 km2, and for n = 1000 transects
under each density 20, 80, and 160 bears/1000 km2. The resulting
sampling distributions were used to identify analytical approxima-
tions for generating density estimates and their standard errors for
any sample size and density (see Table 1).

B.1. Approximate sampling distribution for D̂

Brown bear density estimates, D̂, were approximately normally
distributed around the true density (unpublished data). The stan-
dard deviation of this distribution was modeled by a two step pro-
cess. First, for each simulated sample size and density, the variance
of the 500 density estimates was calculated. The resulting values
from different samples sizes under a common density were used
to calculate the ‘per unit sampling variance’ for that density
(unpublished data), a quantity allows one to easily estimate the
sampling variance for that density under any sample size (de-
scribed in Kish, 1965, p. 255). The per unit sample variances from
different densities were found to be adequately modeled by a lin-
ear function of the true density (unpublished data), giving the
formula for r2

DensityðDt ;nÞ shown in Table 1.

B.2. Approximate sampling distribution for dSEðD̂Þ

The natural logarithm of the estimated standard errors for the
brown bear density estimates, logðdSEðD̂ÞÞ, were approximately nor-
mally distributed (unpublished data). Though an adequate approx-
imation, the simulation results did include more extremely large
values than this distribution. Thus the parameter values for each
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simulation scenario’s normal distribution were fit to that scenario’s
500 simulation results using a robust k-step estimator (Kohl, 2005)
from the R library ROptEst (Kohl and Ruckdeschel, 2009), an esti-
mation method that automatically downweights extreme observa-
tions. The mean of the normal distribution for any given sample
size and density was adequately modeled as a linear function of
the sample size and square-root of the density (Table 1) (unpub-
lished data). The variance of the normal distribution for any given
sample size and density was modeled following the same process
above, with the modification that the per unit variance for a given
density was found to be adequately modeled as a linear function of
the logarithm of the density (given in Table 1) (unpublished data).
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